❶ 神经网络、流形和拓扑
译者:树石
最近,由于在诸如计算机视觉领域取得了突破性成果,深层神经网络引起了广泛的关注和兴趣。
然而,该领域仍然存在一些顾虑。比如, 要了解神经网络能够做什么相当具有挑战性 。如果一个网路被训练得很好,输出高品质的结果,但了解它是如何做到的具有挑战性。如果网络出现故障,也很难理解什么地方出了错。
虽然通常理解深层神经网络的行为比较困难, 探索低维度深层神经网络相对容易的多 ——在每一层只有几个神经元的网络。事实上,我们可以通过创建可视化效果来理解网络的行为和对网络的培训。这种方法将让我们 获取对神经网络行为的深层直觉,并观察到神经网络和拓扑学之间的联系 。
另外,还探讨了一些有趣的事情,包括对某些数据集进行分类的神经网络的最低复杂性。
让我们从一个非常简单的数据集开始:在一个平面上的两条曲线。该网络将学习如何将线上的点归类为这一个还是另外一个。
将神经网络(或任何分类算法)的行为可视化,显而易见的方法是简单地看它是如何对每一个可能的数据点进行分类。
我们将先从最简单的神经网络开始,只迅雀有一个输入层和一个输出层的网络。这样的网络只是试图通过画一条线将两个类数据的分离。
诸如此类的网络不是很有趣。现代神经网络一般在输入和输出之间,具有称为“隐藏”层的多个层次。至少包含一个隐藏层。
与以前一样,我们可以通过查看它对其领域不同点进行的处理来观察这个网络的行为。数据分割通过一条曲线来完成,而不是直线。
通过神经网络的每一层,数据被转换,创建了一个新的 表示 (represention)。我们可以看一下在这些表示中的数据以及网络是如何划分他们的。当我们到达最后一层的表示时,网络只需要绘制一条线(或者,在更高维度里绘制一个超平面)。
在前面的可视化中,我们看到其“原始”表示的数据,你可以将其视为输入层。现在我们将看看经过第一层转化后,你可以认为这是我们看到了隐藏层。
每个维度亩孝早对应于该层中神经元的兴奋。
在上一节中所概述的方法,我们知道通过查看每层的表示来了解网络。这给了我们一个离散的表示列表。
最棘手的部分是了解我慎郑们是如何从一个表示到另一个的。值得庆幸的是,神经网络层具有很好的性能,使这一点变得很容易。
神经网络由多种不同类型的层构成。我们将谈论一个具体的例子:双曲正切层(tanh)。一个双曲正切层tanh(Wx+b)由以下组成:
我们可以观察到这是一个连续变换,具体如下:
这个故事和其它标准层大体相同,由一个映射变换之后单调激活函数的逐点应用。
我们可以用这种技术来了解更复杂的网络。例如,下面的网络划分两个被略微缠结的螺旋,使用四个隐藏层。随着时间的推移,我们可以看到它的“原始”表示转移到更高层次为了对数据进行分类。而螺旋最初是纠结的,最终他们是线性可分的。
另一方面,以下的网络,也是使用多个层,分类两个螺旋没有成功,反而更加缠结。
这里值得明确指出,这些任务将变得有些困难,如果我们使用的是低维神经网络。如果我们使用更广泛的网络,这一切都将是相当容易的。
( Andrei Karpathy有 很好的演示 基于ConvnetJS,让您可以交互式地浏览网络,就像上面的这种可视化培训! )
每一层都会拉伸和挤压空间,但它永远不会切割、断裂和褶皱它。直观地说,我们可以看到它保留了拓扑性质。例如,一组数据将在转化后保持连接,如果它之前是连接的(反之亦然)。
这样的转换,不影响拓扑结构,被称为同胚。在形式上,他们是连续函数的双向映射。
