你应该说具体一点
如果仅仅是为了自己的系统更安全,定期更新补丁,适时查杀病毒就足够了。
❷ 安全网络流量可能受到监控或修改是怎么回事
这是系统显示的安全提示信息,检测到用户在系统中安装了CA证书后,就会有这个提示,这是谷歌的原生特性。
卸载安装CA证书的第三方软件,并删除对应的CA证书就好。
进入 设置 > 安全和隐私 > 更多安全设置 > 加密和凭据 > 受信任的凭据 > 用户,找到安装CA证书的应用,然后卸载对应的应用,并重新进入此目录,点击证书,选择“删除”。
一种互联网宏观流量异常检测方法(2007-11-7 10:37) 摘要:网络流量异常指网络中流量不规则地显着变化。网络短暂拥塞、分布式拒绝服务攻击、大范围扫描等本地事件或者网络路由异常等全局事件都能够引起网络的异常。网络异常的检测和分析对于网络安全应急响应部门非常重要,但是宏观流量异常检测需要从大量高维的富含噪声的数据中提取和解释异常模式,因此变得很困难。文章提出一种分析网络异常的通用方法,该方法运用主成分分析手段将高维空间划分为对应正常和异常网络行为的子空间,并将流量向量影射在正常子空间中,使用基于距离的度量来检测宏观网络流量异常事件。公共互联网正在社会生活的各个领域发挥着越来越重要的作用,与此同时,由互联网的开放性和应用系统的复杂性所带来的安全风险也随之增多。2006年,国家计算机网络应急技术处理协调中心(CNCERT/CC)共接收26 476件非扫描类网络安全事件报告,与2005年相比增加2倍,超过2003—2005年3年的总和。2006年,CNCERT/CC利用部署的863-917网络安全监测平台,抽样监测发现中国大陆地区约4.5万个IP地址的主机被植入木马,与2005年同期相比增加1倍;约有1千多万个IP地址的主机被植入僵尸程序,被境外约1.6万个主机进行控制。黑客利用木马、僵尸网络等技术操纵数万甚至上百万台被入侵的计算机,释放恶意代码、发送垃圾邮件,并实施分布式拒绝服务攻击,这对包括骨干网在内的整个互联网网络带来严重的威胁。由数万台机器同时发起的分布式拒绝服务攻击能够在短时间内耗尽城域网甚至骨干网的带宽,从而造成局部的互联网崩溃。由于政府、金融、证券、能源、海关等重要信息系统的诸多业务依赖互联网开展,互联网骨干网络的崩溃不仅会带来巨额的商业损失,还会严重威胁国家安全。据不完全统计,2001年7月19日爆发的红色代码蠕虫病毒造成的损失估计超过20亿美元;2001年9月18日爆发的Nimda蠕虫病毒造成的经济损失超过26亿美元;2003年1月爆发的SQL Slammer蠕虫病毒造成经济损失超过12亿美元。针对目前互联网宏观网络安全需求,本文研究并提出一种宏观网络流量异常检测方法,能够在骨干网络层面对流量异常进行分析,在大规模安全事件爆发时进行快速有效的监测,从而为网络防御赢得时间。1 网络流量异常检测研究现状在骨干网络层面进行宏观网络流量异常检测时,巨大流量的实时处理和未知攻击的检测给传统入侵检测技术带来了很大的挑战。在流量异常检测方面,国内外的学术机构和企业不断探讨并提出了多种检测方法[1]。经典的流量监测方法是基于阈值基线的检测方法,这种方法通过对历史数据的分析建立正常的参考基线范围,一旦超出此范围就判断为异常,它的特点是简单、计算复杂度小,适用于实时检测,然而它作为一种实用的检测手段时,需要结合网络流量的特点进行修正和改进。另一种常用的方法是基于统计的检测,如一般似然比(GLR)检测方法[2],它考虑两个相邻的时间窗口以及由这两个窗口构成的合并窗口,每个窗口都用自回归模型拟合,并计算各窗口序列残差的联合似然比,然后与某个预先设定的阈值T 进行比较,当超过阈值T 时,则窗口边界被认定为异常点。这种检测方法对于流量的突变检测比较有效,但是由于它的阈值不是自动选取,并且当异常持续长度超过窗口长度时,该方法将出现部分失效。统计学模型在流量异常检测中具有广阔的研究前景,不同的统计学建模方式能够产生不同的检测方法。最近有许多学者研究了基于变换域进行流量异常检测的方法[3],基于变换域的方法通常将时域的流量信号变换到频域或者小波域,然后依据变换后的空间特征进行异常监测。P. Barford等人[4]将小波分析理论运用于流量异常检测,并给出了基于其理论的4类异常结果,但该方法的计算过于复杂,不适于在高速骨干网上进行实时检测。