导航:首页 > 网络安全 > 网络安全分组密码

网络安全分组密码

发布时间:2023-05-17 12:30:33

1. 网络安全策略

安全策略是指在某个安全区域内(通常是指属于某个组织的一系列处理和通信资源),用于所有与安全相关活动的一套规则。这些规则是由此安全区域中所设立的一个安全权力机构建立的,并由安全控制机构来描述、实施或实现的。安全策略通常建立在授权的基础之上,未经适当授权的实体,信息资源不可以给予、不允许访问、不得使用。安全策略基于身份、规则、角色进行分类。

机房组建应按计算机运行特点及设备具体要求确定。机房一般宜由主机房区、基本工作区、辅助机房区等功能区域组成。

主机房区包括服务器机房区、网络通信区、前置机房区和介质库等。

基本工作区包括缓冲区、监控区和软件测试区等。

辅助机房区包括配电区、配线区、UPS 区、消防气瓶间和精密空调区等。

设备标识和鉴别:应对机房中设备的具体位置进行标识,以方便查找和明确责任。机房内关键设备部件应在其上设置标签,以防止随意更换或取走。

设备可靠性:应将主要设备放置在机房内,将设备或主要部件进行固定,并设置明显的不易除去的标记。应对关键的设备关键部件冗余配置,例如电源、主控板、网络接口等。

防静电:机房内设备上线前必须进行正常的接地、放电等操作,对来自静电放电的电磁干扰应有一定的抗扰度能力。机房的活动地板应有稳定的抗静电性能和承载能力,同时耐油、耐腐蚀、柔光、不起尘等。

电磁骚扰:机房内应对设备和部件产生的电磁辐射骚扰、电磁传导骚扰进行防护。

电磁抗扰:机房内设备对来自电磁辐射的电磁干扰和电源端口的感应传导的电磁干扰应有一定的抗扰度。

浪涌抗扰:机房内设备应对来自电源端口的浪涌(冲击)的电磁干扰应有一定的抗扰度。

电源适应能力:机房供电线路上设置稳压器和过电压防护设备。对于直流供电的系统设备,应能在直流电压标称值变化10%的条件下正常工作。

泄漏电流:机房内设备工作时对保护接地端的泄漏电流值不应超过5mA。

电源线:机房内设备应设置交流电源地线,应使用三芯电源线,其中地线应于设备的保护接地端连接牢固。

线缆:机房通信线缆应铺设在隐蔽处,可铺设在地下或管道中。

绝缘电阻:机房内设备的电源插头或电源引入端与设备外壳裸露金属部件之间的绝缘电阻应不小于5MΩ。

场地选择:机房场地选择应避开火灾危险程度高的区域,还应避开有害气体来源以及存放腐蚀、易燃、易爆物品的地方。机房场地应避开强振动源、强噪声源和强电场干扰的地方。机房不应该选择在楼层的最高层或者最低层地方。

防火:机房应设置火灾自动报警系统,包括火灾自动探测器、区域报警器、集中报警器和控制器等,能对火灾发生的部位以声、光或电的形式发出报警信号,并启动自动灭火设备,切断电源、关闭空调设备等。机房采取区域隔离防火措施,布局要将脆弱区和危险区进行隔离,防止外部火灾进入机房,特别是重要设备地区,安装防火门、使用阻燃材料装修。机房及相关的工作房间和辅助房应采用具有耐火等级的建筑材料。

电磁辐射防护:电源线和通信线缆应隔离铺设,避免互相干扰。应对关键设备和磁介质实施电磁屏蔽。通信线采取屏蔽措施,防止外部电磁场对机房内计算机及设备的干扰,同时也抑制电磁信息的泄漏。应采用屏蔽效能良好屏蔽电缆作为机房的引入线。机房的信号电缆线(输入/输出)端口和电源线的进、出端口应适当加装滤波器。电缆连接处应采取屏蔽措施,抑制电磁噪声干扰与电磁信息泄漏。

供电系统:应设置冗余或并行的电力电缆线路为计算机系统供电。应建立备用供电系统。机房供电电源设备的容量应具有一定的余量。机房供电系统应将信息系统设备供电线路与其它供电线路分开,应配备应急照明装置。机房应配置电源保护装置,加装浪涌保护器。机房电源系统的所有接点均应镀锡处理,并且冷压连接。

静电防护:主机房内绝缘体的静电电位不应大于1kV。主机房内的导体应与大地作可靠的连接,不应有对地绝缘的孤立导体。

防雷电:机房系统中所有的设备和部件应安装在有防雷保护的范围内。不得在建筑物屋顶上敷设电源或信号线路。必须敷设时,应穿金属管进行屏蔽防护,金属管应进行等电位连接。机房系统电源及系统输入/输出信号线,应分不同层次,采用多级雷电防护措施。

机房接地:对直流工作接地有特殊要求需单独设置接地装置的系统,接地电阻值及其它接地体之间的距离,应按照机房系统及有关规范的要求确定。

温湿度控制:机房应有较完备的空调系统,保证机房温度的变化在计算机设备运行所允许的范围。当机房采用专用空调设备并与其它系统共享时,应保证空调效果和采取防火措施。机房空气调节控制装置应满足计算机系统对温度、湿度以及防尘的要求。空调系统应支持网络监控管理,通过统一监控,反映系统工作状况。

机房防水:机房水管安装不得穿过屋顶和活动地板,穿过墙壁和楼板的水管应使用套管,并采取可靠的密封措施。机房应有有效的防止给水、排水、雨水通过屋顶和墙壁漫溢和渗漏的措施,应采取措施防止机房内水蒸气结露和地下积水的转移与渗透。机房应安装漏水检测系统,并有报警装置。

入网访问控制是网络访问的第1层安全机制。它控制哪些用户能够登录到服务器并获准使用网络资源,控制准许用户入网的时间和位置。用户的入网访问控制通常分为三步执行:用户名的识别与验证;用户口令的识别与验证;用户账户的默认权限检查。三道控制关卡中只要任何一关未过,该用户便不能进入网络。

对网络用户的用户名和口令进行验证是防止非法访问的第一道关卡。用户登录时首先输入用户名和口令,服务器将验证所输入的用户名是否合法。用户的口令是用户入网的关键所在。口令最好是数字、字母和其他字符的组合,长度应不少于6个字符,必须经过加密。口令加密的方法很多,最常见的方法有基于单向函数的口令加密、基于测试模式的口令加密、基于公钥加密方案的口令加密、基于平方剩余的口令加密、基于多项式共享的口令加密、基于数字签名方案的口令加密等。经过各种方法加密的口令,即使是网络管理员也不能够得到。系统还可采用一次性用户口令,或使用如智能卡等便携式验证设施来验证用户的身份。

网络管理员应该可对用户账户的使用、用户访问网络的时间和方式进行控制和限制。用户名或用户账户是所有计算机系统中最基本的安全角式。用户账户应只有网络管理员才能建立。用户口令是用户访问网络所必须提交的准入证。用户应该可以修改自己的口令,网络管理员对口令的控制功能包括限制口令的最小长度、强制用户修改口令的时间间隔、口令的惟一性、口令过期失效后允许入网的宽限次数。针对用户登录时多次输入口令不正确的情况,系统应按照非法用户入侵对待并给出报警信息,同时应该能够对允许用户输入口令的次数给予限制。

用户名和口令通过验证之后,系统需要进一步对用户账户的默认权限进行检查。网络应能控制用户登录入网的位置、限制用户登录入网的时间、限制用户入网的主机数量。当交费网络的用户登录时,如果系统发现“资费”用尽,还应能对用户的操作进行限制。

操作权限控制是针对可能出现的网络非法操作而采取安全保护措施。用户和用户组被赋予一定的操作权限。网络管理员能够通过设置,指定用户和用户组可以访问网络中的哪些服务器和计算机,可以在服务器或计算机上操控哪些程序,访问哪些目录、子目录、文件和其他资源。网络管理员还应该可以根据访问权限将用户分为特殊用户、普通用户和审计用户,可以设定用户对可以访问的文件、目录、设备能够执行何种操作。特殊用户是指包括网络管理员的对网络、系统和应用软件服务有特权操作许可的用户;普通用户是指那些由网络管理员根据实际需要为其分配操作权限的用户;审计用户负责网络的安全控制与资源使用情况的审计。系统通常将操作权限控制策略,通过访问控制表来描述用户对网络资源的操作权限。