定理 :具有N个输入和N个输出的层是同胚,如果权重矩阵W是非奇异的。(虽然需要小心它的值域和范围。)
证明 :让我们一步步考虑:
因此,如果W所有因子都是非零的,我们的层就是同胚的。∎
这一结果始终正确,如果我们将任意多个这些层组合在一起。
考虑包含两个类的二维数据集
![][01]
[01]: http://latex.codecogs.com/svg.latex?,A,B subsetmathbb{R}^2
A = {x | d(x,0) < 1/3}
B = {x | 2/3 < d(x,0) < 1}
如前面提到的,用一个S形函数或SOFTMAX层分类相当于试图找到一个超平面(或在这种情况下是一条线)在最终表示中分隔A与B。只有两个隐藏层的网络对于分离这组数据在拓扑上是无能的,并注定要失败。
在下面的可视化图中,我们观察到网络训练隐藏的表示,通过试图使用一条直线来分类。我们可以看到,它在努力学习某种方式来做到这一点是不断挣扎而且困难重重。
最后,它被拉到一个相当低效的拟合。虽然它实际上能够实现〜80%分类精度。
这个例子只有一个隐藏层,但无论如何它都会失败。
证明 :要么每层是一个同胚,要么该层的权重矩阵具有0因子。如果该层是同胚的,A被B所环绕,一个直线不能将它们分开。但是,假设它具有一个0因子:那么数据集将在某些轴上崩塌。因为我们正在处理的东西同胚于原始数据集,A被B所包围,在任一轴崩塌于意味着我们将有一些A中的点和B中的点混合,从而无法完成A与B的区分。∎
如果我们增加第三个隐藏层,问题就变得微不足道。神经网络学习以下表示:
用这个表示,我们可以用一个超平面分开数据集。
为了更好的理解这是怎么做到的,让我们考虑一个更简单的一维数据集:
![][02]
[02]: http://latex.codecogs.com/svg.latex?,A=[- frac{1}{3},,frac{1}{3}]
![][03]
[03]: http://latex.codecogs.com/svg.latex?,B=[-1,- frac{2}{3}]cup[frac{2}{3},1]
如果不使用两个或多个隐藏单元层,我们不能将此数据集进行分类。但是,如果我们使用一个带有两层的网络,我们就学会将数据转化成一个很好的曲线,让我们能用一条线将数据分开:
发生了什么?一个隐藏单元学习当x>-1/2时兴奋,另一个单元学习当x>1/2时兴奋。当第一个兴奋,而不是第二个时,我们知道数据属于A。
这个假说和现实世界的数据集相关吗,比如图像数据?如果你认真对待流形假说,我觉得他值得思考。
流形假说是指自然数据在它的嵌入空间构成了较低维度的数据流形。同时具有理论和实验的理由相信这一假说是真的。如果你相信这一点,那么分类算法的任务是从根本上分离一堆纠结的流形。
在前面的例子中,一个类完全被另一个类包围。然而,这似乎并不可能,比如狗的图像流形完全被猫的图像流形包围。因为我们将在下一节中看到其他更合理的拓扑情况。
另一个有趣的数据集要考虑的是两个链接的tori,A和B。
就像之前的数据集,这个数据不能被分离,如果不使用n+1维,即4个维度。
链接在结点理论(knot theory)中被讨论,拓扑学的一个领域。有时,当我们看到一个链接,并不能一眼看出它是否真正相连(一堆被缠结在一起的事情,但可以通过连续变形分开)。
如果仅仅使用3个层次的神经网络就能够对其进行分类,那么它就是一个未链接(unlink)。(问:理论上是否能将所有未链接都通过只有3个层次的网络进行分类?)