Lakhina等人[5-6]利用主成分分析方法(PCA),将源和目标之间的数据流高维结构空间进行PCA分解,归结到3个主成分上,以3个新的复合变量来重构网络流的特征,并以此发展出一套检测方法。此外还有一些其他的监测方法[7],例如基于Markov模型的网络状态转换概率检测方法,将每种类型的事件定义为系统状态,通过过程转换模型来描述所预测的正常的网络特征,当到来的流量特征与期望特征产生偏差时进行报警。又如LERAD检测[8],它是基于网络安全特征的检测,这种方法通过学习得到流量属性之间的正常的关联规则,然后建立正常的规则集,在实际检测中对流量进行规则匹配,对违反规则的流量进行告警。这种方法能够对发生异常的地址进行定位,并对异常的程度进行量化。但学习需要大量正常模式下的纯净数据,这在实际的网络中并不容易实现。随着宏观网络异常流量检测成为网络安全的技术热点,一些厂商纷纷推出了电信级的异常流量检测产品,如Arbor公司的Peakflow、GenieNRM公司的GenieNTG 2100、NetScout公司的nGenius等。国外一些研究机构在政府资助下,开始部署宏观网络异常监测的项目,并取得了较好的成绩,如美国研究机构CERT建立了SiLK和AirCERT项目,澳大利亚启动了NMAC流量监测系统等项目。针对宏观网络异常流量监测的需要,CNCERT/CC部署运行863-917网络安全监测平台,采用分布式的架构,能够通过多点对骨干网络实现流量监测,通过分析协议、地址、端口、包长、流量、时序等信息,达到对中国互联网宏观运行状态的监测。本文基于863-917网络安全监测平台获取流量信息,构成监测矩阵,矩阵的行向量由源地址数量、目的地址数量、传输控制协议(TCP)字节数、TCP报文数、数据报协议(UDP)字节数、UDP报文数、其他流量字节数、其他流量报文书、WEB流量字节数、WEB流量报文数、TOP10个源IP占总字节比例、TOP10个源IP占总报文数比例、TOP10个目的IP占总字节数比例、TOP10个目的IP占总报文数比例14个部分组成,系统每5分钟产生一个行向量,观测窗口为6小时,从而形成了一个72×14的数量矩阵。由于在这14个观测向量之间存在着一定的相关性,这使得利用较少的变量反映原来变量的信息成为可能。本项目采用了主成份分析法对观测数据进行数据降维和特征提取,下面对该算法的工作原理进行介绍。 2 主成分分析技术主成分分析是一种坐标变换的方法,将给定数据集的点映射到一个新轴上面,这些新轴称为主成分。主成分在代数学上是p 个随机变量X 1, X 2……X p 的一系列的线性组合,在几何学中这些现线性组合代表选取一个新的坐标系,它是以X 1,X 2……X p 为坐标轴的原来坐标系旋转得到。新坐标轴代表数据变异性最大的方向,并且提供对于协方差结果的一个较为简单但更精练的刻画。主成分只是依赖于X 1,X 2……X p 的协方差矩阵,它是通过一组变量的几个线性组合来解释这些变量的协方差结构,通常用于高维数据的解释和数据的压缩。通常p 个成分能够完全地再现全系统的变异性,但是大部分的变异性常常能够只用少量k 个主成分就能够说明,在这种情况下,这k 个主成分中所包含的信息和那p 个原变量做包含的几乎一样多,于是可以使用k 个主成分来代替原来p 个初始的变量,并且由对p 个变量的n 次测量结果所组成的原始数据集合,能够被压缩成为对于k 个主成分的n 次测量结果进行分析。运用主成分分析的方法常常能够揭示出一些先前不曾预料的关系,因而能够对于数据给出一些不同寻常的解释。当使用零均值的数据进行处理时,每一个主成分指向了变化最大的方向。主轴以变化量的大小为序,一个主成分捕捉到在一个轴向上最大变化的方向,另一个主成分捕捉到在正交方向上的另一个变化。设随机向量X '=[X 1,X 1……X p ]有协方差矩阵∑,其特征值λ1≥λ2……λp≥0。考虑线性组合:Y1 =a 1 'X =a 11X 1+a 12X 2……a 1pX pY2 =a 2 'X =a 21X 1+a 22X 2……a 2pX p……Yp =a p'X =a p 1X 1+a p 2X 2……a p pX p从而得到:Var (Yi )=a i' ∑a i ,(i =1,2……p )Cov (Yi ,Yk )=a i '∑a k ,(i ,k =1,2……p )主成分就是那些不相关的Y 的线性组合,它们能够使得方差尽可能大。