访问控制策略应该允许网络管理员控制用户对目录、文件、设备的操作。目录安全允许用户在目录一级的操作对目录中的所有文件和子目录都有效。用户还可进一步自行设置对目录下的子控制目录和文件的权限。对目录和文件的常规操作有:读取(Read)、写入(Write)、创建(Create)、删除(Delete)、修改(Modify)等。网络管理员应当为用户设置适当的操作权限,操作权限的有效组合可以让用户有效地完成工作,同时又能有效地控制用户对网络资源的访问。

访问控制策略还应该允许网络管理员在系统一级对文件、目录等指定访问属性。属性安全控制策略允许将设定的访问属性与网络服务器的文件、目录和网络设备联系起来。属性安全策略在操作权限安全策略的基础上,提供更进一步的网络安全保障。网络上的资源都应预先标出一组安全属性,用户对网络资源的操作权限对应一张访问控制表,属性安全控制级别高于用户操作权限设置级别。属性设置经常控制的权限包括:向文件或目录写入、文件复制、目录或文件删除、查看目录或文件、执行文件、隐含文件、共享文件或目录等。允许网络管理员在系统一级控制文件或目录等的访问属性,可以保护网络系统中重要的目录和文件,维持系统对普通用户的控制权,防止用户对目录和文件的误删除等操作。

网络系统允许在服务器控制台上执行一系列操作。用户通过控制台可以加载和卸载系统模块,可以安装和删除软件。网络服务器的安全控制包括可以设置口令锁定服务器控制台,以防止非法用户修改系统、删除重要信息或破坏数据。系统应该提供服务器登录限制、非法访问者检测等功能。

网络管理员应能够对网络实施监控。网络服务器应对用户访问网络资源的情况进行记录。对于非法的网络访问,服务器应以图形、文字或声音等形式报警,引起网络管理员的注意。对于不法分子试图进入网络的活动,网络服务器应能够自动记录这种活动的次数,当次数达到设定数值,该用户账户将被自动锁定。

防火墙是一种保护计算机网络安全的技术性措施,是用来阻止网络黑客进入企业内部网的屏障。防火墙分为专门设备构成的硬件防火墙和运行在服务器或计算机上的软件防火墙。无论哪一种,防火墙通常都安置在网络边界上,通过网络通信监控系统隔离内部网络和外部网络,以阻档来自外部网络的入侵。

域间安全策略用于控制域间流量的转发(此时称为转发策略),适用于接口加入不同安全区域的场景。域间安全策略按IP地址、时间段和服务(端口或协议类型)、用户等多种方式匹配流量,并对符合条件的流量进行包过滤控制(permit/deny)或高级的UTM应用层检测。域间安全策略也用于控制外界与设备本身的互访(此时称为本地策略),按IP地址、时间段和服务(端口或协议类型)等多种方式匹配流量,并对符合条件的流量进行包过滤控制(permit/deny),允许或拒绝与设备本身的互访。

缺省情况下域内数据流动不受限制,如果需要进行安全检查可以应用域内安全策略。与域间安全策略一样可以按IP地址、时间段和服务(端口或协议类型)、用户等多种方式匹配流量,然后对流量进行安全检查。例如:市场部和财务部都属于内网所在的安全区域Trust,可以正常互访。但是财务部是企业重要数据所在的部门,需要防止内部员工对服务器、PC等的恶意攻击。所以在域内应用安全策略进行IPS检测,阻断恶意员工的非法访问。

当接口未加入安全区域的情况下,通过接口包过滤控制接口接收和发送的IP报文,可以按IP地址、时间段和服务(端口或协议类型)等多种方式匹配流量并执行相应动作(permit/deny)。基于MAC地址的包过滤用来控制接口可以接收哪些以太网帧,可以按MAC地址、帧的协议类型和帧的优先级匹配流量并执行相应动作(permit/deny)。硬件包过滤是在特定的二层硬件接口卡上实现的,用来控制接口卡上的接口可以接收哪些流量。硬件包过滤直接通过硬件实现,所以过滤速度更快。

信息加密的目的是保护网内的数据、文件、口令和控制信息,保护网上传输的数据。网络加密常用的方法有链路加密、端点加密和节点加密三种。链路加密的目的是保护网络节点之间的链路信息安全;端-端加密的目的是对源端用户到目的端用户的数据提供保护;节点加密的目的是对源节点到目的节点之间的传输链路提供保护。用户可根据网络情况酌情选择上述加密方式。

信息加密过程是由形形色色的加密算法来具体实施,它以很小的代价提供很大的安全保护。在多数情况下,信息加密是保证信息机密性的唯一方法。据不完全统计,到目前为止,已经公开发表的各种加密算法多达数百种。如果按照收发双方密钥是否相同来分类,可以将这些加密算法分为常规密码算法和公钥密码算法。

在常规密码中,收信方和发信方使用相同的密钥,即加密密钥和解密密钥是相同或等价的。比较着名的常规密码算法有:美国的DES及其各种变形,比如Triple DES、GDES、New DES和DES的前身Lucifer; 欧洲的IDEA;日本的FEAL-N、LOKI-91、Skipjack、RC4、RC5以及以代换密码和转轮密码为代表的古典密码等。在众多的常规密码中影响最大的是DES密码。

常规密码的优点是有很强的保密强度,且经受住时间的检验和攻击,但其密钥必须通过安全的途径传送。因此,其密钥管理成为系统安全的重要因素。

在公钥密码中,收信方和发信方使用的密钥互不相同,而且几乎不可能从加密密钥推导出解密密钥。比较着名的公钥密码算法有:RSA、背包密码、McEliece密码、Diffe-Hellman、Rabin、Ong-Fiat-Shamir、零知识证明的算法、椭园曲线、EIGamal算法等等。最有影响的公钥密码算法是RSA,它能抵抗到目前为止已知的所有密码攻击。

公钥密码的优点是可以适应网络的开放性要求,且密钥管理问题也较为简单,尤其可方便的实现数字签名和验证。但其算法复杂。加密数据的速率较低。尽管如此,随着现代电子技术和密码技术的发展,公钥密码算法将是一种很有前途的网络安全加密体制。

当然在实际应用中人们通常将常规密码和公钥密码结合在一起使用,比如:利用DES或者IDEA来加密信息,而采用RSA来传递会话密钥。如果按照每次加密所处理的比特来分类,可以将加密算法分为序列密码和分组密码。前者每次只加密一个比特而后者则先将信息序列分组,每次处理一个组。

密码技术是网络安全最有效的技术之一。一个加密网络,不但可以防止非授权用户的搭线窃听和入网,而且也是对付恶意软件的有效方法之一。

应制定相应的机房管理制度,规范机房与各种设备的使用和管理,保障机房安全及设备的正常运行,至少包括日常管理、出入管理、设备管理、巡检(环境、设备状态、指示灯等进行检查并记录)等。重要区域应配置电子门禁系统,控制、鉴别和记录进入的人员。对机房内的各种介质应进行分类标识,重要介质存储在介质库或档案室中。

加强网络的安全管理,制定有关规章制度,对于确保系统的安全、可靠地运行,将起到十分有效的作用。网络的安全管理策略包括:确定安全管理等级和安全管理范围;制订有关网络操作使用规程和访问主机的管理制度;制订网络系统的维护制度和应急措施等。

2. 什么叫网络加密算法其分为哪几类分别举例。

很负责告诉你,拷贝过来的,关键看你能不能看明白了

由于网络所带来的诸多不安全因素使得网络使用者不得不采取相应的网络安全对策。为了堵塞安全漏洞和提供安全的通信服务,必须运用一定的技术来对网络进行安全建设,这已为广大网络开发商和网络用户所共识。

现今主要的网络安全技术有以下几种:

一、加密路由器(Encrypting Router)技术

加密路由器把通过路由器的内容进行加密和压缩,然后让它们通过不安全的网络进行传输,并在目的端进行解压和解密。

二、安全内核(Secured Kernel)技术

人们开始在操作系统的层次上考虑安全性,尝试把系统内核中可能引起安全性问题的部分从内核中剔除出去,从而使系统更安全。如S olaris操作系统把静态的口令放在一个隐含文件中, 使系统的安全性增强。

三、网络地址转换器(Network Address Translater)

网络地址转换器也称为地址共享器(Address Sharer)或地址映射器,初衷是为了解决IP 地址不足,现多用于网络安全。内部主机向外部主机连接时,使用同一个IP地址;相反地,外部主机要向内部主机连接时,必须通过网关映射到内部主机上。它使外部网络看不到内部网络, 从而隐藏内部网络,达到保密作用。

数据加密(Data Encryption)技术

所谓加密(Encryption)是指将一个信息(或称明文--plaintext) 经过加密钥匙(Encrypt ionkey)及加密函数转换,变成无意义的密文( ciphertext),而接收方则将此密文经过解密函数、解密钥匙(Decryti on key)还原成明文。加密技术是网络安全技术的基石。

数据加密技术要求只有在指定的用户或网络下,才能解除密码而获得原来的数据,这就需要给数据发送方和接受方以一些特殊的信息用于加解密,这就是所谓的密钥。其密钥的值是从大量的随机数中选取的。按加密算法分为专用密钥和公开密钥两种。

专用密钥,又称为对称密钥或单密钥,加密时使用同一个密钥,即同一个算法。如DES和MIT的Kerberos算法。单密钥是最简单方式,通信双方必须交换彼此密钥,当需给对方发信息时,用自己的加密密钥进行加密,而在接收方收到数据后,用对方所给的密钥进行解密。这种方式在与多方通信时因为需要保存很多密钥而变得很复杂,而且密钥本身的安全就是一个问题。

DES是一种数据分组的加密算法,它将数据分成长度为6 4位的数据块,其中8位用作奇偶校验,剩余的56位作为密码的长度。第一步将原文进行置换,得到6 4位的杂乱无章的数据组;第二步将其分成均等两段 ;第三步用加密函数进行变换,并在给定的密钥参数条件下,进行多次迭代而得到加密密文。

公开密钥,又称非对称密钥,加密时使用不同的密钥,即不同的算法,有一把公用的加密密钥,有多把解密密钥,如RSA算法。

在计算机网络中,加密可分为"通信加密"(即传输过程中的数据加密)和"文件加密"(即存储数据加密)。通信加密又有节点加密、链路加密和端--端加密3种。

①节点加密,从时间坐标来讲,它在信息被传入实际通信连接点 (Physical communication link)之前进行;从OSI 7层参考模型的坐标 (逻辑空间)来讲,它在第一层、第二层之间进行; 从实施对象来讲,是对相邻两节点之间传输的数据进行加密,不过它仅对报文加密,而不对报头加密,以便于传输路由的选择。

②链路加密(Link Encryption),它在数据链路层进行,是对相邻节点之间的链路上所传输的数据进行加密,不仅对数据加密还对报头加密。

③端--端加密(End-to-End Encryption),它在第六层或第七层进行 ,是为用户之间传送数据而提供的连续的保护。在始发节点上实施加密,在中介节点以密文形式传输,最后到达目的节点时才进行解密,这对防止拷贝网络软件和软件泄漏也很有效。

在OSI参考模型中,除会话层不能实施加密外,其他各层都可以实施一定的加密措施。但通常是在最高层上加密,即应用层上的每个应用都被密码编码进行修改,因此能对每个应用起到保密的作用,从而保护在应用层上的投资。假如在下面某一层上实施加密,如TCP层上,就只能对这层起到保护作用。

值得注意的是,能否切实有效地发挥加密机制的作用,关键的问题在于密钥的管理,包括密钥的生存、分发、安装、保管、使用以及作废全过程。

(1)数字签名

公开密钥的加密机制虽提供了良好的保密性,但难以鉴别发送者, 即任何得到公开密钥的人都可以生成和发送报文。数字签名机制提供了一种鉴别方法,以解决伪造、抵赖、冒充和篡改等问题。

数字签名一般采用不对称加密技术(如RSA),通过对整个明文进行某种变换,得到一个值,作为核实签名。接收者使用发送者的公开密钥对签名进行解密运算,如其结果为明文,则签名有效,证明对方的身份是真实的。当然,签名也可以采用多种方式,例如,将签名附在明文之后。数字签名普遍用于银行、电子贸易等。

数字签名不同于手写签字:数字签名随文本的变化而变化,手写签字反映某个人个性特征, 是不变的;数字签名与文本信息是不可分割的,而手写签字是附加在文本之后的,与文本信息是分离的。

(2)Kerberos系统

Kerberos系统是美国麻省理工学院为Athena工程而设计的,为分布式计算环境提供一种对用户双方进行验证的认证方法。

它的安全机制在于首先对发出请求的用户进行身份验证,确认其是否是合法的用户;如是合法的用户,再审核该用户是否有权对他所请求的服务或主机进行访问。从加密算法上来讲,其验证是建立在对称加密的基础上的。

Kerberos系统在分布式计算环境中得到了广泛的应用(如在Notes 中),这是因为它具有如下的特点:

①安全性高,Kerberos系统对用户的口令进行加密后作为用户的私钥,从而避免了用户的口令在网络上显示传输,使得窃听者难以在网络上取得相应的口令信息;

②透明性高,用户在使用过程中,仅在登录时要求输入口令,与平常的操作完全一样,Ker beros的存在对于合法用户来说是透明的;

③可扩展性好,Kerberos为每一个服务提供认证,确保应用的安全。

Kerberos系统和看电影的过程有些相似,不同的是只有事先在Ker beros系统中登录的客户才可以申请服务,并且Kerberos要求申请到入场券的客户就是到TGS(入场券分配服务器)去要求得到最终服务的客户。
Kerberos的认证协议过程如图二所示。

Kerberos有其优点,同时也有其缺点,主要如下:

①、Kerberos服务器与用户共享的秘密是用户的口令字,服务器在回应时不验证用户的真实性,假设只有合法用户拥有口令字。如攻击者记录申请回答报文,就易形成代码本攻击。

②、Kerberos服务器与用户共享的秘密是用户的口令字,服务器在回应时不验证用户的真实性,假设只有合法用户拥有口令字。如攻击者记录申请回答报文,就易形成代码本攻击。

③、AS和TGS是集中式管理,容易形成瓶颈,系统的性能和安全也严重依赖于AS和TGS的性能和安全。在AS和TGS前应该有访问控制,以增强AS和TGS的安全。

④、随用户数增加,密钥管理较复杂。Kerberos拥有每个用户的口令字的散列值,AS与TGS 负责户间通信密钥的分配。当N个用户想同时通信时,仍需要N*(N-1)/2个密钥

( 3 )、PGP算法

PGP(Pretty Good Privacy)是作者hil Zimmermann提出的方案, 从80年代中期开始编写的。公开密钥和分组密钥在同一个系统中,公开密钥采用RSA加密算法,实施对密钥的管理;分组密钥采用了IDEA算法,实施对信息的加密。

PGP应用程序的第一个特点是它的速度快,效率高;另一个显着特点就是它的可移植性出色,它可以在多种操作平台上运行。PGP主要具有加密文件、发送和接收加密的E-mail、数字签名等。

(4)、PEM算法

保密增强邮件(Private Enhanced Mail,PEM),是美国RSA实验室基于RSA和DES算法而开发的产品,其目的是为了增强个人的隐私功能, 目前在Internet网上得到了广泛的应用,专为E-mail用户提供如下两类安全服务:

对所有报文都提供诸如:验证、完整性、防抵 赖等安全服务功能; 提供可选的安全服务功能,如保密性等。

PEM对报文的处理经过如下过程:

第一步,作规范化处理:为了使PEM与MTA(报文传输代理)兼容,按S MTP协议对报文进行规范化处理;

第二步,MIC(Message Integrity Code)计算;