从这个结的角度看,我们通过神经网络产生的连续可视化不仅仅是一个漂亮的动画,它是解开链接的程序。在拓扑学中,我们把它称为原始链接和分离环之间一个环境同痕(an ambient isotopy)。
形式上,流形A和B之间的一个环境同痕是一个连续函数F:[0,1]× X→Y,使得每个Ft是一个从X到它自己范围的同胚,F0是一个标识函数,并F1是从A到B的一个映射。也就是,Ft是从A到自身的映射到从A到B的映射的连续转换。
定理 :在输入和网络层之间具有环境同痕,如果:
证明 :同样,我们分别考虑网络的每个阶段:
我想这也许是十分有趣的,通过程序自动发现这样的环境同痕并自动证明某些链接的等价性,或者某些环节是可分离的。这将很有趣知道,如果神经网络是否可以各种情况。
(显然,确定结点是否重要是一个NP,这不太适用于神经网络。)
我们已经谈到的这类链接,到目前为止似乎不太可能是现实世界的数据,但他们是更高维的生成。这似乎是合理的。
链接和结点是1维流形,但我们需要4个维度才能够解开他们。类似地,可能需要更高维度的空间,以便能够解开n维流形。所有n维流形可在2n+2维度上解开。
(我对于结点理了解不多,确实需要更多地了解维度和链接。如果我们知道一个流形可以被嵌入到n维空间,而不是流形的维度,我们有什么限制? )
很自然的想法,一个神经网络试图直接将流形从纠结尽可能薄的部分拉出。虽然这不会在任何情况下都是一个好的解决方案,但是大多情况它可以实现较高的分类准确率,到达一个诱人的最低点(local miminum)。
它试图拉伸具有高延展性的空间,并锐化靠近中断处。我们知道这些事情发生。压缩的处罚,在对数据点衍生层的处罚,都是很自然的做法。
由于这些局部最小点对于解决这种拓扑问题完全无用,拓扑问题值得很好的探索。
在另一方面,如果我们只关心取得了良好的分类结果,好像我们可能并不关心。如果很小的一个数据流形的点陷入另一个流形,会是一个问题吗?看起来我们应该能够得到很好的分类结果,尽管有这个问题。
(我的直觉是,像这样欺骗自己是一个坏主意:这是很难想象它不会是死路一条。特别是,针对一个局部最小很重要的优化问题,选择这种方式不能真正解决问题,这似乎是糟糕的表现。)
我越思考标准的神经网络层 - 即用映射变换后逐点激活功能 - 我就越不抱幻想。很难想象,他们能够很好地操纵流形。
也许这可能是有意义的,我们采用一个非常不同的层,而不是传统的神经网络层?
非常自然的感觉是,通过一个矢量场的学习,我们希望流形移动方向:
然后再对他变形空间:
人们可以学会在固定点的矢量场(只是需要从训练集合选取一些固定点作为锚),并以某种方式介入。上面的矢量场的形式是:
![][04]
[04]: http://latex.codecogs.com/svg.latex?,F(x)= frac{v_0f_0(x)+v_1f_1(x)}{1+f_0(x)+f_1(x)}
其中,v0和v1是矢量,F0(X)和F1(X)是n维高斯函数。这一点来自于径向基函数(radial basis functions)的灵感。
我也开始觉得线性可分可能是一个巨大的,也可能不合理的,神经网络的需求。在某些方面,非常自然的会想到使用K-近邻(K-NN)。然而,K-NN的成功在很大程度上取决于它所分类的数据表示(represention),因此,人们在K-NN之前,需要一种良好的表示。
作为第一个实验中,我训练了一些MNIST网络(两层卷积网,没有下降现象)到达〜1%测试误差。然后我放弃了最后的SOFTMAX层而使用K-NN算法,我能够始终如一地降低0.1-0.2%的测试误差。
不过,这并不完全觉得是正确的事情。该网络还在试图做线性分类,但由于我们使用K-NN测试,它能够从它所犯的错误中恢复一些。
K-NN有区别于相对于它的网络层次,因为会用到(1 /距离值)加权。因此,我们可以直接训练网络K-NN分类。这可以被认为是一种“k-NN”层替SOFTMAX。
我们不希望为每个小批量数据遍历整个训练集,因为这将非常消耗计算资源。我认为一个很好的办法是根据小批次的其它元素对每个小批次的元素进行分类,赋予每一个元素(1 /从分类目标的距离)的权重。
可悲的是,即使有完善的体系结构,采用K-NN只下到5-4%检测错误 - 使用简单的架构会得到更坏的结果。不过,我已经很少把努力放在高维参数上了。