第一主成分是有最大方差的线性组合,也即它能够使得Var (Yi )=a i' ∑a i 最大化。我们只是关注有单位长度的系数向量,因此我们定义:第1主成分=线性组合a 1'X,在a1'a 1=1时,它能够使得Var (a1 'X )最大;第2主成分=线性组合a 2 'X,在a2'a 2=1和Cov(a 1 'X,a 2 'X )=0时,它能够使得Var (a 2 'X )最大;第i 个主成分=线性组合a i'X,在a1'a 1=1和Cov(a i'X,a k'X )=0(k<i )时,它能够使得Var (a i'X )最大。由此可知主成分都是不相关的,它们的方差等于协方差矩阵的特征值。总方差中属于第k个主成分(被第k个主成分所解释)的比例为:如果总方差相当大的部分归属于第1个、第2个或者前几个成分,而p较大的时候,那么前几个主成分就能够取代原来的p个变量来对于原有的数据矩阵进行解释,而且信息损失不多。在本项目中,对于一个包含14个特征的矩阵进行主成分分析可知,特征的最大变化基本上能够被2到3个主成分捕捉到,这种主成分变化曲线的陡降特性构成了划分正常子空间和异常子空间的基础。3 异常检测算法本项目的异常流量检测过程分为3个阶段:建模阶段、检测阶段和评估阶段。下面对每个阶段的算法进行详细的介绍。3.1 建模阶段本项目采用滑动时间窗口建模,将当前时刻前的72个样本作为建模空间,这72个样本的数据构成了一个数据矩阵X。在试验中,矩阵的行向量由14个元素构成。主成份分为正常主成分和异常主成份,它们分别代表了网络中的正常流量和异常流量,二者的区别主要体现在变化趋势上。正常主成份随时间的变化较为平缓,呈现出明显的周期性;异常主成份随时间的变化幅度较大,呈现出较强的突发性。根据采样数据,判断正常主成分的算法是:依据主成分和采样数据计算出第一主成分变量,求第一主成分变量这72个数值的均值μ1和方差σ1,找出第一主成分变量中偏离均值最大的元素,判断其偏离均值的程度是否超过了3σ1。如果第一主成分变量的最大偏离超过了阈值,取第一主成份为正常主成分,其他主成份均为异常主成分,取主成份转换矩阵U =[L 1];如果最大偏离未超过阈值,转入判断第下一主成分,最后取得U =[L 1……L i -1]。第一主成份具有较强的周期性,随后的主成份的周期性渐弱,突发性渐强,这也体现了网络中正常流量和异常流量的差别。在得到主成份转换矩阵U后,针对每一个采样数据Sk =xk 1,xk 2……xk p ),将其主成份投影到p维空间进行重建,重建后的向量为:Tk =UU T (Sk -X )T计算该采样数据重建前与重建后向量之间的欧氏距离,称之为残差:dk =||Sk -Tk ||根据采样数据,我们分别计算72次采样数据的残差,然后求其均值μd 和标准差σd 。转换矩阵U、残差均值μd 、残差标准差σd 是我们构造的网络流量模型,也是进行流量异常检测的前提条件。 3.2 检测阶段在通过建模得到网络流量模型后,对于新的观测向量N,(n 1,n 2……np ),采用与建模阶段类似的分析方法,将其中心化:Nd =N -X然后将中心化后的向量投影到p维空间重建,并计算残差:Td =UUTNdTd =||Nd -Td ||如果该观测值正常,则重建前与重建后向量应该非常相似,计算出的残差d 应该很小;如果观测值代表的流量与建模时发生了明显变化,则计算出的残差值会较大。本项目利用如下算法对残差进行量化:3.3 评估阶段评估阶段的任务是根据当前观测向量的量化值q (d ),判断网络流量是否正常。根据经验,如果|q (d )|<5,网络基本正常;如果5≤|q (d )|<10,网络轻度异常;如果10≤|q (d )|,网络重度异常。4 实验结果分析利用863-917网络安全监测平台,对北京电信骨干网流量进行持续监测,我们提取6小时的观测数据,由于篇幅所限,我们给出图1—4的时间序列曲线。由图1—4可知单独利用任何一个曲线都难以判定异常,而利用本算法可以容易地标定异常发生的时间。本算法计算结果如图5所示,异常发生时间在图5中标出。我们利用863-917平台的回溯功能对于异常发生时间进行进一步的分析,发现在标出的异常时刻,一个大规模的僵尸网络对网外的3个IP地址发起了大规模的拒绝服务攻击。 