第三步,把处理过的报文转化为适于SMTP系统传输的格式。

身份验证技术

身份识别(Identification)是指定用户向系统出示自己的身份证明过程。身份认证(Authertication)是系统查核用户的身份证明的过程。人们常把这两项工作统称为身份验证(或身份鉴别),是判明和确认通信双方真实身份的两个重要环节。

Web网上采用的安全技术

在Web网上实现网络安全一般有SHTTP/HTTP和SSL两种方式。

(一)、SHTTP/HTTP

SHTTP/HTTP可以采用多种方式对信息进行封装。封装的内容包括加密、签名和基于MAC 的认证。并且一个消息可以被反复封装加密。此外,SHTTP还定义了包头信息来进行密钥传输、认证传输和相似的管理功能。SHTTP可以支持多种加密协议,还为程序员提供了灵活的编程环境。

SHTTP并不依赖于特定的密钥证明系统,它目前支持RSA、带内和带外以及Kerberos密钥交换。

(二)、SSL(安全套层) 安全套接层是一种利用公开密钥技术的工业标准。SSL广泛应用于Intranet和Internet 网,其产品包括由Netscape、Microsoft、IBM 、Open Market等公司提供的支持SSL的客户机和服务器,以及诸如Apa che-SSL等产品。

SSL提供三种基本的安全服务,它们都使用公开密钥技术。

①信息私密,通过使用公开密钥和对称密钥技术以达到信息私密。SSL客户机和SSL服务器之间的所有业务使用在SSL握手过程中建立的密钥和算法进行加密。这样就防止了某些用户通过使用IP packet sniffer工具非法窃听。尽管packet sniffer仍能捕捉到通信的内容, 但却无法破译。 ②信息完整性,确保SSL业务全部达到目的。如果Internet成为可行的电子商业平台,应确保服务器和客户机之间的信息内容免受破坏。SSL利用机密共享和hash函数组提供信息完整性服务。③相互认证,是客户机和服务器相互识别的过程。它们的识别号用公开密钥编码,并在SSL握手时交换各自的识别号。为了验证证明持有者是其合法用户(而不是冒名用户),SSL要求证明持有者在握手时对交换数据进行数字式标识。证明持有者对包括证明的所有信息数据进行标识以说明自己是证明的合法拥有者。这样就防止了其他用户冒名使用证明。证明本身并不提供认证,只有证明和密钥一起才起作用。 ④SSL的安全性服务对终端用户来讲做到尽可能透明。一般情况下,用户只需单击桌面上的一个按钮或联接就可以与SSL的主机相连。与标准的HTTP连接申请不同,一台支持SSL的典型网络主机接受SSL连接的默认端口是443而不是80。

当客户机连接该端口时,首先初始化握手协议,以建立一个SSL对话时段。握手结束后,将对通信加密,并检查信息完整性,直到这个对话时段结束为止。每个SSL对话时段只发生一次握手。相比之下,HTTP 的每一次连接都要执行一次握手,导致通信效率降低。一次SSL握手将发生以下事件:

1.客户机和服务器交换X.509证明以便双方相互确认。这个过程中可以交换全部的证明链,也可以选择只交换一些底层的证明。证明的验证包括:检验有效日期和验证证明的签名权限。

2.客户机随机地产生一组密钥,它们用于信息加密和MAC计算。这些密钥要先通过服务器的公开密钥加密再送往服务器。总共有四个密钥分别用于服务器到客户机以及客户机到服务器的通信。

3.信息加密算法(用于加密)和hash函数(用于确保信息完整性)是综合在一起使用的。Netscape的SSL实现方案是:客户机提供自己支持的所有算法清单,服务器选择它认为最有效的密码。服务器管理者可以使用或禁止某些特定的密码。

代理服务

在 Internet 中广泛采用代理服务工作方式, 如域名系统(DNS), 同时也有许多人把代理服务看成是一种安全性能。

从技术上来讲代理服务(Proxy Service)是一种网关功能,但它的逻辑位置是在OSI 7层协议的应用层之上。

代理(Proxy)使用一个客户程序,与特定的中间结点链接,然后中间结点与期望的服务器进行实际链接。与应用网关型防火墙所不同的是,使用这类防火墙时外部网络与内部网络之间不存在直接连接,因此 ,即使防火墙产生了问题,外部网络也无法与被保护的网络连接

防火墙技术

(1)防火墙的概念

在计算机领域,把一种能使一个网络及其资源不受网络"墙"外"火灾"影响的设备称为"防火墙"。用更专业一点的话来讲,防火墙(FireW all)就是一个或一组网络设备(计算机系统或路由器等),用来在两个或多个网络间加强访问控制,其目的是保护一个网络不受来自另一个网络的攻击。可以这样理解,相当于在网络周围挖了一条护城河,在唯一的桥上设立了安全哨所,进出的行人都要接受安全检查。

防火墙的组成可以这样表示:防火墙=过滤器+安全策略(+网关)。

(2)防火墙的实现方式

①在边界路由器上实现;
②在一台双端口主机(al-homed host)上实现;
③在公共子网(该子网的作用相当于一台双端口主机)上实现,在此子网上可建立含有停火区结构的防火墙。

(3)防火墙的网络结构

网络的拓扑结构和防火墙的合理配置与防火墙系统的性能密切相关,防火墙一般采用如下几种结构。
①最简单的防火墙结构
这种网络结构能够达到使受保护的网络只能看到"桥头堡主机"( 进出通信必经之主机), 同时,桥头堡主机不转发任何TCP/IP通信包, 网络中的所有服务都必须有桥头堡主机的相应代理服务程序来支持。但它把整个网络的安全性能全部托付于其中的单个安全单元,而单个网络安全单元又是攻击者首选的攻击对象,防火墙一旦破坏,桥头堡主机就变成了一台没有寻径功能的路由器,系统的安全性不可靠。

②单网端防火墙结构

其中屏蔽路由器的作用在于保护堡垒主机(应用网关或代理服务) 的安全而建立起一道屏障。在这种结构中可将堡垒主机看作是信息服务器,它是内部网络对外发布信息的数据中心,但这种网络拓扑结构仍把网络的安全性大部分托付给屏蔽路由器。系统的安全性仍不十分可靠。

③增强型单网段防火墙的结构

为增强网段防火墙安全性,在内部网与子网之间增设一台屏蔽路由器,这样整个子网与内外部网络的联系就各受控于一个工作在网络级的路由器,内部网络与外部网络仍不能直接联系,只能通过相应的路由器与堡垒主机通信。

④含"停火区"的防火墙结构

针对某些安全性特殊需要, 可建立如下的防火墙网络结构。 网络的整个安全特性分担到多个安全单元, 在外停火区的子网上可联接公共信息服务器,作为内外网络进行信息交换的场所。

网络反病毒技术

由于在网络环境下,计算机病毒具有不可估量的威胁性和破坏力, 因此计算机病毒的防范也是网络安全性建设中重要的一环。网络反病毒技术也得到了相应的发展。

网络反病毒技术包括预防病毒、检测病毒和消毒等3种技术。(1) 预防病毒技术,它通过自身常驻系统内存,优先获得系统的控制权,监视和判断系统中是否有病毒存在,进而阻止计算机病毒进入计算机系统和对系统进行破坏。这类技术是:加密可执行程序、引导区保护、系统监控与读写控制(如防病毒卡)等。(2)检测病毒技术,它是通过对计算机病毒的特征来进行判断的技术,如自身校验、关键字、文件长度的变化等。(3)消毒技术,它通过对计算机病毒的分析,开发出具有删除病毒程序并恢复原文件的软件。

网络反病毒技术的实施对象包括文件型病毒、引导型病毒和网络病毒。

网络反病毒技术的具体实现方法包括对网络服务器中的文件进行频繁地扫描和监测;在工作站上采用防病毒芯片和对网络目录及文件设置访问权限等。

随着网上应用不断发展,网络技术不断应用,网络不安全因素将会不断产生,但互为依存的,网络安全技术也会迅速的发展,新的安全技术将会层出不穷,最终Internet网上的安全问题将不会阻挡我们前进的步伐