不过,我真的很喜欢这个方法,因为它好像就是我们“要求”网络运行的更加合理。我们希望在同一流形的点比其它的点更加接近,相对于由一个超平面被分离的其他流形。这相对需要拉伸不同类别流形之间的空间,同时收缩每一个流形。这感觉就像是在简化问题。
具有拓扑性质的数据,例如链接,可能导致无法使用低维网络进行线性分类,无论深度有多大。即使在技术上是可能的情况下,例如螺旋,也是非常具有挑战性的。
为了使神经网络准确的分类数据,多个层次有时是必要的 。此外,传统的神经网络层似乎并不能很好的处理流形数据;即使我们巧妙的手工设置权重,想要紧凑的表达我们想要的转换也是非常困难的。新建层次,特别使用流形相关的机器学习,可能是有用的补充。
(这是一个发展中的研究项目。相关研究信息会在网上公布。我会很高兴听听您对这些想法的反馈:您可以发表评论。对于错别字,技术错误,或任何澄清,我们鼓励你发一个请求在GitHub上。)
致谢
谢谢Yoshua Bengio,迈克尔·尼尔森,达里奥 Amodei,埃利安娜洛奇,雅各布斯坦哈特和Tamsyn Waterhouse的意见和鼓励。
❷ 神经网络浅谈
人工智能技术是当前炙手可热的话题,而基于神经网络的深度学习技术更是热点中的热点。去年谷歌的Alpha Go 以4:1大比分的优势战胜韩国的李世石九段,展现了深度学习的强大威力,后续强化版的Alpha Master和无师自通的Alpha Zero更是在表现上完全碾压前者。不论你怎么看,以深度学习为代表的人工智能技术正在塑造未来。
下图为英伟达(NVIDIA)公司近年来的股价情况, 该公司的主要产品是“图形处理器”(GPU),而GPU被证明能大大加快神经网络的训练速度,是深度学习必不可少的计算组件。英伟达公司近年来股价的飞涨足以证明当前深度学习的井喷之势。
好,话不多说,下面简要介绍神经网络的基本原理、发展脉络和优势。
神经网络是一种人类由于受到生物神经细胞结构启发而研究出的一种算法体系,是机器学习算法大类中的一种。首先让我们来看人脑神经元细胞:
一个神经元通常具有多个树突 ,主要用来接受传入信息,而轴突只有一条,轴突尾端有许多轴突末梢,可以给其他多个神经元传递信息。轴突末梢跟其他神经元的树突产生连接,从而传递信号。
下图是一个经典的神经网络(Artificial Neural Network,ANN):
乍一看跟传统互联网的拓扑图有点类似,这也是称其为网络的原因,不同的是节点之间通过有向线段连接,并且节点被分成三层。我们称图中的圆圈为神经元,左边三个神经元组成的一列为输入层,中间神经元列为隐藏层,右边神经元列为输出层,神经元之间的箭头为权重。
神经元是计算单元,相当于神经元细胞的细胞核,利用输入的数据进行计算,然后输出,一般由一个线性计算部分和一个非线性计算部分组成;输入层和输出层实现数据的输入输出,相当于细胞的树突和轴突末梢;隐藏层指既不是输入也不是输出的神经元层,一个神经网络可以有很多个隐藏层。
神经网络的关键不是圆圈代表的神经元,而是每条连接线对应的权重。每条连接线对应一个权重,也就是一个参数。权重具体的值需要通过神经网络的训练才能获得。我们实际生活中的学习体现在大脑中就是一系列神经网络回路的建立与强化,多次重复的学习能让回路变得更加粗壮,使得信号的传递速度加快,最后对外表现为“深刻”的记忆。人工神经网络的训练也借鉴于此,如果某种映射关系出现很多次,那么在训练过程中就相应调高其权重。
1943年,心理学家McCulloch和数学家Pitts参考了生物神经元的结构,发表了抽象的神经元模型MP:
符号化后的模型如下:
Sum函数计算各权重与输入乘积的线性组合,是神经元中的线性计算部分,而sgn是取符号函数,当输入大于0时,输出1,反之输出0,是神经元中的非线性部分。向量化后的公式为z=sgn(w^T a)(w^T=(w_1,w_2,w_3),a=〖(a_1,a_2,a_3)〗^T)。
但是,MP模型中,权重的值都是预先设置的,因此不能学习。该模型虽然简单,并且作用有限,但已经建立了神经网络大厦的地基
1958年,计算科学家Rosenblatt提出了由两层神经元组成(一个输入层,一个输出层)的神经网络。他给它起了一个名字–“感知器”(Perceptron)
