导航:首页 > 网络安全 > 类别如何输入到神经网络

类别如何输入到神经网络

发布时间:2023-05-11 23:10:31

‘壹’ 如何将矩阵数据直接传入卷积神经网络

你好,对信号的特征提取在数学上看其实就是做一个滤波的运算,实际上都是通过卷积来实现的。下面是一个matlab的实现:
function r= my_conv(a, b)
m=length(a);
n=length(b);
r=zeros(1, m+n-1);
for k = 1:m
c = a(k)*b;
d = r(1, k:k+n-1);
d = d+c;
r(1, k:k+n-1) = d;
end

‘贰’  人工神经网络分类方法

从20世纪80年代末期,人工神经网络方法开始应用于遥感图像的自动分类。目前,在遥感图像的自动分类方面,应用和研究比较多的人工神经网络方法主要有以下几种:

(1)BP(Back Propagation)神经网络,这是一种应用较广泛的前馈式网络,属于有监督分类算法,它将先验知识融于网络学习之中,加以最大限度地利用,适应性好,在类别数少的情况下能够得到相当高的精度,但是其网络的学习主要采用误差修正算法,识别对象种类多时,随着网络规模的扩大,需要的计算过程较长,收敛缓慢而不稳定,且识别精度难以达到要求。

(2)Hopfield神经网络。属于反馈式网络。主要采用Hebb规则进行学习,一般情况下计算的收敛速度较快。这种网络是美国物理学家J.J.Hopfield于1982年首先提出的,它主要用于模拟生物神经网络的记忆机理。Hopfield神经网络状态的演变过程是一个非线性动力学系统,可以用一组非线性差分方程来描述。系统的稳定性可用所谓的“能量函数”进行分析,在满足一定条件下,某种“能量函数”的能量在网络运行过程中不断地减少,最后趋于稳定的平衡状态。Hopfield网络的演变过程是一种计算联想记忆或求解优化问题的过程。

(3)Kohonen网络。这是一种由芬兰赫尔辛基大学神经网络专家Kohonen(1981)提出的自组织神经网络,其采用了无导师信息的学习算法,这种学习算法仅根据输入数据的属性而调整权值,进而完成向环境学习、自动分类和聚类等任务。其最大的优点是最终的各个相邻聚类之间是有相似关系的,即使识别时把样本映射到了一个错误的节点,它也倾向于被识别成同一个因素或者一个相近的因素,这就十分接近人的识别特性。

‘叁’ 利用神经网络进行文本分类算法综述(持续更新中)

传统的文本分类一般都是使用词袋模型/Tf-idf作为特征+机器学习分类器来进行分类的。随着深度学习的发展,越来越多的神经网络模型被用来进行文本分类。本文将对这些神经网络模型做一个简单的介绍。

本文介绍了一种词向量模型,虽然算不得文本分类模型,但由于其可以说是fasttext的基础。因此也简单提一下。

作者认为cbow和skipgram及大部分词向量模型都没有考虑到单词的多态性,而简单的将一个单词的多种形态视为独立的单词。例如like的不同形式有likes,liking,liked,likes,这些单词的意思其实是相同的,但cbow/skipgram模型却认为这些单词是各自独立的,没有考虑到其形态多样性。

因此作者提出了一个可以有效利用单词字符级别信息的n-gram词向量模型,该模型是以skipgram模式实现的。例如单词 where,其n-gram表示为<wh, whe, her, ere, re>, where。其中<>分别表示前后缀。在原始的skipgram模型中,输入仅仅只是where的onehot向量,而在此模型中输入则变成了<wh, whe, her, ere, re>, where的onehot编码的加和,有效的利用了字符级别的信息,因此效果更加好。