3. 密码分为哪三种

密码大体上分为三类,涉及的知识点主要是信息论和数论

第一类:公开密钥算法:RSA

第二类:对称算法:AES,DES。Hitag2

第三类:单项序列算法:MD5

而对称算法又可以分为分组加密和序列加密两种

分组加密:AES,DES

序列加密:Hitag2,Keeloq

序列加密通常是硬件实现,因为每次加密1bit,对于硬件来说用移位寄存器来实现是很容易的,但对于最小存储单位是1Byte(8bit)的上位机来说,频繁的位操作并不方便。

加密算法的理论基础基本上来自于数论,数论主要是讨论整形,基本上就是关于素数的研究,RSA的加密难度依据就是,两个大素数的因式分解,但目前无法证明是否有方法能快速的因式分解两个超大素数,所以也无法证明此算法绝对安全,但同理无法证明它不安全。目前2048位的RSA公认是安全的。

信息论在本质上基本和密码学等价,信息熵也影响一组加密数据其安全性,和其被攻破的难度。所以如何降低冗余,隐藏明文也是密码学必须考虑的问题。

4. 网络安全密钥一般是什么密码

一般问给你装宽带的人就知道了.
网络安全密钥一般是56/64/128位字符串.比如:01110011等.先将信息变成位串,分组,打乱.再跟密钥按位异或与之类的算法.
生成的数据不易被破解.

5. 网络加密

信息安全包括 系统安全 数据安全
系统安全一般采用防火墙、病毒查杀等被动措施;数据安全主要采用现代密码技术对数据进行主动保护,如数据保密、数据完整性、数据不可否认与抵赖、双向身份认证等。
密码技术是保证信息安全的核心技术。
名词解释
明文(plaintext):未被加密的消息;
密文(ciphertext):被加密的消息;
密码算法:也叫密码(cipher),适用于加密和解密的数学函数。通常有两个相关函数:一个用于加密,一个用于解密。
加密系统:由算法以及所有可能的明文,密文和密钥组成。
加密(encrypt):通过密码算法对数据进行转化,使之成为没有正确密钥的人都无法读懂的报文。
解密(decrypt):加密的相反过程。
密钥(key):参与加密与解密算法的关键数据。

一个加密网络不但可以防止非授权用户的搭线窃听和入网,保护网内数据、文件、口令和控制信息,也是对付恶意软件的有效方法之一。

链路加密保护网络节点之间的链路信息安全,节点加密对源节点到目的节点之间的传输链路提供加密保护,端点加密是对源端点到目的端点的数据提供加密保护。
链路加密 又称为在线加密,在数据链路层对数据进行加密,用于信道或链路中可能被截获的那一部分数据进行保护。链路加密把报文中每一比特都加密,还对路由信息、校验和控制信息加密。所以报文传输到某节点时,必须先解密,然后再路径选择,差错控制,最后再次加密,发送到下一节点。
链路加密的优点 :实现简单,在两个节点线路上安装一对密码设备,安装在调制解调器之间;用户透明性。
链路加密的缺点 :1.全部报文以明文形式通过各节点;2.每条链路都需要一对设备,成本高。
节点加密 除具有链路加密的优势外,还不允许报文在节点内以明文存在,先把收到的报文进行解密,然后采用另一个密钥进行加密,克服了节点处易受非法存取的缺点。
优点是比链路加密成本低,且更安全。缺点是节点加密要求报头和路由信息以明文传输,以便中间节点能得到如何处理消息的信息,对防止攻击者分析通信业务仍是脆弱的。
端对端加密 又称脱线加密或包加密、面向协议加密运行数据从源点到终点的传输过程中始终以密文形式存在,报文在到达终点前不进行解密。
端对端加密在传输层或更高层中实现。若在传输层加密,则不必为每个用户提供单独的安全保护机制;若在应用层加密,则用户可根据自己特定要求选用不同加密策略。链路是对整个链路通信采取加密,端对端则是对整个网络系统采取保护措施。
优点:成本低,可靠性高,易设计、易实现、易维护。

目前已公开发表的各种加密算法有200多种。
根据对明文的加密方式不同进行分类,加密算法分为分组加密算法和序列加密算法。
如果经过加密所得到的密文仅与给定的密码算法和密钥有关,与被处理的明文数据段在整个明文中所处的位置无关,就称为分组加密算法。
如果密文不仅与最初给定的密码算法和密钥有关,同时也是被处理的数据段在明文中所处的位置的函数,就成为序列加密算法。
按照收发双方的密钥是否相同分为对称加密算法(私钥加密算法)和非对称加密算法(公钥加密算法)。

一个加密系统的加密和解密密钥相同,或者虽不同,但是由其中一个可以容易的推导出另一个,则该系统采用的是对称加密算法。

1976年美国Diffe和Hallman提出非对称加密算法。
主要特点是对数据进行加密和解密时使用不同的密钥。每个用户都保存一对密钥,每个人的公开密钥都对外开放。加入某用户与另一用户通信,可用公开密钥对数据进行加密,而收信者则用自己的私有密钥进行解密,加密解密分别使用不同的密钥实现,且不可能由加密密钥推导出解密密钥。
着名的非对称加密算法有RSA、背包密码、McEliece密码、Diffe-Hellman、Rabin、Ong-FiatShamir、零知识证明的算法、椭圆曲线、EIGamal密码算法等。最有影响力的是RSA,能抵抗目前为止已知的所有密码攻击。

