① 中小型企业网络组建设计方案(毕业设计论文)
方案一WindowsNT ( Windows 2000 server ) + Proxy + Exchange+WinRoute(或Checkpoint)
上述软件组合能够实现和TL-100互联网功能服务器网络解决方案相同的包过滤防火墙、邮件服务器、Web浏览代理、Ftp服务代理等功能。但是由于WindowsNT(或Windows2000 server)对于计算机硬件要求比较高,正版软件的价格也比较高,更为重要的是:从技术上来说,上面的方案需要固定的IP地址,这意味着企业每时每刻还需缴纳一笔额外的费用。另外,上述软件还需要专业的系统管理员来维护。(微软的产品有无数的补丁需要你“补上”)
上面的解决方案明显的不太符合目前国内中小企业对于信息化的“性能价格比”要求和维护成本要求。
方案二Windows98(WindowsNT)+Wingate
这种方案能够实现Web代理和数据包过滤的部分功能,另外,新版本的Wingate还提供网络地址转化功能(NAT)功能和防火墙功能。这个方案的缺点是:系统硬件要求比较高(如果你系统整个系统运行稳定),应用软件和操作系统软件整体成本太高。安全的规则需要专业人士的配置。没有很好的解决企业电子邮件系统的使用需求。另外,部分“高级”功能的实现需要安装“客户端软件”。加重了网络系统的维护负担。
方案三Windows98(WindowsNT) + dns2go
这种方案,在Windows操作系统上安装相应的客户端软件,和dns2go站点的DNS服务器协调工作,达到动态域名解析的目的。这种方案能够完成中小企业一站式INTRANET/INTERNET解决方案中从TL-100互联网功能服务器到互连网之间的DNS通讯问题,但这种方案对于用户的域名只能在dns2go.net下选择。如果将自己企业的域名转到dns2go上的域名服务器授权解析的工作,dns2go的域名服务器也只做域名解析的工作,不提供其它和域名相关的服务(如电子邮件服务器不在线的邮件接收问题)。另外,这种方案的运行稳定性在通讯线路不佳,造成用户的机器频繁拨号连接ISP而造成的IP地址变动的情况发生时,用户域的主机域名纪录的频繁变动。但是这些变动数据和在互联网上其它DNS服务器缓存中的数据不会随时同,这种情况会造成WEB和E-Mail等需要固定IP的互联网服务无法正常提供服务。(例如:在域名和IP地址变动时,可能造成互联网上用户向本域E-mail投递失败,或将E-mail投递到其它恰巧使用相同解决方案且恰巧有SMTP服务器上)
对比项目中小企业一站式INTRANET解决方案费用传统的接入方案费用计算机硬件平台稳定的工业级硬件平台无需购硬件平台10,000元左右操作系统基于Linux无基于Windows Windows2000 Server(10用户) 12,270元代理服务功能HTTP,FTP,TELNET 无需购专业软件MS Proxy Server12,784元邮件服务功能企业域名邮箱(用户数量不限,邮箱容量不限)无需购专业软件Exchange(25用户) 24,807元WEB功能提供100Mweb空间无需租用web空间1,000元/年防火墙功能有无需购专业软件CHECKPOINT 30,000元 方案价格性价比高18700元实现同样的功能价格几倍于前者90,861元服务及管理WEB,MAIL服务,网络安全管理,根据要求提供网络安全状况日制,上网浏览日制,邮件日制,企业无须专业人员维护2800元/年需专业人员操作维护30,000元/年(专业人员工资)
中小型/成长型企业商业网站(INTERNET)解决方案
上海天傲科技本着“一站式解决”的理念,向中小型/成长型企业提供完整的域名服务,主机服务,企业邮件,网页制作,数据库部署等全系列服务。
网站建设步骤
将您的主页制作资料(包括文字、图片等)邮寄给我们,并列出大概的要求即可。
选择我们提供的企业网站建设方案,或根据您的要求定制。
我们根据您的要求核算主页总数及金额,并交纳预付款(为总金额的50%)。
收到预付款后,我公司将开始制作主页。
主页全部完成后,将上传到我公司的服务器上请您确认,并根据您的意见进行三次小的修改。
如果您认为制作的主页已经达到您的要求,请将剩余款项汇至我公司帐户,并将汇款凭证传真至我公司。
在收到确认传真和汇款凭证后,我们将您的主页上传到我公司提供的虚拟主机上。
虚拟主机方案虚拟主机是使用特殊的软硬件技术,把一台运行在因特网上的服务器主机分成一台台“虚拟”的主机,每一台虚拟主机都具有独立的域名,具有完整的Internet服务器(WWW、FTP、Email等)功能,虚拟主机之间完全独立,并可由用户自行管理,在外界看来,每一台虚拟主机和一台独立的主机完全一样。上海天傲科技的一站式解决方案为中小型/成长型企业提供优质的网络环境和服务器,并由高级网管负责监控。你可以选择如下的三个方案之一或者直接和我们联系进行定制服务。
A型虚拟主机150M B型虚拟主机200M C型虚拟主机500M
主机空间/功能·独立Web空间150MB·操作系统:UNIX / Windows2000·支持ASP,Perl,PHP ·FTP管理·支持数据库功能另外收费·ACCESS数据库·MS SQL数据库·MY SQL数据库·独立Web空间200MB·操作系统:UNIX / Windows2000·支持ASP,Perl,PHP·FTP管理·支持数据库功能另外收费·ACCESS数据库·MS SQL数据库·MY SQL数据库·独立Web空间500MB·操作系统:UNIX / Windows2000 ·支持ASP,Perl,PHP·FTP管理·支持数据库功能·Windows2000系统:免费提供一个ODBC数据源·预装50MB SQL SERVER数据库空间·UNIX系统:免费提供50MB MYSQL数据库空间
Email功能·10个Email邮箱·单个信箱平均空间5MB·单个Email大小限制5MB·Web界面管理·自动回复、自动转发·POP3、SMTP方式收发信·20个Email邮箱·单个信箱平均空间5MB·单个Email大小限制5MB·Web界面管理·自动回复、自动转发·POP3、SMTP方式收发信·50个Email邮箱·单个信箱平均空间5MB·单个Email大小限制5MB·Web界面管理·自动回复、自动转发·POP3、SMTP方式收发信
自2017年国务院印发《关于深化“互联网+先进制造业” 发展工业互联网的指导意见》之后,各地纷纷加快工业互联网的建设与发展步伐。发展工业互联网,网络体系是基础,平台体系是关键,安全体系是保障。各省市、各地区应紧紧系统构建网络、平台、安全三大体系,打造人、机、物全面互联的新型网络基础设施,全力推进七大任务:
1.夯实网络基础
夯实工业互联网的网络基础,应围绕网络改造升级、提速降费、标识解析,推进三方面的工作:
第一,以IPv6、工业无源光网络(PON)、工业无线、时间敏感网络(TSN)等技术,改造工业企业内网;
第二,以IPv6、软件定义网络(SDN)以及新型蜂窝移动通信技术(即5G技术),实现工业企业外网的升级改造;
第三,推进标识解析体系建设,围绕工业互联网标识解析国家顶级节点,推动行业性二级接机点的建设与连接。
2.打造平台体系
第一,培育工业互联网平台,以企业为主导,构建跨行业、跨领域平台,实现多平台互联互通。
第二,开展工业互联网平台试验验证。支持产业联盟、企业与科研机构合作共建测试验证平台,开展技术验证与测试评估。
第三,推动、吸引企业上云。鼓励工业互联网平台在产业集聚区落地,通过财税支持、政府购买服务等方式,鼓励中小企业的业务系统向云端迁移。
第四,培育工业APP,支持软件企业、工业企业、科研院所等开展合作,培育一批面向特定行业、特定场景的工业APP。
3.加强产业支撑
要加强产业支撑,必须加大关键共性技术攻关力度,提升产品与解决方案供给能力:
第一,关键共性技术支撑。鼓励企业和科研院所合作,围绕工业互联网核心关键技术、网络技术、融合应用技术开展联合攻关,促进边缘计算、人工智能、增强现实、虚拟现实、区块链等技术在工业互联网应用。