感知器是当时首个可以学习的人工神经网络。Rosenblatt现场演示了其学习识别简单图像的过程,在当时引起了轰动,掀起了第一波神经网络的研究热潮。
但感知器只能做简单的线性分类任务。1969年,人工智能领域的巨擘Minsky指出这点,并同时指出感知器对XOR(异或,即两个输入相同时输出0,不同时输出1)这样的简单逻辑都无法解决。所以,明斯基认为神经网络是没有价值的。
随后,神经网络的研究进入低谷,又称 AI Winter 。
Minsky说过单层神经网络无法解决异或问题,但是当增加一个计算层以后,两层神经网络不仅可以解决异或问题,而且具有非常好的非线性分类效果。
下图为两层神经网络(输入层一般不算在内):
上图中,输出层的输入是上一层的输出。
向量化后的公式为:
注意:
每个神经元节点默认都有偏置变量b,加上偏置变量后的计算公式为:
同时,两层神经网络不再使用sgn函数作为激励函数,而采用平滑的sigmoid函数:
σ(z)=1/(1+e^(-z) )
其图像如下:
理论证明: 两层及以上的神经网络可以无限逼近真实的对应函数,从而模拟数据之间的真实关系 ,这是神经网络强大预测能力的根本。但两层神经网络的计算量太大,当时的计算机的计算能力完全跟不上,直到1986年,Rumelhar和Hinton等人提出了反向传播(Backpropagation,BP)算法,解决了两层神经网络所需要的复杂计算量问题,带动了业界使用两层神经网络研究的热潮。
但好景不长,算法的改进仅使得神经网络风光了几年,然而计算能力不够,局部最优解,调参等一系列问题一直困扰研究人员。90年代中期,由Vapnik等人发明的SVM(Support Vector Machines,支持向量机)算法诞生,很快就在若干个方面体现出了对比神经网络的优势:无需调参;高效;全局最优解。
由于以上原因,SVM迅速打败了神经网络算法成为主流。神经网络的研究再一次进入低谷, AI Winter again 。
多层神经网络一般指两层或两层以上的神经网络(不包括输入层),更多情况下指两层以上的神经网络。
2006年,Hinton提出使用 预训练 ”(pre-training)和“微调”(fine-tuning)技术能优化神经网络训练,大幅度减少训练多层神经网络的时间
并且,他给多层神经网络相关的学习方法赋予了一个新名词–“ 深度学习 ”,以此为起点,“深度学习”纪元开始了:)
“深度学习”一方面指神经网络的比较“深”,也就是层数较多;另一方面也可以指神经网络能学到很多深层次的东西。研究发现,在权重参数不变的情况下,增加神经网络的层数,能增强神经网络的表达能力。
但深度学习究竟有多强大呢?没人知道。2012年,Hinton与他的学生在ImageNet竞赛中,用多层的卷积神经网络成功地对包含一千类别的一百万张图片进行了训练,取得了分类错误率15%的好成绩,这个成绩比第二名高了近11个百分点,充分证明了多层神经网络识别效果的优越性。
同时,科研人员发现GPU的大规模并行矩阵运算模式完美地契合神经网络训练的需要,在同等情况下,GPU的速度要比CPU快50-200倍,这使得神经网络的训练时间大大减少,最终再一次掀起了神经网络研究的热潮,并且一直持续到现在。
2016年基于深度学习的Alpha Go在围棋比赛中以4:1的大比分优势战胜了李世石,深度学习的威力再一次震惊了世界。
神经网络的发展历史曲折荡漾,既有被捧上神坛的高潮,也有无人问津的低谷,中间经历了数次大起大落,我们姑且称之为“三起三落”吧,其背后则是算法的改进和计算能力的持续发展。
下图展示了神经网络自发明以来的发展情况及一些重大时间节点。
当然,对于神经网络我们也要保持清醒的头脑。由上图,每次神经网络研究的兴盛期持续10年左右,从最近2012年算起,或许10年后的2022年,神经网络的发展将再次遇到瓶颈。
神经网络作为机器学习的一种,其模型训练的目的,就是使得参数尽可能的与真实的模型逼近。理论证明,两层及以上的神经网络可以无限逼近真实的映射函数。因此,给定足够的训练数据和训练时间,总能通过神经网络找到无限逼近真实关系的模型。
具体做法:首先给所有权重参数赋上随机值,然后使用这些随机生成的参数值,来预测训练数据中的样本。假设样本的预测目标为yp ,真实目标为y,定义值loss,计算公式如下:
loss = (yp -y) ^2
这个值称之为 损失 (loss),我们的目标就是使对所有训练数据的损失和尽可能的小,这就转化为求loss函数极值的问题。
一个常用方法是高等数学中的求导,但由于参数不止一个,求导后计算导数等于0的运算量很大,所以常用梯度下降算法来解决这样的优化问题。梯度是一个向量,由函数的各自变量的偏导数组成。
比如对二元函数 f =(x,y),则梯度∇f=(∂f/∂x,∂f/∂y)。梯度的方向是函数值上升最快的方向。梯度下降算法每次计算参数在当前的梯度,然后让参数向着梯度的反方向前进一段距离,不断重复,直到梯度接近零时截止。一般这个时候,所有的参数恰好达到使损失函数达到一个最低值的状态。下图为梯度下降的大致运行过程:
在神经网络模型中,由于结构复杂,每次计算梯度的代价很大。因此还需要使用 反向传播 (Back Propagation)算法。反向传播算法利用了神经网络的结构进行计算,不一次计算所有参数的梯度,而是从后往前。首先计算输出层的梯度,然后是第二个参数矩阵的梯度,接着是中间层的梯度,再然后是第一个参数矩阵的梯度,最后是输入层的梯度。计算结束以后,所要的两个参数矩阵的梯度就都有了。当然,梯度下降只是其中一个优化算法,其他的还有牛顿法、RMSprop等。
确定loss函数的最小值后,我们就确定了整个神经网络的权重,完成神经网络的训练。
在神经网络中一样的参数数量,可以用更深的层次去表达。
由上图,不算上偏置参数的话,共有三层神经元,33个权重参数。
由下图,保持权重参数不变,但增加了两层神经元。
在多层神经网络中,每一层的输入是前一层的输出,相当于在前一层的基础上学习,更深层次的神经网络意味着更深入的表示特征,以及更强的函数模拟能力。更深入的表示特征可以这样理解,随着网络的层数增加,每一层对于前一层次的抽象表示更深入。
如上图,第一个隐藏层学习到“边缘”的特征,第二个隐藏层学习到“边缘”组成的“形状”的特征,第三个隐藏层学习到由“形状”组成的“图案”的特征,最后的隐藏层学习到由“图案”组成的“目标”的特征。通过抽取更抽象的特征来对事物进行区分,从而获得更好的区分与分类能力。
前面提到, 明斯基认为Rosenblatt提出的感知器模型不能处理最简单的“异或”(XOR)非线性问题,所以神经网络的研究没有前途,但当增加一层神经元后,异或问题得到了很好地解决,原因何在?原来从输入层到隐藏层,数据发生了空间变换,坐标系发生了改变,因为矩阵运算本质上就是一种空间变换。
如下图,红色和蓝色的分界线是最终的分类结果,可以看到,该分界线是一条非常平滑的曲线。
但是,改变坐标系后,分界线却表现为直线,如下图:
同时,非线性激励函数的引入使得神经网络对非线性问题的表达能力大大加强。
对于传统的朴素贝叶斯、决策树、支持向量机SVM等分类器,提取特征是一个非常重要的前置工作。在正式训练之前,需要花费大量的时间在数据的清洗上,这样分类器才能清楚地知道数据的维度,要不然基于概率和空间距离的线性分类器是没办法进行工作的。然而在神经网络中,由于巨量的线性分类器的堆叠(并行和串行)以及卷积神经网络的使用,它对噪声的忍耐能力、对多通道数据上投射出来的不同特征偏向的敏感程度会自动重视或忽略,这样我们在处理的时候,就不需要使用太多的技巧用于数据的清洗了。有趣的是,业内大佬常感叹,“你可能知道SVM等机器学习的所有细节,但是效果并不好,而神经网络更像是一个黑盒,很难知道它究竟在做什么,但工作效果却很好”。
人类对机器学习的环节干预越少,就意味着距离人工智能的方向越近。神经网络的这个特性非常有吸引力。
1) 谷歌的TensorFlow开发了一个非常有意思的神经网络 入门教程 ,用户可以非常方便地在网页上更改神经网络的参数,并且能看到实时的学习效率和结果,非常适合初学者掌握神经网络的基本概念及神经网络的原理。网页截图如下:
2) 深度学习领域大佬吴恩达不久前发布的《 神经网络和深度学习 》MOOC,现在可以在网易云课堂上免费观看了,并且还有中文字幕。
3) 《神经网络于深度学习》(Michael Nielsen着)、《白话深度学习与TensorFlow》也是不错的入门书籍。
❸ 用神经网络处理数据会破坏数据的完整性吗