6. 观点 | 谈谈网络安全等级保护与密码法

一、“密码”和“口令”
现实生活中提到的“密码”一词,比如人们日常使用的开机“密码”、微信“密码”、银行卡支付“密码”等,这些“密码”实际上是口令。口令只是进入个人计算机、手机、电子邮箱或者个人银行账户的“通行证”,它是一种简单、初级的身份认证手段。这些口令与《密码法》草案中的“密码”不同,真正的“密码”,藏在安全支付腔脊伏设备中、藏在网络系统内,默默守护国家秘密信息安全、守护我们每个人的信息安全。
《密码法》中的密码指的是使用特定变换的方法对信息等进行加密保护、安全认证的产品、技术和服务。《密码法》共五章四十四条,对密码分为核心密码、普通密码和商用密码进野谨行分类管理。其中,核心密码、普通密码用于保护国家秘密信息,核心密码保护信息的最高密级为绝密级,普通密码保护信息的最高密级为机密级。核心密码、普通密码属于国家秘密。密码管理部门依照本法和有关法律、行政法规、国家有关规定对核心密码、普通密码实行严格统一管理。商用密码用于保护不属于国家秘密的信息。公民、法人和其他组织可以依法使用商用密码保护网络与信息安全。
二、商用密码
我国自行研发的自主可控商用密码算法主要包括:ZUC,SM2,SM3,SM4和SM9等,这些密码算法涵盖了对称密码中的序列密码,分组密码,非对称密码中的椭圆曲线密码,以及密码杂凑算法,把它们组合起来可以为各种需要密码技术作为支撑的行业应用提供坚实可靠的基础。
1.对称密码算法
序列密码ZUC(祖冲之)算法和分组密码(SM4)算法都属于对称密码算法,也就是说,加密一方和解密一方使用完全相同的密钥来分别进行加密和解密,从而提供保密性(机密性)保证。
ZUC算法目前主要用于通信领域。2011年9月,我国以ZUC算法为核心的加密算法128-EEA3和完整性保护算法128-EIA3,与美国AES、欧洲SNOW 3G共同成为了4G移动通信密码算法国际标准。
SM4算法最初作为我国自主无线局域网安全标准WAPI的专用密码算法发布,后成为分组密码算法国家行业标准。由于SM4算法最初用于无线局域网芯片WAPI协议中,支持SM4算法的WAPI无线局域网芯片已超过350多个型号,全球累计出货量超过70亿颗。在金融领域,仅统计支持 SM4 算法的智能密码钥匙出货量已超过 1.5 亿个。
2.非对称密码算法
非对称密码算法又称公钥密码算法,公钥密码算法包括公钥加密和私钥签名(即数字签名,可提供真实性、不可否认性保证)两种主要用途,打破了对称密码算法加密和解密必须使用相同密钥的限制。公钥加密算法加密和解密使用不同的密钥。其中加密的密钥被公开,称为公钥;解密的密钥被保密,称为私钥。公钥、私钥是密切关联的,从私钥可推导出公钥,但从公钥推导出私钥是计算上不可行的。SM2算法(椭圆曲线公钥密码算法)和SM9算法(标识密码算法)是我国颁布的商用密码标准算法中的公钥密码算法,常见的国外公钥密码算法有RSA、ECDSA算法等。
基于SM2算法的数字签名技术已在我国电子认证领域广泛应用。SM2算法于2017年被国际标准化组织(ISO)采纳,成为国际标准ISO/IEC 14888-3的一部分。SM9算法将用户的标识(如邮件地址、手机号码、QQ号码等)作为公钥,不需要数字证书、证书库或密钥库,省略了交换数字证书和公钥过程,使得安全系统变得易于部署和管理,非常适合端对端离线安全通讯、云端数据加密、基于属性加密、基于策略加密的各种场合。同SM2算法一起,SM9数字签名算法也在2017年被ISO采纳,成为国际标准ISO/IEC 14888-3的一部分。
3.密码杂凑算法
密码杂凑算法又称杂凑函数、哈希(hash)算法、哈希函数,是把任意长的输入串转化成固定长的输出串的一种函数。我国商用密码标准中的密码杂凑算法是SM3算法,并于2018年10月成为国际标准。SM3算法的输出长度固定为256比特。输入长度在理论上是无限制的。在实践中根据填充规范的要求,输入长度不能超过264比特。只使用SM3算法不能提供完整性保护,而是需要配合密钥使用,即带密钥的杂凑算法(HMAC):利用杂凑算法,将一个密钥和一个消息作为输入,生成一个消息作为输出。HMAC可用作数据完整性检验,检验数据是否被非授权地改变;也可伍携用作消息鉴别,保证消息源的合法性等。
SM3 算法应用非常广泛。如在智能电网领域,采用SM3算法的智能电表接近10亿用户,均能安全稳定运行。在金融系统,目前大约有7亿多银行磁条卡更新为密码芯片卡,动态令牌累计发行7726万支,这些卡片及令牌均使用了SM3算法。
三、等级保护中的密码
我们看到在等级保护中也有许多与密码相关的要求,GB/T 22239-2019《信息安全技术网络安全等级保护基本要求》中与密码相关的要求如下:
1.真实性
应在通信前基于密码技术对通信的双方进行验证或认证;
应采用口令、密码技术、生物技术等两种或两种以上组合的鉴别技术对用户进行身份鉴别,且其中一种鉴别技术至少应使用密码技术来实现。
2.保密性
应采用密码技术保证通信过程中数据的保密性。
应采用密码技术保证重要数据在传输过程中的保密性,包括但不限于鉴别数据、重要业务数据和重要个人信息等;
应采用密码技术保证重要数据在存储过程中的保密性,包括但不限于鉴别数据、重要业务数据和重要个人信息等。
3.完整性
应采用校验技术或密码技术保证通信过程中数据的完整性;
应采用密码技术保证重要数据在传输过程中的完整性,包括但不限于鉴别数据、重要业务数据、重要审计数据、重要配置数据、重要视频数据和重要个人信息等;
应采用密码技术保证重要数据在存储过程中的完整性,包括但不限于鉴别数据、重要业务数据、重要审计数据、重要配置数据、重要视频数据和重要个人信息等;
4.不可否认性
在可能涉及法律责任认定的应用中,应采用密码技术提供数据原发证据和数据接收证据,实现数据原发行为的抗抵赖和数据接收行为的抗抵赖。
5.密码管理要求
应确保密码产品与服务的采购和使用符合国家密码管理主管部门的要求。
应进行上线前的安全性测试,并出具安全测试报告,安全测试报告应包含密码应用安全性测试相关内容。
密码管理应遵循密码相关国家标准和行业标准;
密码管理应使用国家密码管理主管部门认证核准的密码技术和产品。
6.利用密码技术可以有效解决的问题
可信验证:可基于可信根对系统引导程序、系统程序、重要配置参数和边界防护应用程序等进行可信验证,并在应用程序的所有执行环节进行动态可信验证,在检测到其可信性受到破坏后进行报警,并将验证结果形成审计记录送至安全管理中心,并进行动态关联感知;应采用可信验证机制对接入到网络中的设备进行可信验证,保证接入网络的设备真实可信
远程管理:当进行远程管理时,应采取必要措施防止鉴别信息在网络传输过程中被窃听
集中管理:应能够建立一条安全的信息传输路径,对网络中的安全设备或者安全组件进行管理。
四、小结
当今密码技术在保护信息安全方面的应用越来越广泛,促使云计算、大数据、人工智能、区块链、移动互联网、物联网等新技术产业蓬勃发展。相信随着《中华人民共和国密码法》的颁布与实施、等级保护制度的实施,我国数字经济将继续高质量发展。

7. 密码编码学与网络安全

对课程期末考试的个人复习总结

定义:把明文分组当作整体,产生一个等长的密文分组,并且可逆
设计思想:扩散(通过置换),混淆(通过代换)

定义:是一项增强密码算法或者使算法适应具体应用的技术。(分组密码是加密固定长度的分组,而工作模式提供了加密任意数量的明文的方法)

CTR优点:硬件软件效率高(并行加密);基本加密解密不依靠明文密文,因此可以进行预处理;加密数据块的随机访问;安全;简单

关于密钥K的计算本质上和DH协议是一样的(即C 1 本质上就是Y B ),Elgamal只是补充了对明文M的加密解密(C 2 =KM mod q;M=(C 2 K -1 ) mod q)
这样还可以让K作为一次性密钥,用于加密解密信息(比如将信息分组,然后每个分块用唯一的K,这样可以防止攻击者利用信息的某一分块计算出其他分块 ,若M 1 已知,则很容易计算出M 2

任意长报文 (一般会被填充为固定长度分组的整数倍)映射成一个较短的 定长输出报文 的函数 h = H(M)(相对易于计算),为文件、报文或其他的分组数据产生 “数字指纹” (Hash常被用于判断数据是否被更改过,而 不是加密解密函数

可以产生认证符的函数类型:Hash、消息加密、消息认证码MAC
认证技术:报文认证:消息完整性;实体认证(用户认证):发送者非冒充
认证定义:防止主动攻击的重要技术

MAC可以保护信息交换双方不受第三方攻击,但不能处理通信双方自身发生的攻击

重点协议!!!

8. 密码编码学与网络安全 如何将分组密码转化为流密码

Block ciphers 分组密码
分组密码转换成另一种固定大小的数据块(通常是64位)固定大小的块(可能是64位长再次)使用由键选择功能。
如果键,输入模块和输出模块都n位,基本上定义了分组密码排列的n位整数n位的整数,一个从对一的映射。

流密码
.甲流密码由一个状态机,在每个状态转换一个比特的信息输出。 这种输出位流俗称运行的关键.国家机器只不过是一个伪随机数发生器更多。 例如,我们可以构建一个分组密码加密多次通过其自己的输出之一。 通常情况下,更复杂的结构是用于流加密来获得高的速度。 .加密可以实现只要完全或门运行的关键明文消息。