第二,系统解决方案支撑。围绕智能传感器、工业软件、工业网络设备、工业安全设备、标识解析等领域,推广一批经济实用的微服务化系统解决方案。
4.促进融合应用
融合创新工作应围绕大型企业和中小型企业两大主体开展:
针对大型企业,加快工业互联网在工业现场的应用;开展用于个性需求与产品设计,生产制造精准对接的规模化定制;
针对中小企业,实现业务系统向云端迁移;开展供需对接、集成供应链、产业电商、众包众筹等创新型应用。
5.完善生态体系
第一,构建创新体系:有效整合高校、科研院所、企业等创新资源,围绕重大共性需求与行业需要,面向关键技术与平台需求,开展产学研协同创新。
第二,构建应用生态,鼓励工业互联网服务商面向制造业企业提供咨询诊断、展示展览、行业资讯、人才培训、园企对接等增值服务。
第三,构建企业协同发展体系,以需求为导向,基于工业互联网平台,构建中介型共享制造、众创型共享制造、服务型需求共享制造、协同型共享制造等新型生产组织方式。
第四,构建区域协同发展体系,建设工业互联网创新中心、工业互联网产业示范基地。
6.强化安全保障
安全保障是发展工业互联网的底线,必须切实提升安全防护能力,建立数据安全保护体系,推动安全技术手段建设。此外,各地区还应大力发展信息安全产业,推动标识解析系统安全、工业互联网平台安全、工业控制系统安全、工业大数据安全等相关技术和产业发展,开展安全咨询、评估和认证等服务,提升整体安全保障服务能力。
7.坚持开放合作
第一,加强地区乃至国际的企业协作,形成跨领域、全产业链紧密协作的关系。
第二,建立政府、产业联盟、企业等多层次沟通对话机制。
第三,积极参与国际组织的协同与合作,参与工业互联网标准规范与国际规则的研讨与制定。
③ 工业互联网时代的风险管理:工业4.0与网络安全
2009年,恶意软件曾操控某核浓缩工厂的离心机,导致所有离心机失控。该恶意软件又称“震网”,通过闪存驱动器入侵独立网络系统,并在各生产网络中自动扩散。通过“震网”事件,我们看到将网络攻击作为武器破坏联网实体工厂的可能。这场战争显然是失衡的:企业必须保护众多的技术,而攻击者只需找到一个最薄弱的环节。
但非常重要的一点是,企业不仅需要关注外部威胁,还需关注真实存在却常被忽略的网络风险,而这些风险正是由企业在创新、转型和现代化过程中越来越多地应用智能互联技术所引致的。否则,企业制定的战略商业决策将可能导致该等风险,企业应管控并降低该等新兴风险。
工业4.0时代,智能机器之间的互联性不断增强,风险因素也随之增多。工业4.0开启了一个互联互通、智能制造、响应式供应网络和定制产品与服务的时代。借助智能、自动化技术,工业4.0旨在结合数字世界与物理操作,推动智能工厂和先进制造业的发展 。但在意图提升整个制造与供应链流程的数字化能力并推动联网设备革命性变革过程中,新产生的网络风险让所有企业都感到措手不及。针对网络风险制定综合战略方案对制造业价值链至关重要,因为这些方案融合了工业4.0的重要驱动力:运营技术与信息技术。
随着工业4.0时代的到来,威胁急剧增加,企业应当考虑并解决新产生的风险。简而言之,在工业4.0时代制定具备安全性、警惕性和韧性的网络风险战略将面临不同的挑战。当供应链、工厂、消费者以及企业运营实现联网,网络威胁带来的风险将达到前所未有的广度和深度。
在战略流程临近结束时才考虑如何解决网络风险可能为时已晚。开始制定联网的工业4.0计划时,就应将网络安全视为与战略、设计和运营不可分割的一部分。
本文将从现代联网数字供应网络、智能工厂及联网设备三大方面研究各自所面临的网络风险。3在工业4.0时代,我们将探讨在整个生产生命周期中(图1)——从数字供应网络到智能工厂再到联网物品——运营及信息安全主管可行的对策,以预测并有效应对网络风险,同时主动将网络安全纳入企业战略。
数字化制造企业与工业4.0
工业4.0技术让数字化制造企业和数字供应网络整合不同来源和出处的数字化信息,推动制造与分销行为。
信息技术与运营技术整合的标志是向实体-数字-实体的联网转变。工业4.0结合了物联网以及相关的实体和数字技术,包括数据分析、增材制造、机器人技术、高性能计算机、人工智能、认知技术、先进材料以及增强现实,以完善生产生命周期,实现数字化运营。
工业4.0的概念在物理世界的背景下融合并延伸了物联网的范畴,一定程度上讲,只有制造与供应链/供应网络流程会经历实体-数字和数字-实体的跨越(图2)。从数字回到实体的跨越——从互联的数字技术到创造实体物品的过程——这是工业4.0的精髓所在,它支撑着数字化制造企业和数字供应网络。
即使在我们 探索 信息创造价值的方式时,从制造价值链的角度去理解价值创造也很重要。在整个制造与分销价值网络中,通过工业4.0应用程序集成信息和运营技术可能会达到一定的商业成果。
不断演变的供应链和网络风险
有关材料进入生产过程和半成品/成品对外分销的供应链对于任何一家制造企业都非常重要。此外,供应链还与消费者需求联系紧密。很多全球性企业根据需求预测确定所需原料的数量、生产线要求以及分销渠道负荷。由于分析工具也变得更加先进,如今企业已经能够利用数据和分析工具了解并预测消费者的购买模式。
通过向整个生态圈引入智能互联的平台和设备,工业4.0技术有望推动传统线性供应链结构的进一步发展,并形成能从价值链上获得有用数据的数字供应网络,最终改进管理,加快原料和商品流通,提高资源利用率,并使供应品更合理地满足消费者需求。
尽管工业4.0能带来这些好处,但数字供应网络的互联性增强将形成网络弱点。为了防止发生重大风险,应从设计到运营的每个阶段,合理规划并详细说明网络弱点。
在数字化供应网络中共享数据的网络风险
随着数字供应网络的发展,未来将出现根据购买者对可用供应品的需求,对原材料或商品进行实时动态定价的新型供应网络。5由于只有供应网络各参与方开放数据共享才可能形成一个响应迅速且灵活的网络,且很难在保证部分数据透明度的同时确保其他信息安全,因此形成新型供应网络并非易事。
因此,企业可能会设法避免信息被未授权网络用户访问。 此外,他们可能还需对所有支撑性流程实施统一的安全措施,如供应商验收、信息共享和系统访问。企业不仅对这些流程拥有专属权利,它们也可以作为获取其他内部信息的接入点。这也许会给第三方风险管理带来更多压力。在分析互联数字供应网络的网络风险时,我们发现不断提升的供应链互联性对数据共享与供应商处理的影响最大(图3)。
为了应对不断增长的网络风险,我们将对上述两大领域和应对战略逐一展开讨论。
数据共享:更多利益相关方将更多渠道获得数据
企业将需要考虑什么数据可以共享,如何保护私人所有或含有隐私风险的系统和基础数据。比 如,数字供应网络中的某些供应商可能在其他领域互为竞争对手,因此不愿意公开某些类型的数据,如定价或专利品信息。此外,供应商可能还须遵守某些限制共享信息类型的法律法规。因此,仅公开部分数据就可能让不良企图的人趁机获得其他信息。
企业应当利用合适的技术,如网络分段和中介系统等,收集、保护和提供信息。此外,企业还应在未来生产的设备中应用可信的平台模块或硬件安全模块等技术,以提供强大的密码逻辑支持、硬件授权和认证(即识别设备的未授权更改)。
将这种方法与强大的访问控制措施结合,关键任务操作技术在应用点和端点的数据和流程安全将能得到保障。
在必须公开部分数据或数据非常敏感时,金融服务等其他行业能为信息保护提供范例。目前,企业纷纷开始对静态和传输中的数据应用加密和标记等工具,以确保数据被截获或系统受损情况下的通信安全。但随着互联性的逐步提升,金融服务企业意识到,不能仅从安全的角度解决数据隐私和保密性风险,而应结合数据管治等其他技术。事实上,企业应该对其所处环境实施风险评估,包括企业、数字供应网络、行业控制系统以及联网产品等,并根据评估结果制定或更新网络风险战略。总而言之,随着互联性的不断增强,上述所有的方法都能找到应实施更高级预防措施的领域。
供应商处理:更广阔市场中供应商验收与付款