用神经网络处理数据不会破坏数据的完整性,相反,它可以帮助我们更好地理解和利用数据。
神经网络是一种模仿人类神经系统进行信息处理的数学模型。它能够通过学习大量数据,自动发现数据中的特征并建立对应关系,从而实现数据的分类、预测、识别等多种功能。
当我们使用神经洞李网络处理数据纳则迟时,通常需要将原始数据进行预处理和清洗,以去除无效信息和异常值,并将其转换为适合神经网络处理的格式。这个过程中,虽然数据可能会发生一定的变化,但是这些变化都是可控的,并不会破坏数据的完整性。
事实上,神经网络处理数据的过程中,还可以通过一些技术手段来进一步保障数据的完整性和准确性。例如,在训练神经网络时,可以采用交叉验证、正则化等方法,避免出现过拟合和欠拟合等问题,从而提高模型的泛化能力和精度。
总之,用神经网络处理数据不会破坏数据的完整性,反而可以帮助我们更好地理解和利用数据。在处理数据时,我们需要注意数据的质量和准确性,并采取合适的方法和技术手段,以保证数据处理过程的可靠性盯乱和有效性。
❹ 神经网络的工作原理
“人脑是如何工作的?”
“人类能否制作模拟人脑的人工神经元?”
多少年以来,人们从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度企图认识并解答上述问题。在寻找上述问题答案的研究过程中,逐渐形成了一个新兴的多学科交叉技术领域,称之为“神经网络”。神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动。不同领域的科学家又从各自学科的兴趣与特色出发,提出不同的问题,从不同的角度进行研究。
人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对于写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。
所以网络学习的准则应该是:如果网络作出错误的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。
普通计算机的功能取决于程序中给出的知识和能力。显然,对于智能活动要通过总结编制程序将十分困难。
人工神经网络也具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。人工神经网络是一个具有学习能力的系统,可以发展知识,以致超过设计者原有的知识水平。通常,它的学习训练方式可分为两种,一种是有监督或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督学习或称无为导师学习,这时,只规定学习方式或某些规则,则具体的学习内容随系统所处环境 (即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似人脑的功能。
神经网络就像是一个爱学习的孩子,您教她的知识她是不会忘记而且会学以致用的。我们把学习集(Learning Set)中的每个输入加到神经网络中,并告诉神经网络输出应该是什么分类。在全部学习集都运行完成之后,神经网络就根据这些例子总结出她自己的想法,到底她是怎么归纳的就是一个黑盒了。之后我们就可以把测试集(Testing Set)中的测试例子用神经网络来分别作测试,如果测试通过(比如80%或90%的正确率),那么神经网络就构建成功了。我们之后就可以用这个神经网络来判断事务的分类了。
神经网络是通过对人脑的基本单元——神经元的建模和联接,探索模拟人脑神经系统功能的模型,并研制一种具有学习、联想、记忆和模式识别等智能信息处理功能的人工系统。神经网络的一个重要特性是它能够从环境中学习,并把学习的结果分布存储于网络的突触连接中。神经网络的学习是一个过程,在其所处环境的激励下,相继给网络输入一些样本模式,并按照一定的规则(学习算法)调整网络各层的权值矩阵,待网络各层权值都收敛到一定值,学习过程结束。然后我们就可以用生成的神经网络来对真实数据做分类。
❺ 怎么判断训练神经网络的输入
判断训练神经网络的输入需要根据具体的应用场景和任务来进行。一般来说,输入需要满足以下几个条件:
1. 数据的格式和类型:神轮渣经网络的输入数据格式和类型必须与网络架构和训练算法相匹配。