而在loss方面,文中采用了负采样+binary LogisticRegression的策略。即对每一个目标单词都预测为正负中的一种。

在本文中作者提供了一个基于神经网络的文本分类模型,这个模型是基于cbow的,与cbow非常类似。

和CBOW一样,fastText模型也只有三层:输入层、隐含层、输出层(Hierarchical Softmax),输入都是多个经向量表示的单词,输出都是一个特定的target,隐含层都是对多个词向量的叠加平均。不同的是,CBOW的输入是目标单词的上下文,fastText的输入是多个单词及其n-gram特征的embeding表示方式,这些特征用来表示单个文档;CBOW的输入单词被onehot编码过,fastText的输入特征是被embedding过;CBOW的输出是目标词汇,fastText的输出是文档对应的类标。输出层的实现同样使用了层次softmax,当然如果自己实现的话,对于类别数不是很多的任务,个人认为是可以直接使用softmax的。

最后,贴一个Keras的模型fasttext简化版。

基于词向量表示,本文提出利用卷积神经网络来进行文本分类。其算法如上图所示:

在本文中,作者尝试了多种不同的词向量模式:

在上一篇文章中CNN网络的输入一般是预训练好的词向量,而在本文中作者提出一种直接将embedding训练与分类任务结合在一起,且能有效提取/保留词序信息,也即有效训练出n-gram的模型方法,其实也可以理解为一种利用CNN来进行embedding的方法。

此外,另一个问题是输入序列长度变化问题(在上一篇文章textCNN中通过padding解决的?),在本文作者提出使用一个动态可变的pooling层来解决这个问题,使得卷积层输出的大小是相同的。关于可变pooling其实与图像识别中的 空间金字塔池化 (Spatial Pyramid Pooling) 是类似的。

这篇文章有点将fastText与TextCNN结合在一起的感觉,将n-gram embedding与分类任务结合在了一起进行训练,通过CNN来进行Embedding。

Text Categorization via Region Embedding》

在本篇文章中作者提出了一个tv-embedding(即two-view embedding),它也属于region embedding(也可以理解为ngram embedding)。这种方法与上面的bow-CNN表示相似,使用bow(bag of words)的方式来表示一个区域的词句,然后通过某个区域(region,左右邻域的单词或词句)来预测其前后的区域(单词或词句),即输入区域是view1,target区域是view2。tv-embedding是单独训练的,在使用的时候与CNN中的embedding组合在一起(形成多个channel?)。作者认为,word2vec方法预训练得到的embedding向量是普适性的,而通过特定任务的数据集的训练得到tv-embedding具有任务相关的一些信息,更有利于提升我们的模型效果。

吐槽一下,这篇文章没太看懂,也可能是英语太差,作者文章中没有那种一眼就能让人理解的网络图,像textCNN的图就非常一目了然,看图就知道是怎么做的了。

本文提出了一个使用监督学习加半监督预训练的基于LSTM的文本分类模型。文章作者与上面相同,所以用到的很多技术可以说与上面也是同出一辙。因此简单说下本文的一些思路。

作者认为已有的直接使用LSTM作为文本分类模型并直接将LSTM的最后一个输出作为后续全连接分类器的方法面临两个问题:(1)这种方式一般都是与word embedding整合在一起(即输入onehot经过一个embedding层再进入LSTM),但是embedding训练不稳定,不好训练;(2)直接使用LSTM最后一个输出来表示整个文档不准确,一般来说LSTM输入中后面的单词会在最后输出中占有较重的权重,但是这对于文章表示来说并不总是对的。因此作者对这两点进行了改进:

本文其实可以看作是作者将自己前面的tv-embedding半监督训练与RCNN的一个融合吧,大有一种一顿操作猛如虎,一看人头0-5的感觉(因为作者的实验结果跟一般的CNN相比其实也抢不了多少)。

本文的作者也是前面两篇使用CNN来进行文本分类处理的文章的作者。因此在本文中,结合了前面两篇文章提出的一些方法,并使用了一个深层的卷积神经网络。具体的细节包括:

更多详细的关于DPCNN的细节可以查看 从DPCNN出发,撩一下深层word-level文本分类模型 。

本文提出了一种基于CNN+Attention的文本分类模型。作者认为已有的基于CNN的文本分类模型大都使用的是固定大小的卷积核,因此其学习到的表示也是固定的n-gram表示,这个n与CNN filter大小相关。但是在进行句子的语义表示时,不同句子发挥重要作用的ngram词语常常是不同的,也即是变化的。因此,模型能根据句子来自适应的选择每个句子最佳的n-gram对于提升模型的语义表示能力是非常关键的。本文便是由此思路提出了一种自适应的来选择不同n-gram表示的模型。

本文模型在主题结构上参照了CV中的DenseNet,借由DenseNet中的稠密连接来提取到丰富的n-gram特征表示。举例来说,在layer3的特征不仅能学习到f(x1, x2, x3),还能学习到f(x1(x2,x3))这种更多层次,更加丰富的特征。网络的结构主要包括三部分:DenseCNN主网络,Attention mole和最后的全连接层分类网络。下面对这三部分进行简单的说明:

本文通过Dense connection + Attention来自动获取对于文本语义最重要的n-gram特征,结果很好。但是缺点是,这个网络比较适合较短的文本,文中对输入文本进行了padding补齐,对于不同数据集最大长度分别为50,100等,但这对于较长的文本明显是不足的。因此对于较长的文本或许HAN这种借用RNN来不限制输入长短的网络会更好。

本文提出了一种结合循环神经网络(RNN)和卷积神经网络来进行文本分类的方法,其结构如上图所示,该网络可以分为三部分:

虽然说是RNN与CNN的结合,但是其实只用到了CNN中的pooling,多少有一点噱头的意思。文中还提到了RCNN为什么比CNN效果好的原因,即为什么RCNN能比CNN更好的捕捉到上下文信息:CNN使用了固定大小window(也即kernel size)来提取上下文信息,其实就是一个n-gram。因此CNN的表现很大程度上受window大小的影响,太小了会丢失一些长距离信息,太大了又会导致稀疏性问题,而且会增加计算量。

在众多自然语言处理任务中,一个非常突出的问题就是训练数据不足,且标注难度大。因此文本提出了一种多任务共享的RNN模型框架,其使用多个不同任务数据集来训练同一个模型共享参数,已达到扩充数据集的作用。

文中作者提出了三个模型,如上图所示:

三个模型的训练方式相同:

本文提出了一个层次LSTM+Attention模型。作者认为,虽然一篇文章有多个句子组成但真正其关键作用的可能是其中的某几个,因此对各个句子施加了注意力机制,以使得对文章语义贡献较多的句子占有更多的权重。同样的,组成一个句子的单词有多个,但是发挥重要作用的可能就那么几个,因此使用注意力机制以使得重要单词发挥更大的作用,这些便是本文的核心思想。整个网络可分为三层,两个LSTM层分别用来进行word encode和sentence encode,最顶上为一个全连接分类层。若加上两层注意力层,则可认为网络为5层。下面简单聊聊这五层网络的结构:

总体来说,本文看起来还是比较有意思的,符合人阅读文章的习惯,我们写文章的时候也是有中心词和中心句的。但是由于这个层级结构是否会导致训练慢或者不好训练还不得而知。最后,文中还提出对文章按长短先进行排序,长度相似的进入一个batch,这将训练速度加快了3倍。

本文提出了一个基于图神经网络的文本分类方法。该方法的主要思想是将所有文章及其包含的词汇都放到一个图网络里面去,图网络中的节点分为两种类型:单词节点和文章节点。其中连接单词节点和文章节点的边的权重使用TF-IDF来表示,而单词与单词之间边的权重则是使用点互信息(PMI)来表示。点互信息与传统语言模型中的条件概率计算方式非常相似。只不过PMI采用的是滑窗方式而条件概率是直接在所有语料中进行统计,可以认为是将所有语料当做一个大窗口,这时就又与PMI相同了。