由于新伙伴的加入将使供应商体系变得更加复杂,核心供应商群体的扩张将可能扰乱当前的供应商验收流程。因此,追踪第三方验收和风险的管治、风险与合规软件需要更快、更自主地反应。此外,使用这些应用软件的信息安全与风险管理团队还需制定新的方针政策,确保不受虚假供应商、国际制裁的供应商以及不达标产品分销商的影响。消费者市场有不少类似的经历,易贝和亚马逊就曾发生过假冒伪劣商品和虚假店面等事件。
区块链技术已被认为能帮助解决上述担忧并应对可能发生的付款流程变化。尽管比特币是建立货币 历史 记录的经典案例,但其他企业仍在 探索 如何利用这个新工具来决定商品从生产线到各级购买者的流动。7创建团体共享 历史 账簿能建立信任和透明度,通过验证商品真实性保护买方和卖方,追踪商品物流状态,并在处理退换货时用详细的产品分类替代批量分拣。如不能保证产品真实性,制造商可能会在引进产品前,进行产品测试和鉴定,以确保足够的安全性。
信任是数据共享与供应商处理之间的关联因素。企业从事信息或商品交易时,需要不断更新其风险管理措施,确保真实性和安全性;加强监测能力和网络安全运营,保持警惕性;并在无法实施信任验证时保护该等流程。
在这个过程中,数字供应网络成员可参考其他行业的网络风险管理方法。某些金融和能源企业所采用的自动交易模型与响应迅速且灵活的数字供应网络就有诸多相似之处。它包含具有竞争力的知识产权和企业赖以生存的重要资源,所有这些与数字供应网络一样,一旦部署到云端或与第三方建立联系就容易遭到攻击。金融服务行业已经意识到无论在内部或外部算法都面临着这样的风险。因此,为了应对内部风险,包括显性风险(企业间谍活动、蓄意破坏等)和意外风险(自满、无知等),软件编码和内部威胁程序必须具备更高的安全性和警惕性。
事实上,警惕性对监测非常重要:由于制造商逐渐在数字供应网络以外的生产过程应用工业4.0技术,网络风险只会成倍增长。
智能生产时代的新型网络风险
随着互联性的不断提高,数字供应网络将面临新的风险,智能制造同样也无法避免。不仅风险的数量和种类将增加,甚至还可能呈指数增长。不久前,美国国土安全部出版了《物联网安全战略原则》与《生命攸关的嵌入式系统安全原则》,强调应关注当下的问题,检查制造商是否在生产过程中直接或间接地引入与生命攸关的嵌入式系统相关的风险。
“生命攸关的嵌入式系统”广义上指几乎所有的联网设备,无论是车间自动化系统中的设备或是在第三方合约制造商远程控制的设备,都应被视为风险——尽管有些设备几乎与生产过程无关。
考虑到风险不断增长,威胁面急剧扩张,工业4.0时代中的制造业必须彻底改变对安全的看法。
联网生产带来新型网络挑战
随着生产系统的互联性越来越高,数字供应网络面临的网络威胁不断增长扩大。不难想象,不当或任意使用临时生产线可能造成经济损失、产品质量低下,甚至危及工人安全。此外,联网工厂将难以承受倒闭或其他攻击的后果。有证据表明,制造商仍未准备好应对其联网智能系统可能引发的网络风险: 2016年德勤与美国生产力和创新制造商联盟(MAPI)的研究发现,三分之一的制造商未对工厂车间使用的工业控制系统做过任何网络风险评估。
可以确定的是,自进入机械化生产时代,风险就一直伴随着制造商,而且随着技术的进步,网络风险不断增强,物理威胁也越来越多。但工业4.0使网络风险实现了迄今为止最大的跨越。各阶段的具体情况请参见图4。
从运营的角度看,在保持高效率和实施资源控制时,工程师可在现代化的工业控制系统环境中部署无人站点。为此,他们使用了一系列联网系统,如企业资源规划、制造执行、监控和数据采集系统等。这些联网系统能够经常优化流程,使业务更加简单高效。并且,随着系统的不断升级,系统的自动化程度和自主性也将不断提高(图5)。
从安全的角度看,鉴于工业控制系统中商业现货产品的互联性和使用率不断提升,大量暴露点将可能遭到威胁。与一般的IT行业关注信息本身不同,工业控制系统安全更多关注工业流程。因此,与传统网络风险一样,智能工厂的主要目标是保证物理流程的可用性和完整性,而非信息的保密性。
但值得注意的是,尽管网络攻击的基本要素未发生改变,但实施攻击方式变得越来越先进(图5)。事实上,由于工业4.0时代互联性越来越高,并逐渐从数字化领域扩展到物理世界,网络攻击将可能对生产、消费者、制造商以及产品本身产生更广泛、更深远的影响(图6)。
结合信息技术与运营技术:
当数字化遇上实体制造商实施工业4.0 技术时必须考虑数字化流程和将受影响的机器和物品,我们通常称之为信息技术与运营技术的结合。对于工业或制造流程中包含了信息技术与运营技术的公司,当我们探讨推动重点运营和开发工作的因素时,可以确定多种战略规划、运营价值以及相应的网络安全措施(图7)。
首先,制造商常受以下三项战略规划的影响:
健康 与安全: 员工和环境安全对任何站点都非常重要。随着技术的发展,未来智能安全设备将实现升级。
生产与流程的韧性和效率: 任何时候保证连续生产都很重要。在实际工作中,一旦工厂停工就会损失金钱,但考虑到重建和重新开工所花费的时间,恢复关键流程可能将导致更大的损失。
检测并主动解决问题: 企业品牌与声誉在全球商业市场中扮演着越来越重要的角色。在实际工作中,工厂的故障或生产问题对企业声誉影响很大,因此,应采取措施改善环境,保护企业的品牌与声誉。
第二,企业需要在日常的商业活动中秉持不同的运营价值理念:
系统的可操作性、可靠性与完整性: 为了降低拥有权成本,减缓零部件更换速度,站点应当采购支持多个供应商和软件版本的、可互操作的系统。
效率与成本规避: 站点始终承受着减少运营成本的压力。未来,企业可能增加现货设备投入,加强远程站点诊断和工程建设的灵活性。
监管与合规: 不同的监管机构对工业控制系统环境的安全与网络安全要求不同。未来企业可能需要投入更多,以改变环境,确保流程的可靠性。
工业4.0时代,网络风险已不仅仅存在于供应网络和制造业,同样也存在于产品本身。 由于产品的互联程度越来越高——包括产品之间,甚至产品与制造商和供应网络之间,因此企业应该明白一旦售出产品,网络风险就不会终止。
风险触及实体物品
预计到2020年,全球将部署超过200亿台物联网设备。15其中很多设备可能会被安装在制造设备和生产线上,而其他的很多设备将有望进入B2B或B2C市场,供消费者购买使用。
2016年德勤与美国生产力和创新制造商联盟(MAPI)的研究结果显示,近一半的制造商在联网产品中采用移动应用软件,四分之三的制造商使用Wi-Fi网络在联网产品间传输数据。16基于上述网络途径的物联通常会形成很多漏洞。物联网设备制造商应思考如何将更强大、更安全的软件开发方法应用到当前的物联网开发中,以应对设备常常遇到的重大网络风险。
尽管这很有挑战性,但事实证明,企业不能期望消费者自己会更新安全设置,采取有效的安全应对措施,更新设备端固件或更改默认设备密码。
比如,2016年10月,一次由Mirai恶意软件引发的物联网分布式拒绝服务攻击,表明攻击者可以利用这些弱点成功实施攻击。在这次攻击中,病毒通过感染消费者端物联网设备如联网的相机和电视,将其变成僵尸网络,并不断冲击服务器直至服务器崩溃,最终导致美国最受欢迎的几家网站瘫痪大半天。17研究者发现,受分布式拒绝服务攻击损害的设备大多使用供应商提供的默认密码,且未获得所需的安全补丁或升级程序。18需要注意的是,部分供应商所提供的密码被硬编码进了设备固件中,且供应商未告知用户如何更改密码。
当前的工业生产设备常缺乏先进的安全技术和基础设施,一旦外围保护被突破,便难以检测和应对此类攻击。
风险与生产相伴而行
由于生产设施越来越多地与物联网设备结合,因此,考虑这些设备对制造、生产以及企业网络所带来的安全风险变得越来越重要。受损物联网设备所产生的安全影响包括:生产停工、设备或设施受损如灾难性的设备故障,以及极端情况下的人员伤亡。此外,潜在的金钱损失并不仅限于生产停工和事故整改,还可能包括罚款、诉讼费用以及品牌受损所导致的收入减少(可能持续数月甚至数年,远远超过事件实际持续的时间)。下文列出了目前确保联网物品安全的一些方法,但随着物品和相应风险的激增,这些方法可能还不够。