9. 三级网络笔记第六章网络安全技术

第六章 网络安全技术
网络管理包括五个功能:配置管理,故障管理,性能管理,计费管理和安全管理。
代理位于被管理的设备内部,它把来自管理者的命令或信息请求转换为本设备特有的指令,完成管理者的指示,或返回它所在设备的信息。
管理者和代理之间的信息交换可以分为两种:从管理者到代理的管理操作;从代理到管理者的事件通知。
配置管理的目标是掌握和控制网络和系统的配置信息以及网络各设备的状态和连接管理。现代网络设备由硬件和设备驱动组禅巧成。
配置管理最主要的作用是可以增强网络管理者对网络配置的控制,它是通过对设备的配置数据提供快速的访问来实现的。
故障就是出现大量或严重错误需要修复的异常情况。故障管理是对计算机网络中的问题或故障进行定位的过程。
故障管理最主要的作用是通过提供网络管理者快速的检查问题并启动恢复过程的工具,使网络的可靠性得到增强。故障标签就是一个监视网络贺信键问题的前端进程。
性能管理的目标是衡量和呈现网络特性的各个方面,使网络的性能维持在一个可以接受的水平上。
性能管理包括监视和调整两大功能。
记费管理的目标是跟踪个人和团体用户对网络资源的使用情况,对其收取合理的费用。
记费管理的主要作用是网络管理者能测量和报告基于个人或团体用户的记费信息,分配资源并计算用户通过网络传输数据的费用,然后给用户开出帐单。
安全管理的目标是按照一定的方法控制对网络的访问,以保证网络不被侵害,并保证重要的信息不被未授权用户访问。
安全管理是对网络资源以及重要信息访问进行约束和控制。
在网络管理模型中,网络管理者和代理之间需要交换大量的管理信息,这一过程必须遵循统一的通信规范,我们把这个通信规范称为网络管理协议。
网络管理协议是高层网络应用协议,它建立在具体物理网络及其基础通信协议基础上,为网络管理平台服务。
目前使用的标准网络管理协议包括:简单网络管理协议SNMP,公共管理信息服务/协议CMIS/CMIP,和局域网个人管理协议LMMP等。
SNMP采用轮循监控方式。代理/管理站模式。
管理节点一般是面向工程应用的工作站级计算机,拥有很强的处理能力。代理节点可以是网络上任何类型的节点。SNMP是一个应用层协议 ,在TCP/IP网络中,它应用传输层和网络层的服务向其对等层传输信息。
CMIP的优点是安全性高,功能强大,不仅可用于传输管理数据,还可以执行一定的任务。
信息安全包括5个基本要素:机密性,完整性,可用性,可控性与可审查性。
3 D1级。D1级计算机系统标准规定对用户没有验证。例如DOS。WINDOS3。X及WINDOW 95(不在工作组方式中)。Apple的System7。X。
4 C1级提供自主式安全保护,它通过将用户和数据分离,满足自主需求。
C1级又称为选择安全保护系统,它描述了一种典型的用在Unix系统上的安全级别。
C1级要求硬件有一定的安全级别,用户在使用前必须登陆到系统。
C1级的防护的不足之处在与用户直接访问操作系统的根。
9 C2级提供比C1级系统更细微的自主式访问控制。为处理敏感信息所需要的最底安全级别。C2级别还包含有受控访问环境,该环境具有进一步限制用户执行一些命令或访问某些文件的权限,而且还加入了身份验证级别。例如UNIX系统。XENIX。Novell 3。0或更高版本。WINDOWS NT。
10 B1级称为标记安全防护,B1级支持多级安全。标记是指网上的一个对象在安全保护计划中是可识别且受保护的。B1级是第一种需要大量访问控制支持的级别。安全级别存在保密,级别。
11 B2又称为坦铅结构化保护,他要求计算机系统中的所有对象都要加上标签,而且给设备分配安全级别。B2级系统的关键安全硬件/软件部件必须建立在一个形式的安全方法模式上。
12 B3级又叫安全域,要求用户工作站或终端通过可信任途径连接到网络系统。而且这一级采用硬件来保护安全系统的存储区。
B3级系统的关键安全部件必须理解所有客体到主体的访问,必须是防窜扰的,而且必须足够小以便分析与测试。
30 A1 安全级别,表明系统提供了面的安全,又叫做验证设计。所有来自构成系统的部件来源必须有安全保证,以此保证系统的完善和安全,安全措施还必须担保在销售过程中,系统部件不受伤害。

网络安全从本质上讲就是网络上的信息安全。凡是涉及到网络信息的保密性,完整性,可用性,真实性和可控性的相关技术和理论都是网络安全的研究领域。
安全策约是在一个特定的环境里,为保证提供一定级别的安全保护所必须遵守的规则。安全策约模型包括了建立安全环境的三个重要组成部分:威严的法律,先进的技术和严格的管理。
网络安全是网络系统的硬件,软件以及系统中的数据受到保护,不会由于偶然或恶意的原因而遭到破坏,更改,泄露,系统能连续,可靠和正常的运行,网络服务不中断。
保证安全性的所有机制包括以下两部分:
1 对被传送的信息进行与安全相关的转换。
2 两个主体共享不希望对手得知的保密信息。
安全威胁是某个人,物,事或概念对某个资源的机密性,完整性,可用性或合法性所造成的危害。某种攻击就是某种威胁的具体实现。
安全威胁分为故意的和偶然的两类。故意威胁又可以分为被动和主动两类。
中断是系统资源遭到破坏或变的不能使用。这是对可用性的攻击。
截取是未授权的实体得到了资源的访问权。这是对保密性的攻击。
修改是未授权的实体不仅得到了访问权,而且还篡改了资源。这是对完整性的攻击。
捏造是未授权的实体向系统中插入伪造的对象。这是对真实性的攻击。
被动攻击的特点是偷听或监视传送。其目的是获得正在传送的信息。被动攻击有:泄露信息内容和通信量分析等。
主动攻击涉及修改数据流或创建错误的数据流,它包括假冒,重放,修改信息和拒绝服务等。
假冒是一个实体假装成另一个实体。假冒攻击通常包括一种其他形式的主动攻击。 重放涉及被动捕获数据单元以及后来的重新发送,以产生未经授权的效果。
修改消息意味着改变了真实消息的部分内容,或将消息延迟或重新排序,导致未授权的操作。
拒绝服务的禁止对通信工具的正常使用或管理。这种攻击拥有特定的目标。另一种拒绝服务的形式是整个网络的中断,这可以通过使网络失效而实现,或通过消息过载使网络性能降低。
防止主动攻击的做法是对攻击进行检测,并从它引起的中断或延迟中恢复过来。
从网络高层协议角度看,攻击方法可以概括为:服务攻击与非服务攻击。
服务攻击是针对某种特定网络服务的攻击。
非服务攻击不针对某项具体应用服务,而是基于网络层等低层协议进行的。
非服务攻击利用协议或操作系统实现协议时的漏洞来达到攻击的目的,是一种更有效的攻击手段。
网络安全的基本目标是实现信息的机密性,完整性,可用性和合法性。
主要的可实现威胁:
3 渗入威胁:假冒,旁路控制,授权侵犯。
4 植入威胁:特洛伊木马,陷门。
病毒是能够通过修改其他程序而感染它们的一种程序,修改后的程序里面包含了病毒程序的一个副本,这样它们就能继续感染其他程序。
网络反病毒技术包括预防病毒,检测病毒和消毒三种技术。
1 预防病毒技术。
它通过自身长驻系统内存,优先获得系统的控制权,监视和判断系统中是或有病毒存在,进而阻止计算机病毒进入计算机系统对系统进行破坏。这类技术有:加密可执行程序,引导区保护,系统监控与读写控制。
2.检测病毒技术。
通过对计算机病毒的特征来进行判断的技术。如自身效验,关键字,文件长度的变化等。
3.消毒技术。
通过对计算机病毒的分析,开发出具有删除病毒程序并恢复原元件的软件。
网络反病毒技术的具体实现方法包括对网络服务器中的文件进行频繁地扫描和检测,在工作站上用防病毒芯片和对网络目录以及文件设置访问权限等。
网络信息系统安全管理三个原则:
1 多人负责原则。
2 任期有限原则。
3 职责分离原则。