A表示图网络的邻接矩阵,表示如下:

GCN同样也是可以含有多层隐藏层的,其各个层的计算方式如下:

其中A'为归一化对称邻接矩阵, W0 ∈ R^(m×k) 为权重矩阵,ρ是激活函数,例如 ReLU ρ(x) = max(0,x) 如前所述,可以通过叠加多个GCN层来合并更高阶的邻域信息:

其中j表示层数。
损失函数定义为所有已标记文档的交叉熵误差:

文中提到Text GCN运行良好的原因有两个方面:

但是其也有一些缺:

总的来说,文章的idea还是挺有意思的,效果也还不错。初识GCN可能还是有一点难以理解,可以参考如下资料进行进一步学习:
基于图卷积网络的文本分类算法
如何理解 Graph Convolutional Network(GCN)?

‘肆’ 怎么用spss神经网络来分类数据

用spss神经网络分类数据方法如下:

神经网络算法能够通过大量的历史数据,逐步建立和完善输入变量到输出结果之间的发展路径,也就是神经网络,在这个神经网络中,每条神经的建立以及神经的粗细(权重)都是经过大量历史数据训练得到的,数据越多,神经网络就越接近真实。神经网络建立后,就能够通过不同的输入变量值,预测输出结果。例如,银行能够通过历史申请贷款的客户资料,建立一个神经网络模型,用于预测以后申请贷款客户的违约情况,做出是否贷款给该客户的决策。本篇文章将用一个具体银行案例数据,介绍如何使用SPSS建立神经网络模型,用于判断将来申请贷款者的还款能力。

选取历史数据建立模型,一般会将历史数据分成两大部分:训练集和验证集,很多分析者会直接按照数据顺序将前70%的数据作为训练集,后30%的数据作为验证集。如果数据之间可以证明是相互独立的,这样的做法没有问题,但是在数据收集的过程中,收集的数据往往不会是完全独立的(变量之间的相关关系可能没有被分析者发现)。因此,通常的做法是用随机数发生器来将历史数据随机分成两部分,这样就能够尽量避免相同属性的数据被归类到一个数据集当中,使得建立的模型效果能够更加优秀。

在具体介绍如何使用SPSS软件建立神经网络模型的案例之前,先介绍SPSS的另外一个功能:随机数发生器。SPSS的随机数发生器常数的随机数据不是真正的随机数,而是伪随机数。伪随机数是由算法计算得出的,因此是可以预测的。当随机种子(算法参数)相同时,对于同一个随机函数,得出的随机数集合是完全相同的。与伪随机数对应的是真随机数,它是真正的随机数,无法预测也没有周期性。目前大部分芯片厂商都集成了硬件随机数发生器,例如有一种热噪声随机数发生器,它的原理是利用由导体中电子的热震动引起的热噪声信号,作为随机数种子。

‘伍’ 循环神经网络

花书中关于RNN的内容记录于 https://www.jianshu.com/p/206090600f13 。

在前馈神经网络中,信息的传递是单向的,这种限制虽然使得网络变得更容易学习,但在一定程度上也减弱了神经网络模型的能力。在生物神经网络中,神经元之间的连接关系要复杂的多。 前馈神经网络可以看作是一个复杂的函数,每次输入都是独立的,即网络的输出只依赖于当前的输入。但是在很多现实任务中,网络的输入不仅和当前时刻的输入相关,也和其过去一段时间的输出相关 。因此,前馈网络难以处理时序数据,比如视频、语音、文本等。时序数据的长度一般是不固定的,而前馈神经网络要求输入和输出的维数都是固定的,不能任意改变。因此,当处理这一类和时序相关的问题时,就需要一种能力更强的模型。