传统漏洞管理
漏洞管理程序可通过扫描和补丁修复有效减少漏洞,但通常仍有多个攻击面。攻击面可以是一个开放式的TCP/IP或UDP端口或一项无保护的技术,虽然目前未发现漏洞,但攻击者以后也许能发现新的漏洞。
减少攻击面
简单来说,减少攻击面即指减少或消除攻击,可以从物联网设备制造商设计、建造并部署只含基础服务的固化设备时便开始着手。安全所有权不应只由物联网设备制造商或用户单独所有;而应与二者同样共享。
更新悖论
生产设施所面临的另一个挑战被称为“更新悖论”。很多工业生产网络很少更新升级,因为对制造商来说,停工升级花费巨大。对于某些连续加工设施来说,关闭和停工都将导致昂贵的生产原材料发生损失。
很多联网设备可能还将使用十年到二十年,这使得更新悖论愈加严重。认为设备无须应用任何软件补丁就能在整个生命周期安全运转的想法完全不切实际。20 对于生产和制造设施,在缩短停工时间的同时,使生产资产利用率达到最高至关重要。物联网设备制造商有责任生产更加安全的固化物联网设备,这些设备只能存在最小的攻击表面,并应利用默认的“开放”或不安全的安全配置规划最安全的设置。
制造设施中联网设备所面临的挑战通常也适用基于物联网的消费产品。智能系统更新换代很快,而且可能使消费型物品更容易遭受网络威胁。对于一件物品来说,威胁可能微不足道,但如果涉及大量的联网设备,影响将不可小觑——Mirai病毒攻击就是一个例子。在应对威胁的过程中,资产管理和技术战略将比以往任何时候都更重要。
人才缺口
2016年德勤与美国生产力和创新制造商联盟(MAPI)的研究表明,75%的受访高管认为他们缺少能够有效实施并维持安全联网生产生态圈的技能型人才资源。21随着攻击的复杂性和先进程度不断提升,将越来越难找到高技能的网络安全人才,来设计和实施具备安全性、警觉性和韧性的网络安全解决方案。
网络威胁不断变化,技术复杂性越来越高。搭载零日攻击的先进恶意软件能够自动找到易受攻击的设备,并在几乎无人为参与的情况下进行扩散,并可能击败已遭受攻击的信息技术/运营技术安全人员。这一趋势令人感到不安,物联网设备制造商需要生产更加安全的固化设备。
多管齐下,保护设备
在工业应用中,承担一些非常重要和敏感任务——包括控制发电与电力配送,水净化、化学品生产和提纯、制造以及自动装配生产线——的物联网设备通常最容易遭受网络攻击。由于生产设施不断减少人为干预,因此仅在网关或网络边界采取保护措施的做法已经没有用(图8)。
从设计流程开始考虑网络安全
制造商也许会觉得越来越有责任部署固化的、接近军用级别的联网设备。很多物联网设备制造商已经表示他们需要采用包含了规划和设计的安全编码方法,并在整个硬件和软件开发生命周期内采用领先的网络安全措施。22这个安全软件开发生命周期在整个开发过程中添加了安全网关(用于评估安全控制措施是否有效),采用领先的安全措施,并用安全的软件代码和软件库生产具备一定功能的安全设备。通过利用安全软件开发生命周期的安全措施,很多物联网产品安全评估所发现的漏洞能够在设计过程中得到解决。但如果可能的话,在传统开发生命周期结束时应用安全修补程序通常会更加费力费钱。
从联网设备端保护数据
物联网设备所产生的大量信息对工业4.0制造商非常重要。基于工业4.0的技术如高级分析和机器学习能够处理和分析这些信息,并根据计算分析结果实时或近乎实时地做出关键决策。这些敏感信息并不仅限于传感器与流程信息,还包括制造商的知识产权或者与隐私条例相关的数据。事实上,德勤与美国生产力和创新制造商联盟(MAPI)的调研发现,近70%的制造商使用联网产品传输个人信息,但近55%的制造商会对传输的信息加密。
生产固化设备需要采取可靠的安全措施,在整个数据生命周期间,敏感数据的安全同样也需要得到保护。因此,物联网设备制造商需要制定保护方案:不仅要安全地存放所有设备、本地以及云端存储的数据,还需要快速识别并报告任何可能危害这些数据安全的情况或活动。
保护云端数据存储和动态数据通常需要采用增强式加密、人工智能和机器学习解决方案,以形成强大的、响应迅速的威胁情报、入侵检测以及入侵防护解决方案。
随着越来越多的物联网设备实现联网,潜在威胁面以及受损设备所面临的风险都将增多。现在这些攻击面可能还不足以形成严重的漏洞,但仅数月或数年后就能轻易形成漏洞。因此,设备联网时必须使用补丁。确保设备安全的责任不应仅由消费者或联网设备部署方承担,而应由最适合实施最有效安全措施的设备制造商共同分担。
应用人工智能检测威胁
2016年8月,美国国防高级研究计划局举办了一场网络超级挑战赛,最终排名靠前的七支队伍在这场“全机器”的黑客竞赛中提交了各自的人工智能平台。网络超级挑战赛发起于2013年,旨在找到一种能够扫描网络、识别软件漏洞并在无人为干预的情况下应用补丁的、人工智能网络安全平台或技术。美国国防高级研究计划局希望借助人工智能平台大大缩短人类以实时或接近实时的方式识别漏洞、开发软件安全补丁所用的时间,从而减少网络攻击风险。
真正意义上警觉的威胁检测能力可能需要运用人工智能的力量进行大海捞针。在物联网设备产生海量数据的过程中,当前基于特征的威胁检测技术可能会因为重新收集数据流和实施状态封包检查而被迫达到极限。尽管这些基于特征的检测技术能够应对流量不断攀升,但其检测特征数据库活动的能力仍旧有限。
在工业4.0时代,结合减少攻击面、安全软件开发生命周期、数据保护、安全和固化设备的硬件与固件以及机器学习,并借助人工智能实时响应威胁,对以具备安全性、警惕性和韧性的方式开发设备至关重要。如果不能应对安全风险,如“震网”和Mirai恶意程序的漏洞攻击,也不能生产固化、安全的物联网设备,则可能导致一种不好的状况:关键基础设施和制造业将经常遭受严重攻击。
攻击不可避免时,保持韧性
恰当利用固化程度很高的目标设备的安全性和警惕性,能够有效震慑绝大部分攻击者。然而,值得注意的是,虽然企业可以减少网络攻击风险,但没有一家企业能够完全避免网络攻击。保持韧性的前提是,接受某一天企业将遭受网络攻击这一事实,而后谨慎行事。
韧性的培养过程包含三个阶段:准备、响应、恢复。
准备。企业应当准备好有效应对各方面事故,明确定义角色、职责与行为。审慎的准备如危机模拟、事故演练和战争演习,能够帮助企业了解差异,并在真实事故发生时采取有效的补救措施。
响应。应仔细规划并对全公司有效告知管理层的响应措施。实施效果不佳的响应方案将扩大事件的影响、延长停产时间、减少收入并损害企业声誉。这些影响所持续的时间将远远长于事故实际持续的时间。
恢复。企业应当认真规划并实施恢复正常运营和限制企业遭受影响所需的措施。应将从事后分析中汲取到的教训用于制定之后的事件响应计划。具备韧性的企业应在迅速恢复运营和安全的同时将事故影响降至最低。在准备应对攻击,了解遭受攻击时的应对之策并快速消除攻击的影响时,企业应全力应对、仔细规划、充分执行。
推动网络公司发展至今日的比特(0和1)让制造业的整个价值链经历了从供应网络到智能工厂再到联网物品的巨大转变。随着联网技术应用的不断普及,网络风险可能增加并发生改变,也有可能在价值链的不同阶段和每一家企业有不同的表现。每家企业应以最能满足其需求的方式适应工业生态圈。
企业不能只用一种简单的解决方法或产品或补丁解决工业4.0所带来的网络风险和威胁。如今,联网技术为关键商业流程提供支持,但随着这些流程的关联性提高,可能会更容易出现漏洞。因此,企业需要重新思考其业务连续性、灾难恢复力和响应计划,以适应愈加复杂和普遍的网络环境。
法规和行业标准常常是被动的,“合规”通常表示最低安全要求。企业面临着一个特别的挑战——当前所采用的技术并不能完全保证安全,因为干扰者只需找出一个最薄弱的点便能成功入侵企业系统。这项挑战可能还会升级:不断提高的互联性和收集处理实时分析将引入大量需要保护的联网设备和数据。
企业需要采用具备安全性、警惕性和韧性的方法,了解风险,消除威胁:
安全性。采取审慎的、基于风险的方法,明确什么是安全的信息以及如何确保信息安全。贵公司的知识产权是否安全?贵公司的供应链或工业控制系统环境是否容易遭到攻击?