5 结束语本文提出一种基于主成分分析的方法来划分子空间,分析和发现网络中的异常事件。本方法能够准确快速地标定异常发生的时间点,从而帮助网络安全应急响应部门及时发现宏观网络的流量异常状况,为迅速解决网络异常赢得时间。试验表明,我们采用的14个特征构成的分析矩阵具有较好的识别准确率和分析效率,我们接下来将会继续寻找更具有代表性的特征来构成数据矩阵,并研究更好的特征矩阵构造方法来进一步提高此方法的识别率,并将本方法推广到短时分析中。6 参考文献[1] XU K, ZHANG Z L, BHATTACHARYYA S. Profiling Internet backbone traffic: Behavior models and applications [C]// Proceedings of ACM SIGCOMM, Aug 22- 25, 2005, Philadelphia, PA, USA. New York, NY,USA:ACM,2005:169-180.[2] HAWKINS D M, QQUI P, KANG C W. The change point model for statistical process control [J]. Journal of Quality Technology,2003, 35(4).[3] THOTTAN M, JI C. Anomaly detection in IP networks [J]. IEEE Transactions on Signal Processing, 2003, 51 )8):2191-2204.[4] BARFORD P, KLINE J, PLONKA D, et al. A signal analysis of network traffic anomalies [C]//Proceedings of ACM SIGCOMM Intemet Measurement Workshop (IMW 2002), Nov 6-8, 2002, Marseilles, France. New York, NY,USA:ACM, 2002:71-82.[5] LAKHINA A, CROVELLA M, DIOT C. Mining anomalies using traffic feature distributions [C]// Proceedings of SIGCOMM, Aug 22-25, 2005, Philadelphia, PA, USA. New York, NY,USA: ACM, 2005: 217-228.[6] LAKHINA A, CROVELLA M, DIOT C. Diagnosing network-wide traffic anomalies [C]// Proceedings of ACM SIGCOMM, Aug 30 - Sep 3, 2004, Portland, OR, USA. New York, NY,USA: ACM, 2004: 219-230.[7] SCHWELLER R, GUPTA A, PARSONS E, et al. Reversible sketches for efficient and accurate change detection over network data streams [C]//Proceedings of ACM SIGCOMM Internet Measurement Conference (IMC’04), Oct 25-27, 2004, Taormina, Sicily, Italy. New York, NY,USA: ACM, 2004:207-212.[8] MAHONEY M V, CHAN P K. Learning rules for anomaly detection of hostile network traffic [C]// Proceedings of International Conference on Data Mining (ICDM’03), Nov 19-22, Melbourne, FL, USA . Los Alamitos, CA, USA: IEEE Computer Society, 2003:601-604.