循环神经网络(Recurrent Neural Network,RNN)是一类具有短期记忆能力的神经网络。在循环神经网络中,神经元不但可以接受其它神经元的信息,也可以接受自身的信息,形成具有环路的网络结构。 和前馈神经网络相比,循环神经网络更加符合生物神经网络的结构。循环神经网络已经被广泛应用在语音识别、语言模型以及自然语言生成等任务上。循环神经网络的参数学习可以通过 随时间反向传播算法 来学习。

为了处理这些时序数据并利用其历史信息,我们需要让网络具有短期记忆能力。而前馈网络是一个静态网络,不具备这种记忆能力。

一种简单的利用历史信息的方法是建立一个额外的延时单元,用来存储网络的历史信息(可以包括输入、输出、隐状态等)。比较有代表性的模型是延时神经网络。

延时神经网络是在前馈网络中的非输出层都添加一个延时器,记录最近几次神经元的输出。在第 个时刻,第 层神经元和第 层神经元的最近 次输出相关,即:

延时神经网络在时间维度上共享权值,以降低参数数量。因此对于序列输入来讲,延时神经网络就相当于卷积神经网络

自回归模型(Autoregressive Model,AR) 是统计学上常用的一类时间序列模型,用一个变量 的历史信息来预测自己:

其中 为超参数, 为参数, 为第 个时刻的噪声,方差 和时间无关。

有外部输入的非线性自回归模型(Nonlinear Autoregressive with ExogenousInputs Model,NARX) 是自回归模型的扩展,在每个时刻 都有一个外部输入 ,产生一个输出 。NARX通过一个延时器记录最近几次的外部输入和输出,第 个时刻的输出 为:

其中 表示非线性函数,可以是一个前馈网络, 和 为超参数。

循环神经网络通过使用带自反馈的神经元,能够处理任意长度的时序数据。

给定一个输入序列 ,循环神经网络通过下面
公式更新带反馈边的隐藏层的活性值 :

其中 , 为一个非线性函数,也可以是一个前馈网络。

从数学上讲,上式可以看成一个动力系统。动力系统(Dynamical System)是一个数学上的概念,指 系统状态按照一定的规律随时间变化的系统 。具体地讲,动力系统是使用一个函数来描述一个给定空间(如某个物理系统的状态空间)中所有点随时间的变化情况。因此, 隐藏层的活性值 在很多文献上也称为状态(State)或隐状态(Hidden States) 。理论上,循环神经网络可以近似任意的非线性动力系统。

简单循环网络(Simple Recurrent Network,SRN)是一个非常简单的循环神经网络,只有一个隐藏层的神经网络。

在一个两层的前馈神经网络中,连接存在相邻的层与层之间,隐藏层的节点之间是无连接的。而 简单循环网络增加了从隐藏层到隐藏层的反馈连接

假设在时刻 时,网络的输入为 ,隐藏层状态(即隐藏层神经元活性值) 不仅和当前时刻的输入 相关,也和上一个时刻的隐藏层状态 相关:

其中 为隐藏层的净输入, 是非线性激活函数,通常为Logistic函数或Tanh函数, 为状态-状态权重矩阵, 为状态-输入权重矩阵, 为偏置。上面两式也经常直接写为:

如果我们把每个时刻的状态都看作是前馈神经网络的一层的话,循环神经网络可以看作是在时间维度上权值共享的神经网络 。下图给出了按时间展开的循环神经网络。

由于循环神经网络具有短期记忆能力,相当于存储装置,因此其计算能力十分强大。 前馈神经网络可以模拟任何连续函数,而循环神经网络可以模拟任何程序。

定义一个完全连接的循环神经网络,其输入为 ,输出为 :