警惕性。持续监控系统、网络、设备、人员和环境,发现可能存在的威胁。需要利用实时威胁情报和人工智能,了解危险行为,并快速识别引进的大量联网设备所带来的威胁。
韧性。随时都可能发生事故。贵公司将会如何应对?多久能恢复正常运营?贵公司将如何快速消除事故影响?
由于企业越来越重视工业4.0所带来的商业价值,企业将比以往任何时候更需要提出具备安全性、警惕性和韧性的网络风险解决方案。
报告出品方:德勤中国
获取本报告pdf版请登录【远瞻智库官网】或点击链接:“链接”
④ 工业控制网络的发展趋势
工业控制网络的发展历程是分步骤的,从传统的控制网络发展到较为先进的现场总线,再后来随着科技文明的进步,发展为现在研究热点工业以太网以及到无线网络控制。未来工业网络的发展需要从通信的实时性,安全性和可靠性来努力,想要达到这个层度也不是很简单的,实现多总线路集成,实时异构网络也是将来发展的一个重要方向。 工业控制网络的方向 现如今企业的经营方式随着互联网和其相关技术的出现和发展,已经被改变了很多,它使信息通信环绕在整个社会生活中,并在很大的范围内得以贯穿,世界上有文明的地方就有工业控制网络。在一些领域里,例如办公自动化领域里,办公设备中出现了互联网技术的支持。除此之外,在制造加工工业中,在互联网的基础上,开放式的、透明的商业运作是新技术的发展方向。 更高的带宽 更高的带宽是高性能工业控制网络的要求,要增加带宽,首先要分散控制数据,在将来的几年里,分散控制系统会产生增加二十到三十倍的制造信息。同样地,PLC 从场地设备采集的信息预计也会增加一二十倍。在自动化控制和通信设施中,如果总使用新的处理体系和技术,网络很可能无法承载,离散的网络组织也可能产生瓶颈效应从而对网络变成透明的、覆盖企业范围的应用实体产生阻碍。以太网的标准带宽是10Mbps,近期研究高速以太网,其速度能达到百兆甚至千兆,从而能够成为企业大范围内的主干网络。在这种状况下,只有以太网能满足大家的需要,这同时也促进了多样控制网络的出现。 开放性的工业控制网络体系 随着经济全球化的发展和大部分产品周期的提高,为了降低生产成本,企业大都应用互联网、智能设备和服务器式应用系统以及无线通信等新技术。虽然这样确实降低了成本,但同时这些新技术和商业过程无法避免地生成了很多数据,这些数据分配又是一个难题。虽然在执行方式上,硬件和软件不同,但它们在商业系统中具有相同的本质标准,那就是开放式的生产管理体系。这种体系能使企业脱离单一的设备维护费用的运作方式。除此之外,开放式的系统使动态的制造数据得以释放,在整个企业网络范围内,使我们的管理者能能把数据自由地分配给广大使用者,从而提高了企业的工作效率。
内容提要
本书介绍了工业控制网络的特点、发展历程、技术现状和发展趋势,重点介绍了Modbus、PROFIBUS、CAN、DeviceNet及CANopen等现场总线技术,还介绍了EPA、PROFINET、HSE、Ethernet/IP及Modbus TCP等工业以太网技术,并结合台达工业自动化产品有针对性地安排了大量工业控制网络应用案例和实验内容,着重对学生的实际动手能力、独立思考能力、创新思维能力和综合运用能力进行培养和训练。本书可作为普通高等院校电气工程及其自动化、自动化、电子信息工程、仪器仪表、计算机、机械电子、汽车电子及相关专业的教材,也可作为相关工程技术人员的参考书。
⑤ 工业互联网是什么意思,最近被提及的很多,我们是重工业生产企业,怎么进行互联网+转型
“工业互联网”(Instrial Internet)——开放、全球化的网络,将人、数据和机器连接起来,属于泛互联网的目录分类。 它是全球工业系统与高级计算、分析、传感技术及互联网的高度融合。
“工业互联网”的概念最早由通用电气于2012年提出,随后美国五家行业龙头企业联手组建了工业互联网联盟(IIC),将这一概念大力推广开来。除了通用电气这样的制造业巨头,加入该联盟的还有IBM、思科、英特尔和AT&T等IT企业。国内有树根互联、海尔卡奥斯、北京宏途创联科技有限公司、用友云。
工业互联网的本质和核心是通过工业互联网平台把设备、生产线、工厂、供应商、产品和客户紧密地连接融合起来。可以帮助制造业拉长产业链,形成跨设备、跨系统、跨厂区、跨地区的互联互通,从而提高效率,推动整个制造服务体系智能化。还有利于推动制造业融通发展,实现制造业和服务业之间的跨越发展,使工业经济各种要素资源能够高效共享。
⑥ 工业网络的种类及其优缺点
工业网络在自动控制系统中的应用常有以下几种形式:分布式控制系统DCS(Distr~uted ControlSystem)、现场总线控制系统FC(Fieldbus ControlSystem)及工业以太网(Instrial F_.themet),它们构成当今工业控制的主流,同时Intemet及Web技术的发展,促进工业控制系统向Web自动化的趋势发展。(1)DCS系统又称集散控制系统,是一种稳定、可靠、安全的工业控制方式,目前广泛应用于国内各种工业控制现场。其基本思想是分散控制、集中管理,典型结构是上、下位机系统及其通信网络,上位机称为操作站,下位机称为控制站。操作站处于信息监控层,实现控制系统的控制操作、过程状态及报警状态显示、历史数据的收集和各种趋势的显示及报表生成与打印;控制站处于现场控制层,是对现场物理信号(包括模拟及开关信号)进行实时采集并进行数据处理、控制运算,并将结果传送到上位机;系统的网络负责各控制站之间、操作站与控制站之间以及操作站之间的数据通信和联络。(2)FCS系统产生于2O世纪8O年代,是在DCS基础上发展起来的,在智能现场设备、自动化系统之间提供了一个全数字化的、双向的、多节点的通信链路。FCS的出现促进了现场设备的数字化和网络化,并且使现场控制的功能更加强大。相对于DCS一对一结构、采用单向信号传输、布线及调试成本高、互操作性相对较差等缺点,FCS最大的特点就是大大减少了布线及由此引起的调试、安装、维护等其它成本,因而获得了广泛应用,发展非常迅速。目前世界上流行的现场总线有Profibus-DP、FF、DeviceNet、Lonworks、Modbus等4O多种。
(3)工业以太网 具有现场总线开放性、互操作性、互换性、可集成性、数字化信号传输等特点,许多专家预测以太网将会成为取代现场总线的一种最
佳选择和最终发展方向。以太网是IEFES02-3所支持的局域网标准,采用带碰撞检测的载波侦听多路访问技术(CSMA/CD),在办公自动化领域得到了广泛应用。以太网技术应用于实时性要求很高的工业控制领域,关键要采取有效手段避免CSMA/CD中的碰撞。由于以太网通信带宽得到大幅提高,5类双绞线将接收和发送信号分开,并且采用了全双工交换式以太网交换机,以星形拓扑结构为其端口上的每个网络节点提供独立带宽,使连接在同一个交换机上面的不同设备不存在资源争夺,隔离了载波侦听,因此网络通信的实时性得到大大改善,保证了以太网产品能真正应用于工业控制现场。而且以太网技术成熟,连接电缆和接口设备价格相对较低,带宽迅速增长,可以满足现场设备对通信速度增加而原有总线技术不能满足的场合的需求。