保密学是研究密码系统或通信安全的科学,它包含两个分支:密码学和密码分析学。
需要隐藏的消息叫做明文。明文被变换成另一种隐藏形式被称为密文。这种变换叫做加密。加密的逆过程叫组解密。对明文进行加密所采用的一组规则称为加密算法。对密文解密时采用的一组规则称为解密算法。加密算法和解密算法通常是在一组密钥控制下进行的,加密算法所采用的密钥成为加密密钥,解密算法所使用的密钥叫做解密密钥。
密码系统通常从3个独立的方面进行分类:
1 按将明文转化为密文的操作类型分为:置换密码和易位密码。
所有加密算法都是建立在两个通用原则之上:置换和易位。
2 按明文的处理方法可分为:分组密码(块密码)和序列密码(流密码)。
3 按密钥的使用个数分为:对称密码体制和非对称密码体制。
如果发送方使用的加密密钥和接受方使用的解密密钥相同,或从其中一个密钥易于的出另一个密钥,这样的系统叫做对称的,但密钥或常规加密系统。如果发送放使用的加密密钥和接受方使用的解密密钥不相同,从其中一个密钥难以推出另一个密钥,这样的系统就叫做不对称的,双密钥或公钥加密系统。
分组密码的加密方式是首先将明文序列以固定长度进行分组,每一组明文用相同的密钥和加密函数进行运算。
分组密码设计的核心上构造既具有可逆性又有很强的线性的算法。
序列密码的加密过程是将报文,话音,图象,数据等原始信息转化成明文数据序列,然后将它同密钥序列进行异或运算。生成密文序列发送给接受者。
数据加密技术可以分为3类:对称型加密,不对称型加密和不可逆加密。
对称加密使用单个密钥对数据进行加密或解密。
不对称加密算法也称为公开加密算法,其特点是有两个密钥,只有两者搭配使用才能完成加密和解密的全过程。
不对称加密的另一用法称为“数字签名”,既数据源使用其私有密钥对数据的效验和或其他与数据内容有关的变量进行加密,而数据接受方则用相应的公用密钥解读“数字签名”,并将解读结果用于对数据完整性的检验。
不可逆加密算法的特征是加密过程不需要密钥,并且经过加密的数据无法被解密,只有同样输入的输入数据经过同样的不可逆算法才能得到同样的加密数据。
加密技术应用于网络安全通常有两种形式,既面向网络和面向应用程序服务。
面向网络服务的加密技术通常工作在网络层或传输层,使用经过加密的数据包传送,认证网络路由及其其他网络协议所需的信息,从而保证网络的连通性和可用性不受侵害。
面向网络应用程序服务的加密技术使用则是目前较为流行的加密技术的使用方法。
从通信网络的传输方面,数据加密技术可以分为3类:链路加密方式,节点到节点方式和端到端方式。
链路加密方式是一般网络通信安全主要采用的方式。
节点到节点加密方式是为了解决在节点中数据是明文的缺点,在中间节点里装有加,解密的保护装置,由这个装置来完成一个密钥向另一个密钥的变换。
在端到端机密方式中,由发送方加密的数据在没有到达最终目的节点之前是不被解密的。
试图发现明文或密钥的过程叫做密码分析。
算法实际进行的置换和转换由保密密钥决定。
密文由保密密钥和明文决定。
对称加密有两个安全要求:
1 需要强大的加密算法。
2 发送方和接受方必须用安全的方式来获得保密密钥的副本。
常规机密的安全性取决于密钥的保密性,而不是算法的保密性。
IDEA算法被认为是当今最安全的分组密码算法。
公开密钥加密又叫做非对称加密。
公钥密码体制有两个基本的模型,一种是加密模型,一种是认证模型。
通常公钥加密时候使用一个密钥,在解密时使用不同但相关的密钥。
常规加密使用的密钥叫做保密密钥。公钥加密使用的密钥对叫做公钥或私钥。
RSA体制被认为是现在理论上最为成熟完善的一种公钥密码体制。
密钥的生存周期是指授权使用该密钥的周期。
在实际中,存储密钥最安全的方法就是将其放在物理上安全的地方。
密钥登记包括将产生的密钥与特定的应用绑定在一起。
密钥管理的重要内容就是解决密钥的分发问题。
密钥销毁包括清除一个密钥的所有踪迹。
密钥分发技术是将密钥发送到数据交换的两方,而其他人无法看到的地方。
数字证书是一条数字签名的消息,它通常用与证明某个实体的公钥的有效性。数字证书是一个数字结构,具有一种公共的格式,它将某一个成员的识别符和一个公钥值绑定在一起。人们采用数字证书来分发公钥。
序列号:由证书颁发者分配的本证书的标示符。

认证是防止主动攻击的重要技术,它对于开放环境中的各种信息系统的安全有重要作用。
认证是验证一个最终用户或设备的声明身份的过程。
主要目的为:
4 验证信息的发送者是真正的,而不是冒充的,这称为信源识别。
5 验证信息的完整性,保证信息在传送过程中未被窜改,重放或延迟等。
认证过程通常涉及加密和密钥交换。
帐户名和口令认证方式是最常用的一种认证方式。
授权是把访问权授予某一个用户,用户组或指定系统的过程。
访问控制是限制系统中的信息只能流到网络中的授权个人或系统。
有关认证使用的技术主要有:消息认证,身份认证和数字签名。
消息认证的内容包括为:
1 证实消息的信源和信宿。
2 消息内容是或曾受到偶然或有意的篡改。
3 消息的序号和时间性。
消息认证的一般方法为:产生一个附件。
身份认证大致分为3类:
1 个人知道的某种事物。
2 个人持证
3 个人特征。
口令或个人识别码机制是被广泛研究和使用的一种身份验证方法,也是最实用的认证系统所依赖的一种机制。
为了使口令更加安全,可以通过加密口令或修改加密方法来提供更强健的方法,这就是一次性口令方案,常见的有S/KEY和令牌口令认证方案。
持证为个人持有物。
数字签名的两种格式:
2 经过密码变换的被签名信息整体。
3 附加在被签消息之后或某个特定位置上的一段签名图样。
对与一个连接来说,维持认证的办法是同时使用连接完整性服务。
防火墙总体上分为滤,应用级网关和代理服务等几大类型。
数据滤技术是在网络层对数据包进行选择。
应用级网关是在网络应用层上建立协议过滤和转发功能。
代理服务也称链路级网关或TCP通道,也有人将它归于应用级网关一类。
防火墙是设置在不同网络或网络安全域之间的一系列不见的组合。它可以通过检测,限制,更改跨越防火墙的数据流,尽可能的对外部屏蔽网络内部的消息,结构和运行情况,以此来实现网络的安全保护。
防火墙的设计目标是:
1 进出内部网的通信量必须通过防火墙。
2 只有那些在内部网安全策约中定义了的合法的通信量才能进出防火墙。
3 防火墙自身应该防止渗透。
防火墙能有效的防止外来的入侵,它在网络系统中的作用是:
1 控制进出网络的信息流向和信息包。
2 提供使用和流量的日志和审记。
3 隐藏内部IP以及网络结构细节。
4 提供虚拟专用网功能。
通常有两种设计策约:允许所有服务除非被明确禁止;禁止所有服务除非被明确允许。
防火墙实现站点安全策约的技术:
3 服务控制。确定在围墙外面和里面可以访问的INTERNET服务类型。
4 方向控制。启动特定的服务请求并允许它通过防火墙,这些操作具有方向性。
5 用户控制。根据请求访问的用户来确定是或提供该服务。
6 行为控制。控制如何使用某种特定的服务。
影响防火墙系统设计,安装和使用的网络策约可以分为两级:
高级的网络策约定义允许和禁止的服务以及如何使用服务。
低级的网络策约描述了防火墙如何限制和过滤在高级策约中定义的服务。

阅读全文

与网络安全分组密码相关的资料

热点内容
手机怎么有网络电话骚扰 浏览:284
网络设置尴尬 浏览:259
电视电脑怎么共用一个网络 浏览:725
电信手机卡为什么网络波动大 浏览:760
国内如何使用国际网络 浏览:926
密码在网络空间中省份识别 浏览:609
经常网络错误怎么回事 浏览:911
网络线怎么看多少兆 浏览:853
四会网络营销网络推广系统 浏览:295
室内无线网络规划流程实验报告 浏览:798
手机卡2g网络吗 浏览:762
4g手机遇上5g网络怎么办 浏览:446
换网线后路由器无法连接网络 浏览:423
网络营销应注意的问题 浏览:604
苹果手机网络设置怎么修改 浏览:29
十大手机网络歌曲 浏览:782
戴尔游匣的无线网络开关 浏览:967
账号信息验证在哪个网络 浏览:69
手机软件本地网络错误什么意思 浏览:102
常用网络通信线路分几类都有哪些 浏览:572

友情链接