2. 数据的质量:输入数据必须具有足够的质量,以确保模型能够准确地从中学习。冲并例如,数据腊判悄的标记必须正确,数据的采样必须准确。
3. 数据的数量:输入数据必须包含足够的样本数量,以确保模型具有充分的训练数据。如果数据量不足,容易导致过拟合和欠拟合问题。
4. 数据的适用性:输入数据必须与目标任务相关联。例如,如果需要训练一个图像分类器,那么输入数据应该是图像数据,而不是文本数据。
5. 数据的可用性:输入数据必须能够被访问和处理。这可能需要对数据进行预处理、归一化等操作,以便使其适用于训练神经网络。
❻ 神经网络原理
神经网络是一种受到人类神经系统启发而设计的机器学习模型。它由多个称为神经元的单元组成,这些神经元通过连接权重相互连接。神经网络利用输入数据和这些连接权重来进行信息处理和模式识别。以下是神经网络的基本原理:
结构:神经网络由多个层级组成,包括输入层、隐藏层(可以有多个)和输出层。输入层接收外部输入数据,输出层产生最终的预测结果或输出。隐藏层位于输入层和输出层之间,其中每个隐藏层由多个神经元组芹银成。
神经元:神经网络的基本单元是神经元。每个神经元接收来自上一层神经元的首首旁输入,并通过连接权重对这些输入进行加权求和。然后,应用一个激活函数来确定神经元的输出。激活函数可以是简单的阈值函数、Sigmoid函数、ReLU函数等,用于引入非线性特性。
前向传播:神经网络的前向传播是指从输入层到输出层的信息传递过程。输入数据通过网络中的连接和加权求和,逐层传递到输出层,最终生成预测结果。
反向传播:反向传播是神经网络用于训练和调整连接权重的过程。它基于损失函数来度量预测结果与真实标签之间的误差。通过计算误差梯度,反向传播将误差从输出层向后传播到隐藏层和输入层,然后根据梯度更新连接权重,以减小误差。
训练:神经网络的训练是通过不断迭代前向传播和反向传播来调整连接权重,以使网络的预测结果与真实标签更加接近。常用的训练算法包括梯度下降和其变体,以最小化损失函数。
通过逐渐调整连接权重者橡,神经网络能够学习到输入数据中的模式和特征,从而实现识别、分类、预测等任务。它在各个领域中都有广泛的应用,如图像识别、自然语言处理、语音识别等。
❼ 如何用新的数据验证BP神经网络
你已经训练好了网络,用你的测试样棚中本数顷消据导入网络就行了呗,Y=sim(net,p_text);p_text就是你的测雀和知试样本,net就是你训练好的网络。
❽ 关于用神经网络建立数学模型的方法
用神经网络建立数学模型的方法如下:
1、准备数据集:神经网络在模式识别、分类、预测等方面具有很强的学习能力和表达能力,在建立数学模型方面也能发挥重要的作用。对于要建立的数学模型,需要准备一定量的数据作为样本,包括输入数据和对应的输出数据。数据集要保证数据量足够且具有代表性,输入数据和输出数据之间具有一定的关系,能够反映实际问题。
4、利用神经网络进行训练和预测:训练神经网络的目的是让磨纯神经网络学习到输入数据和输出数据之间的映射关系。训练过程中要选择合适的损失函数和优化算法,以便让神经网络在训练过程中不断优化自身的参数,提高预测的准确性和泛化能力。训练完成后,可以利用神经网络进行预测,输入新的数据,通过神经网络输出相应的预测结果。
数学模型的概念
数学模型是一种通过数学方法描述和分析现实问题的工具。它可以将复杂的现实问题转化为可描述和可分析的数学表达式,通过定量分析、简化问题、预测和验证等手段帮助人们更好地理解和解决问题。
❾ 如何判断bp神经网络训练有效性
1、你可以尝试运行多次后比较其结果,最好重启matlab,再运行你的神经网络程序。
2、确认一下你的bp神经网络参数设置是否合理。
3、也有可能的数据不适合用bp神经网络训练,可以考虑其他方法。
❿ 怎么去验证神经网络的有效性
第一步:先看训练数据的误差,如果大,那肯定是不行。 若果你只仿链有一个输出,可以画图看一下预测的结果和输出的结果相差多少。
第二步:在训练前一般会留20%的数据出来作检验。 如果在第一步中检验了训练数据的预测结果不错。,那么接下来检验检验数嫌大稿据的预测结果如何,用检验数据作为输入 , 看下预测芹孝出来的结果和实际的相多少。 如果OK,那就OK了, 恭喜,投入使用!
《神经网络之家》