(4)Web自动化技术 Intemet网把全世界连成了一个整体,而Web技术引发了信息技术的革命。把Web技术应用到工业控制领域就产生了web自动化。web自动化的基本思想是只要需要,在任何时间和地点都可以对工业现场的数据进行实时访问和控制。web数据采集和控制的基本要求是:必须要有一个能够通过web网络和TCP/IP协议连接监控设备和过程数据的界面,即用户界面层;要有一台能够使所需显示或控制页面通过过程浏览器访问的Web服务器,即运行逻辑层;要有一个处理本地事务(即w曲服务器)和远端系统(即客户端)之间数据接收和存储的数据库服务器,即数据库层。这就是典型的三层结构。第三层(数据库层)第二层(运行逻辑层)第一层(用户界面层)在web模式下可以实现用户界面和运行逻辑的有效分离,用户浏览器仅负责界面的显示,操作者可直接通过浏览器访问web服务器上的各类信息而将运行逻辑迁移至web服务器端;无需对客户端的应用软件进行安装,也无需对客户端的控件进行注册,应用软件的升级很方便,如果应用程序的功能和运行逻辑需要改变,系统维护人员可直接在web服务器上对相应的页面和组件进行修改,用户立即能得到新的功能。
(5)上述控制方式的应用特点 虽然FCS技术具有传统DCS所无法比拟的优越性,但其推广应用也受到诸多因素的制约,DCS并没有也不会随着FCS的发展而马上退出现场过程控制的舞台,这是因为,首先,目前我国控制现场很多设备还不是智能仪表,不能直接与现场总线相连;其次,FCS的价格特别是智能设备比较昂贵,采用FCS的综合价格仍高于DCS;第三,DCS也在不断采用新技术,如与PLC(可编程序控制器)很好地融合、渗透和集成,普遍采用IPC作为其操作站,并且采用人工智能技术等,DCS呈现出向综合化和智能化发展的趋势;第四,FCS标准种类繁多,不同标准的设备相互通讯一
般比较繁琐i第五,在强调安全、可靠第一位的应用场合,更多地是考虑DCS技术的成熟和高可靠性,同时一些专家担心FCS一旦通信线路故障将引整个系统的瘫痪。在电厂辅机系统如化学水处理系统,目前一般仍以DCS为主,在此基础上局部采用FCS技术,组成混合系统,笔者称之为FDCS系统(Fieldbus Distr~uted Control System)。对工业以太网,目前已不仅仅只适用于工业网络控制系统的信息层,而且提供了现场控制级的应用,如SIEMENS公司的PLC提供专用的以太网接口模块,研华科技的新型智能模块中内置了Web服务器,使现场模块具备网页发布功能,通过网页与外界直接交换信息。而web自动化技术的优点是,操作者可在现场之外,不受时间和空间限制,通过浏览器访问web服务器上的各类信息,方便电厂调度、指挥等部门浏览、查询现场数据,或根据权限发布控制命令,实现对现场设备的监控。
希望我的回答对你有帮助
⑦ 网络规划过程中应遵循哪些准则
(1)开放性原则。符合国际或公认的工业标准,具备开放功能,便于不同网络产品的互连,考虑投设备在技术上的扩充性。
(2)可扩展性原则。网络的覆盖范围、传输速率、支持的最大节点数不仅要满足目前系统的要求,而且要考虑今后发展的需要,在网络设计时要充分考虑网络的扩展性。同时,要保护用户现有投资,充分利用现有计算机资源及其它设备资源。
(3)先进性与实用兼顾原则。应尽可能地采用先进而成熟的技术,采用先进的设计思想、先进的软硬件设备和先进的开发工具。同时注重实用性,使网络系统获得较高的性价比。
(4)安全与可靠原则。网络的可靠性、安全性应优先考虑。选择适当的冗余,保证网络在故障情况下能正常运行。设置各种安全措施,达到从网络用户到数据传输各环节的安全。
(5)可维护性原则。有充分的网络管理手段,可维护性好。
⑧ 工业网络由哪些主要部分组成
是指安装在工业生产环境中的一种全数字化、双向、多站的通信系统。具体有以下三种类型: (1)专用、封闭型工业网络:该网络规范是由各公司自行研制,往往是针对某一特定应用领域而设,效率也是最高。但在相互连接时就显得各项指标参差不齐,推广与维护都难以协调。专用型工业网络有三个发展方向:①走向封闭系统,以保证市场占有率。②走向开放型,使它成为标准。③设计专用的Gateway与开放型网络连接。 (2)开放型工业网络:除了一些较简单的标准是无条件开放外,大部分是有条件开放,或仅对成员开放。生产商必须成为该组织的成员,产品需经过该组织的测试、认证,方可在该工业网络系统中使用。 (3)标准工业网络:符合国际标准IEC61158、IEC62026、ISO11519或欧洲标准EN50170的工业网络,它们都会遵循ISO/OSI7层参考模型。工业网络大都只使用物理层、数据链路层和应用层。一般工业网络的制定是根据现有的通信界面,或是自己设计通信IC,然后再依据应用领域设定数据传输格式。例如,DeviceNet的物理层与数据链路层是以CANbus为基础,再增加适用于一般I/O点应用的应用层规范。
⑨ 如何构建工业互联网安全体系
工业互联网安全问题日益凸现
工业互联网无疑是这个寒冬中最热的产业经济话题。“BAT们”视之为“互联网的下半场”,正在竞相“+工业”“+制造业”而工业企业、制造业企业们也在积极“+互联网”,希望借助互联网的科技力量,为工业、制造业的发展配备上全新引擎,从而打造“新工业”。
不难看出,工业互联网正面临着一个重要的高速发展期,预计至2020年将达万亿元规模。但与此同时,工业互联网所面临的安全问题日益凸现。在设备、控制、网络、平台、数据等工业互联网主要环节,仍然存在传统的安全防护技术不能适应当前的网络安全新形势、安全人才不足等诸多问题。
工业互联网万亿级市场模引发安全隐患
据前瞻产业研究院发布的《中国工业互联网产业发展前景预测与投资战略规划分析报告》统计数据显示,2017年中国工业互联网直接产业规模约为5700亿元,预计2017年到2019年,产业规模将以18%的年均增速高速增长,到2020年将达到万亿元规模。随着国家出台相关工业互联网利好政策,中国工业互联网行业发展增速加快,截止到2018年3月,中国工业互联网平台数量超250家。世界各国正加速布局工业互联网,围绕工业互联网发展的国际竞争日趋激烈。
预计2020年我国工业互联网产业规模将达到万亿元
数据来源:公开资料、前瞻产业研究院整理
一方面,加快工业互联网发展是制造业转型升级的必然要求;另一方面,工业互联网是构筑现代化经济体系的必然趋势。
工业互联网是深化“互联网+先进制造业”的重要基石,也是发展数字经济的新动力。发展工业互联网,实现互联网与制造业深度融合,将催生更多新业态、新产业、新模式,创造更多新兴经济增长点。
伴随着工业互联网的发展,越来越多的工业控制系统及设备与互联网连接,网络空间边界和功能极大扩展,以及开放、互联、跨域的制造环境,使得工业互联网安全问题日益凸显:
1、网络攻击威胁向工业互联网领域渗透。近年来,工业控制系统漏洞呈快速增长趋势,相关数据显示,2017年新增信息安全漏洞4798个,其中工控系统新增漏洞数351个,相比2016年同期,新增数量几乎翻番,漏洞数量之大,使整个工业系统的生产网络面临巨大安全威胁。
2、新技术的运用带来新的安全威胁。大数据、云计算、人工智能、移动互联网等新一代信息技术本身存在一定的安全问题,导致工业互联网安全风险多样化。
3、工业互联网安全保障能力薄弱。目前,传统的安全保障技术不足以解决工业互联网的安全问题,同时,针对工业互联网的安全防护资金投入较少,相应安全管理制度缺乏,责任体系不明确等,难以为工业互联网安全提供有力支撑。
如何构建工业互联网安全体系?