❹ 网络流量分析设备 是网络安全设备吗
是的,一般网络安全设备都是具有分析网络流量和监控网络中的数据传输的。比如说上网知迟行为管理系统它就可以分析所有通搭轿李过帆哪它的数据包和把数据包中的内容提取出来。
❺ 流量分析与IDS区别
流量分析与IDS区别可以通过对其作用以及工作原理来区分。
网络流量分析(NTA)是指捕捉网络中流动的数据包,并通过查看包内部数据以及进行相关的协议、流量分析、统计等来发现网络运行过程中出现的问题。
NTA解决方案通过监控网络流量、连接和对象来识别恶意的行为迹象。入侵检测系统,简称IDS,是一种对网络传输进行即时监视,在发现可疑传输时发出警报或者采取主动反应措施的网络安全设备。
它与其他网络安全设备的不同之处便在于,IDS是一种积极主动的安全防护技术。
❻ ips与ids区别
IPS与IDS的区别是:功能不同、处理方式不同、风险评估不同。
1、功能不同则姿拦:IDS是一种被动式的安全措施,它通过监测网络流量来检测是否有入侵者进入网络。而IPS则是一种主动式的安全措施,它不仅能够检测入侵者,还能够阻止入侵者进入网络。
IPS与IDS没有直接的关系
IPS和IDS是网络安全领域中常用的两种技术,它们的作用是检测和防御网络攻击。虽然它们的功能类似,但是它们并没有直接的关系。
IDS是入侵检测系统,它通过监测网络流量和事件来检测网络攻击。IDS可以分为主动式和被动式两种,主动式IDS会对检测到的攻击进行响应,而被动式IDS只是发出警报。IDS的作用是帮助管理员快速发现网络攻击,但是它并不能阻止攻击。
IPS是入侵防御系统,它可以对检测到的攻击进行防御。IPS可以分为内联式和被动式两种,内联式IPS会主动阻止攻击流量,而被动式IPS只是发出警报。IPS的作用是防止攻击者成功入侵系统。
❼ 某企业,作为一个网络安全员应采取哪些措施来保护网络安全
定期更新杀毒软件!打开防火墙!小心陌生信息!不进不安全的网页!
❽ 网络信息安全包括哪些方面
网络信息安全是指保护计算机网络及其相关设施、系统和数据不受未经授权的访问、使用、披露、干扰、破坏以及非法控制等威胁。其氏衫包括以下方面:
机密性(Confidentiality):确保网络或者系统中存储或传输的信息,只有授权者才能够读取或修改。
完整性(Integrity):确保网络或系统中存储或者传输的信息不被恶意篡改或者破坏。
可用性(Availability):确保用户和系统管理员能够在合理的时间范围内获取到所需要的服务和资源,防止攻击者通过攻击或者其他手段使网络或者系统失效或者长时间不可用。
身份认证(Authentication):确保用户或者设备的身份是真实的,以便提供合适的服务和授权访问。
授权访问(Authorization):确保用户或者设备只能够访问其需要的资源,并能够对每个用户或设备进行详细的访问控制和权限管理。
非否认性(Non-Repudiation):在网络或者系统中传输的交易信息都是可信的,不能够被否认。
安全性(Security):确保网络、系统、应用程序等的安全,并能够检测和防御可能的攻击行为。
隐私保护(Privacy):确保用户的隐私得到保护,从而避免恶意获取和滥用个人信息的行为。
总之,网络信息安全是一个非常逗模复杂和多方面的领域,其中包括了保密性、完整性、可用性、身份认证、授权访问、非否认性、安全性和隐私保护等方面,需要采取多种技术手段和管理方法来山核缓保障网络系统和数据的安全。
❾ 流量监控对网络安全的重要性
可以判断出电脑是否中毒,网络资源的利用率,不良内容也可以查出
❿ 《智能网联汽车数据安全研究》:重点关注跨境数据流动问题等