那么,如何铸造工业互联网的安全基石,加快构建可信的工业互联网安全保障体系呢?
1、突破关键核心技术。要紧跟工业互联网最新发展趋势,努力引领前沿技术和颠覆性技术发展。
2、推动工业互联网安全技术标准落地实施。全面推广技术合规性检测,促进工业互联网产业良性发展。
3、完善监管和评测体系。
4、切实推进工业互联网安全技术发展。加强全生命周期安全管理,构建覆盖系统建设各环节的安全防护体系。
5、联合行业力量打造工业互联网安全生态。
在工业互联网的安全防护能力建议:
1、顶层设计:出台系列文件,形成顶层设计;
2、标准引导:构建工业互联网安全标准体系框架,推进重点领域安全标准的研制;
3、技术保障:夯实基础,强化技术实力;
4、系统布局:依托联盟,打造产业促进平台;
5、产业应用:加强产业推进,推广安全最佳实践。
近年来,中国也陆续出台了《关于深化“互联网+先进制造业”发展工业互联网的指导意见》、《工业互联网发展行动计划(2018-2020年)》等文件,明确提出工业互联网安全工作内容,从制度建立、标准研制、安全防护、数据保护、手段建设、安全产业发展、人员培养等方面,要求建立涵盖设备安全、控制安全、网络安全、平台安全、数据安全的工业互联网多层次安全保障体系。
在国家政策以及业界的一致努力下,相信我国工业互联网在取得快速发展的同时在安全层面的保障也会更上一层楼。
⑩ 网络设计需要考虑哪些
网络工程集成设计的一般步骤(2) 成本/效益评估 根据用户的需求和现状分析,对设计新的网络系统所需要投入的人力、财力、物力,以及可能产生的经济、社会效益进行综合评估。这项工作是集成商向用户提出系统设计报价和让用户接受设计方案的最有效参考依据。 书写需求分析报告 详细了解用户需求并进行现状分析和成本/效益评估后,就要以报告的形式向用户和项目经理人提出,以此作为下一步正式的系统设计的基础与前提。 (2)网络工程初步设计。 在全面、详细地了解了用户需求,并进行了用户现状分析和成本/效益评估后,在用户和项目经理人认可的前提下,就可以正式进行网络工程设计了。首先需要给出一个初步的方案,其中主要包括以下几个方面: 确定网络的规模和应用范围 确定网络覆盖范围(这主要是根据终端用户的地理位置分布而定)、定义网络应用的边界(着重强调的是用户的特定行业应用和关键应用,如MIS系统、ERP系统、数据库系统、广域网连接、企业网站系统、邮件服务器系统、VPN连接等)。 统一建网模式 根据用户网络规模和终端用户地理位置分布确定网络的总体架构,比如是集中式还是分布式,是采用客户机/服务器模式还是对等模式等。 确定初步方案 将网络系统的初步设计方案用文档记录下来,并向项目经理人和用户提交,审核通过后方可进行下一步运作。 (3)网络工程详细设计。 网络协议体系结构的确定 根据应用需求,确定用户端系统应该采用的网络拓扑结构类型,可选择的网络拓扑通常包括总线型、星型、树型和混合型4种。如果涉及广域网系统,则还需要确定采用哪一种中继系统,确定整个网络应该采用的协议体系结构。 节点规模设计 确定网络的主要节点设备的档次和应该具备的功能,这主要是根据用户网络规模、网络应用需求和相应设备所在的网络位置而定。局域网中核心层设备最高档,汇聚层的设备性能次之,接入层的性能要求最低。广域网中,用户主要考虑的是接入方式的选择,因为中继传输网和核心交换网通常都是由NSP提供的,无需用户关心。 确定网络操作系统 一个网络系统中,安装在服务器中的操作系统决定了整个网络系统的主要应用和管理模式,也基本上决定了终端用户所能采用的操作系统和应用软件系统。网络操作系统方面,目前主流应用的有Microsoft公司的Windows Server 2003和Windows Server 2008系统,是目前应用面最广、最容易掌握的操作系统,在中小型企业中绝大多数是采用这两种网络操作系统。另外还有一些Linux系统版本,如RedHat Enterprise Linux 5.0、Red Flag DC Server 5.0等。UNIX系统品牌也比较多,目前最主要应用的是SUN公司的Solaris 10.0、IBM AIX 5L等几种。 选定通信介质 根据网络分布、接入速率需求和投资成本分析为用户端系统选定适合的传输介质,为中继系统选定传输资源。在局域网中,通常是以廉价的五类/超五类双绞线为传输介质,而在广域网中则主要是以电话铜线、光纤、同轴电缆作为传输介质,具体要视所选择的接入方式而定。 网络设备的选型和配置 根据网络系统和计算机系统的方案,选择性能价格比最好的网络设备,并以适当的连接方式加以有效的组合。 结构化布线设计 根据用户的终端节点分布和网络规模设计整个网络系统的结构化布线(也就是通常所说的"综合布线")图,在图中要求标注关键节点的位置和传输速率、传输介质、接口等特殊要求。结构化布线图要符合结构化布线的国际、国内标准,如EIA/TIA 568A/B、ISO/IEC 11801等。 确定详细方案 确定网络总体及各部分的详细设计方案,并形成正式文档交项目经理和用户审核,以便及时地发现问题,及时纠正。 (4)应用系统集成设计。 前面3个步骤是设计网络架构的,接下来要做的是进行应用系统集成设计。其中包括各种用户计算机应用系统设计和数据库系统、MIS管理系统选择等,具体包括以下几个方面: 应用系统设计 分模块地设计出满足用户应用需求的各种应用系统的框架和对网络系统的要求,特别是一些行业特定应用和关键应用,如进销存数据库系统、电子商务应用系统、财务管理系统、人事管理系统等。 计算机系统设计 根据用户业务特点、应用需求和数据流量,对整个系统的服务器、工作站、终端以及打印机等外设进行配置和设计,还可根据用户网络管理方面的需求选择适当的MIS管理系统对整个网络系统设备进行集中监控和管理。 机房环境设计 确定用户端系统的服务器所在机房和一般工作站机房的环境,包括温度、湿度、通风等要求。 确定系统集成详细方案 将整个应用系统涉及的各个部分加以集成,并最终形成系统集成的正式文档。 完成好应用系统集成后,就可以开始进行工程施工了,然后再进行下面的方案测试和试运行。 (5)网络工程方案测试。 系统设计后还不能马上投入正式的运行,而是要先做一些必要的性能测试和小范围的试运行。性能测试一般是通过专门的测试工具进行,主要测试网络接入性能、响应时间,以及关键应用系统的并发用户支持和稳定性等方面。试运行通常是就网络系统的基本性能进行评估,特别是对一些关键应用系统。试运行的时间一般不得少于一个星期。小范围试运行成功后即可全面试运行,全面试运行时间不得少于一个月。 在试运行过程中出现的问题应及时加以解决和改进,直到用户满意为止,当然这也结合用户的投资和实际应用需求等因素综合考虑。 做任何事都是有规律可循的,也必须遵守一定的原则。