我国主流的网络安全企业都在积极布局智能网联汽车的新赛道,大多基于他们传统的产品,再根据智能网联汽车的新场景做一些适应性的调整和优化,包括在数据层面,从云、管、端各个角度等都提出了相应的解决方案,在检测和服务方面也推出了一些相应的网络安全产品。
我们调研了国内一家安全厂商——天融信,已经形成了覆盖车端网关、ECU、T-BOX、以及云端、APP端等全方位的渗透测试工具和服务。下一个案例来自网络,其自动驾驶安全的架构已经涵盖了整个数据安全的全生命周期。
可以说,智能网联汽车领域对于网络安全产业,或者网络安全企业来讲是一个巨大的市场,但是也存在着很多挑战,一是现有的网络安全产品和解决方案还不满足智能网联汽车的安全需求。二是安全解决方案的路径不太一样,有的网络安全企业侧重车端的安全,有的侧重云端的安全,虽然这些解决方案没有哪个更优质,但是也需要相互借鉴。三是安全产品的应用还存在成本、意识等问题。我们也提了两个建议,一是建议这些网络安全企业针对智能网联汽车不同的场景,开发针对性的相关的产品和解决方案,提高推广的力度。二是要探索适用智能网联汽车场景的网络安全保险方案,保险在汽车这个领域是非常常见的,但是数据安全的保险,或者网络安全的保险可以对车企、用户,以及产业链上的诸多信息技术服务企业提供一体化的保障。
五、政府积极统筹智能网联汽车产业发展与数据安全保护
首先在政策规划层面,政府已经出台了相关的标准指南,包括一些政策文件,加强对整个数据全生命周期的管控,并强调数据分类分级工作。
二是在法律法规层面,《网络安全法》《数据安全法》《个人信息保护法》(草案),以及网信办出台的的《汽车数据安全管理若干规定》(征求意见稿)已经体现了政府的一些针对性考虑,我们支持网信办和工信部等部门出台更加细化的管理条例和指南,从法律法规层面给予指引和指南,更好的指导整个产业的实践。
三是标准体系不断完善,包括顶层的体系性标准,以及专项的标准都在陆续出台和不断地修订完善。
四是试点应用加速落地,比如上海临港新片区跨境数据的试点,一些路测、风险评估以及风险管控相关试点的工作也都在推进过程当中。智能网联汽车本身是一个新生事物,又涉及到很复杂的系统,确实需要政府通过开展试点示范的工作,总结一些优秀的做法,进行后续的推广。
当然从政府推进产业发展和保障数据安全的角度也面临重要的挑战。一是整个法规体系、标准体系还是相对滞后于产业的发展速度。二是存在多头监管的问题,还需尽快细化一些行业性的管理要求。从数据安全监管的角度,国家网信部门是牵头部门,但是涉及到具体行业细则的出台,还需要行业主管部门,以及一些重要的行业协会去推动相关工作。三是实操性的举措还不够,数据安全监管和治理的一项基础性工作就是要做到数据分类分级,对于数据既要管,又不能管得太死,哪些要管,哪些需要高强手段的监管,哪些需要在市场上流动,一项非常基础的工作就是数据分类分级。
我们提的建议包括四个方面:一是统筹产业创新发展与保障数据安全。二是尽快出台数据分类分级指南和管理细则,在国内一些重要的行业领域,比如金融、工业互联网等领域,已经出台了相应的分类分级指南,智能网联汽车行业可以予以借鉴。三是建立事前风险评估和事后应急响应机制,比如国家级的专业技术机构可以探讨如何更好的提供服务和支持。四是重点关注跨境数据流动问题,目前国内对这个问题比较关注,国家网信部门也在密集调研和研究,希望后续在借鉴全球通用做法的同时,细化相应的数据流动规则。
以上就是我们目前这个报告的主要内容,在报告撰写过程当中,也得到了一些车企和网络安全企业的支持,后续我们也希望跟在座的企业和专家合作,使我们在智能网联汽车数据安全领域做得更加深入。