根据目前计算机网络的现状和需求分析以及未来的发展趋势,在网络工程设计时应遵循以下几个原则: 开放性和标准化原则 首先采用国际标准和国家标准,其次采用广为流行的、实用的工业标准,只有这样,网络系统内部才能方便地从外部网络快速获取信息。同时还要求在授权后网络内部的部分信息可以对外开放,保证网络系统适度的开放性。这是非常重要而且非常必要的,同时又是许多网络工程设计人员经常忽视的。我们在进行网络工程设计时,在有标准可执行的情况下,一定要严格按照相应的标准进行设计,而不要我行我素,特别是在像网线制作、结构化布线和网络设备协议支持等方面。采用开放的标准后就可以充分保障网络工程设计的延续性,即使将来当前设计人员不在公司了,后来人员也可以通过标准轻松地了解整个网络系统的设计标准,保证互连简单易行。 实用性与先进性兼顾原则 在进行网络工程设计时首先应该以注重实用为原则,紧密结合具体应用的实际需求。在选择具体的网络技术时一定同时考虑当前及未来一段时间内主流应用的技术,不要一味追求新技术和新产品,一则新的技术和产品还有一个成熟的过程,立即选用则可能会出现各种意想不到的问题;另一方面,最新技术的产品价格肯定非常昂贵,会造成不必要的资金浪费。 如在以太局域网技术中,目前千兆以下的以太网技术都已非常成熟,产品价格也已降到了合理的水平,但万兆以太网技术还没有得到普及应用,相应的产品价格仍相当昂贵,所以如果没有十分的必要,则不要选择万兆以太网技术的产品。 另外在选择技术时,一定要选择主流应用的技术,如像同轴电缆的令牌环以太网和FDDI光纤以太网目前已很少使用,就不要选用了。目前的以太网技术基本上都是基于双绞线和光纤的,其传输速率最低都应达到10/100Mb/s。 无瓶颈原则 这个非常重要,否则会造成花了高的成本购买了主档次设备却得不到相应的高性能。网络性能与网络安全一样,最终取决于网络通信链路中性能最低的那部分。 如某汇聚层交换机连接到了核心交换机的1000Mb/s双绞线以太网端口上,而该汇聚层交换机却只有100Mb/s甚至10Mb/s的端口,很显然这个汇聚层交换机上所连接的节点都只能享有10Mb/s或100Mb/s的性能。如果上联端口具有1000Mb/s性能,而各节点端口支持100Mb/s连接,则性能就完全不一样了。 还如服务器的各项硬件配置都非常高档(达到了企业级标准),但所用的网卡却只是普通的PCI 10/100Mb/s网卡,显然这又将成为服务器性能发挥的瓶颈。再好的其他配置,最终也无法正常发挥。再如,服务器的处理器达到了4个至强处理器,而内存容量却只有初始配置的1GB,或者磁盘采用了读写性能较低的IDE RAID或SATA RAID,这样配置的结果同样会使服务器的性能大打折扣,浪费了高性能配置资源。 这类现象还非常多,在此就不一一列举了。这就要求在进行网络工程设计时一定要全局综合考虑各部分的性能,而不能只注重局部的性能配置。特别是交换机端口、网卡和服务器组件配置等方面。 可用性原则 我们知道服务器的"四性"中有一个"可用性",网络系统也一样。它决定了所设计的网络系统是否能满足用户应用和稳定运行的需求。网络的"可用性"其实就表现在网络的"可靠性"和"稳定性"上,要求网络系统能长时间稳定运行,而不要经常出现这样或那样的问题。否则给用户带来的损失可能是非常巨大的,特别是大型、外贸、电子商务类型的企业。当然这里所说的"可用性"还表现在所选择的产品要能真正用得上,如所选择的服务器产品只支持UNIX系统,而用户系统中根本不打算用UNIX系统,则所选择的服务器就用不上。 网络系统的"可用性"通常是由网络设备(软件系统其实也有"可用性"要求)的"可用性"决定的,主要体现在服务器、交换机、路由器、防火墙等重负荷设备上。这就要求在选购这些设备时一定不要一味地贪图廉价,而要选择一些国内外主流品牌、应用主流技术和成熟型号的产品。对于这些关键设备千万不要选择那些杂牌,一方面性能和稳定性无法保障,另一方面售后服务更将是无法弥补的长久的痛。 另外,网络系统的电源供应在可用性保障方面也非常重要,特别是对于关键网络设备和关键用户机。这时就需要为这些节点配置足够功率的不间断电源(UPS),在市电出现不稳定或者停电时可以持续一段时间供用户保存数据、退出系统,以免数据丢失。通常像服务器、交换机、路由器、防火墙之类的关键设备要接在支持数个小时以上(通常是3小时)的UPS电源上,而关键用户机则需要接在支持15分钟以上的UPS电源上。 适度安全性原则 网络安全涉及许多方面,最明显、最重要的就是对外界入侵、攻击的检测与防护。现在的网络几乎时刻受到外界的安全威胁,稍有不慎就会被那些病毒、黑客入侵,致使整个网络陷入瘫痪。在一个安全措施完善的计算机网络中,不仅要部署病毒防护系统、防火墙隔离系统,还可能要部署入侵检测、木马查杀系统和物理隔离系统等。当然所选用系统的具体等级要根据相应网络规模的大小和安全需求而定,并不一定要求每个网络系统都全面部署这些防护系统。在安全系统方面,要适度,不能片面强调什么安全第一。 除了病毒、黑客入侵外,网络系统的安全性需求还体现在用户对数据的访问权限上,一定要根据对应的工作需求为不同用户、不同数据配置相应的访问权限,对安全级别需求较高的数据则要采取相应的加密措施。同时,用户账户,特别是高权限账户的安全也应受到高度重视,要采取相应的账户防护策略(如密码复杂性策略和账户锁定策略等),保护好用户账户,以防被非法用户盗取。 在安全性防护方面,还有一个重要的方面,就是数据备份和容灾。这非常重要,在一定程度上决定了企业的生存与发展,特别是企业数据主要是电子文档的电子商务类企业。在设计网络系统时,一定要充分考虑到用户对数据备份和容灾的需求,部署相应级别的备份和容灾方案。如中小型企业通常是采用Microsoft公司Windows Server 2003和Windows Server 2008系统中的备份工具进行数据备份和恢复,而对于大型企业,则可能要采用第三方专门的数据备份系统,如Veritas(维他斯,现已并入赛门铁克公司)的Backup Exec系统。 适度可扩展性原则 这是为了适应用户业务和网络规模发展的需求,相当重要,特别是对于中小型企业网络来说。这类企业一般成长较快,很可能不到三年时间,网络用户规模就要翻倍,关键应用带宽需求也可能成倍增加。这时如果所设计的网络系统的可扩展性不强,就会给网络用户和性能的扩充带来极大的不便。 网络的可扩展性保证主要是通过交换机端口、服务器处理器数、内存容量、磁盘架数等方面来保证。通常要求核心层或骨干层,甚至汇聚层交换机的高速端口(通常为千兆端口)要有两个以上用于维护和扩展(通常是用加连接新增加的下级交换机),不要在设计之初就只想到当前所需的这类端口数,把所有高速端口都占用完。当然也不要为将来的网络留有太多这样的端口或设备,否则就会给网络工程设计带来巨大的成本压力,也会造成巨大的投资浪费。