其中 为隐状态, 为非线性激活函数, 和 为网络参数。

这样一个完全连接的循环神经网络可以近似解决所有的可计算问题

循环神经网络可以应用到很多不同类型的机器学习任务。根据这些任务的特点可以分为以下几种模式: 序列到类别模式、同步的序列到序列模式、异步的序列到序列模式

序列到类别模式主要用于序列数据的分类问题:输入为序列,输出为类别。比如在文本分类中,输入数据为单词的序列,输出为该文本的类别。

假设一个样本 为一个长度为 的序列,输出为一个类别 。我们可以将样本 按不同时刻输入到循环神经网络中,并得到不同时刻的隐藏状态 。我们可以将 看作整个序列的最终表示(或特征),并输入给分类器 进行分类:

其中 可以是简单的线性分类器(比如Logistic 回归)或复杂的分类器(比如多层前馈神经网络)

除了将最后时刻的状态作为序列表示之外,我们还可以对整个序列的所有状态进行平均,并用这个平均状态来作为整个序列的表示:

同步的序列到序列模式 主要用于序列标注(Sequence Labeling)任务,即每一时刻都有输入和输出,输入序列和输出序列的长度相同 。比如词性标注(Partof-Speech Tagging)中,每一个单词都需要标注其对应的词性标签。

输入为序列 ,输出为序列 。样本 按不同时刻输入到循环神经网络中,并得到不同时刻的隐状态 。每个时刻的隐状态 代表当前和历史的信息,并输入给分类器 得到当前时刻的标签 。

异步的序列到序列模式也称为 编码器-解码器(Encoder-Decoder)模型,即输入序列和输出序列不需要有严格的对应关系,也不需要保持相同的长度。 比如在机器翻译中,输入为源语言的单词序列,输出为目标语言的单词序列。

在异步的序列到序列模式中,输入为长度为 的序列 ,输出为长度为 的序列 。经常通过 先编码后解码 的方式来实现。先将样本 按不同时刻输入到一个循环神经网络(编码器)中,并得到其编码 。然后再使用另一个循环神经网络(解码器)中,得到输出序列 。为了建立输出序列之间的依赖关系,在解码器中通常使用非线性的自回归模型。

其中 分别为用作编码器和解码器的循环神经网络, 为分类器, 为预测输出 的向量表示。

循环神经网络的参数可以通过梯度下降方法来进行学习。给定一个训练样本 ,其中 为长度是 的输入序列, 是长度为 的标签序列。即在每个时刻 ,都有一个监督信息 ,我们定义时刻 的损失函数为:

其中 为第 时刻的输出, 为可微分的损失函数,比如交叉熵。那么整个序列上损失函数为:

整个序列的损失函数 关于参数 的梯度为:

即每个时刻损失 对参数 的偏导数之和。

循环神经网络中存在一个递归调用的函数 ,因此其计算参数梯度的方式和前馈神经网络不太相同。在循环神经网络中主要有两种计算梯度的方式: 随时间反向传播(BPTT)和实时循环学习(RTRL)算法。

随时间反向传播(Backpropagation Through Time,BPTT) 算法的主要思想是通过类似前馈神经网络的错误反向传播算法来进行计算梯度。

BPTT算法将循环神经网络看作是一个展开的多层前馈网络,其中“每一层”对应循环网络中的“每个时刻”。在“展开”的前馈网络中,所有层的参数是共享的,因此参数的真实梯度是将所有“展开层”的参数梯度之和

因为参数 和隐藏层在每个时刻 的净输入 有关,因此第 时刻的损失函数 关于参数 的梯度为:

其中 表示“直接”偏导数,即公式 中保持 不变,对 求偏导数,得到:

其中 为第 时刻隐状态的第 维; 除了第 个值为 外,其余都为 的行向量。

定义误差项 为第 时刻的损失对第 时刻隐藏神经层的净输入 的导数,则:

从而:

写成矩阵形式为:

由此得到整个序列的损失函数 关于参数 的梯度:

同理可得, 关于权重 和偏置 的梯度为:

在BPTT算法中,参数的梯度需要在一个完整的“前向”计算和“反向”计算后才能得到并进行参数更新。如下图所示。

与反向传播的BPTT算法不同的是,实时循环学习(Real-Time Recurrent Learning)是通过前向传播的方式来计算梯度。

假设循环神经网络中第 时刻的状态 为:

其关于参数 的偏导数为:

RTRL算法从第1 个时刻开始,除了计算循环神经网络的隐状态之外,还依次前向计算偏导数 。

两种学习算法比较:

RTRL算法和BPTT算法都是基于梯度下降的算法,分别通过前向模式和反向模式应用链式法则来计算梯度。 在循环神经网络中,一般网络输出维度远低于输入维度,因此BPTT算法的计算量会更小,但BPTT算法需要保存所有时刻的中间梯度,空间复杂度较高。RTRL算法不需要梯度回传,因此非常适合于需要在线学习或无限序列的任务中

循环神经网络在学习过程中的主要问题是由于 梯度消失或爆炸问题 ,很难建模长时间间隔(Long Range)的状态之间的依赖关系。

在BPTT算法中,我们有:

如果定义 ,则:

若 ,当 时, ,会造成系统不稳定,称为梯度爆炸问题;相反,若 ,当 时, ,会出现和深度前馈神经网络类似的梯度消失问题。

虽然简单循环网络理论上可以建立长时间间隔的状态之间的依赖关系,但是由于梯度爆炸或消失问题,实际上只能学习到短期的依赖关系。这样,如果t时刻的输出 依赖于 时刻的输入 ,当间隔 比较大时,简单神经网络很难建模这种长距离的依赖关系,称为 长程依赖问题(Long-Term dependencies Problem)

一般而言,循环网络的梯度爆炸问题比较容易解决,一般 通过权重衰减或梯度截断来避免。 权重衰减是通过给参数增加 或 范数的正则化项来限制参数的取值范围,从而使得 。梯度截断是另一种有效的启发式方法,当梯度的模大于一定阈值时,就将它截断成为一个较小的数。

梯度消失是循环网络的主要问题。除了使用一些优化技巧外,更有效的方式就是改变模型,比如让 ,同时使用 ,即:

其中 是一个非线性函数, 为参数。

上式中, 和 之间为线性依赖关系,且权重系数为1,这样就不存在梯度爆炸或消失问题。但是,这种改变也丢失了神经元在反馈边上的非线性激活的性质,因此也降低了模型的表示能力。

为了避免这个缺点,我们可以采用一种更加有效的改进策略:

这样 和 之间为既有线性关系,也有非线性关系,并且可以缓解梯度消失问题。但这种改进依然存在两个问题:

为了解决这两个问题,可以通过引入 门控机制 来进一步改进模型。

为了改善循环神经网络的长程依赖问题,一种非常好的解决方案是引入门控机制来控制信息的累积速度,包括 有选择地加入新的信息,并有选择地遗忘之前累积的信息 。这一类网络可以称为基于门控的循环神经网络(Gated RNN)。本节中,主要介绍两种基于门控的循环神经网络: 长短期记忆网络和门控循环单元网络。

长短期记忆(Long Short-Term Memory,LSTM)网络 是循环神经网络的一个变体,可以有效地解决简单循环神经网络的梯度爆炸或消失问题。

在 基础上,LSTM网络主要改进在以下两个方面:

其中 和 三个门(gate)来控制信息传递的路径; 为向量元素乘积; 为上一时刻的记忆单元; 是通过非线性函数得到的候选状态:

在每个时刻 ,LSTM网络的内部状态 记录了到当前时刻为止的历史信息。

在数字电路中,门(Gate)为一个二值变量{0, 1},0代表关闭状态,不许任何信息通过;1代表开放状态,允许所有信息通过。LSTM网络中的“门”是一种“软”门,取值在(0, 1) 之间,表示 以一定的比例运行信息通过 。LSTM网络中三个门的作用为:

(1)遗忘门 控制上一个时刻的内部状态 需要遗忘多少信息。
(2)输入门 控制当前时刻的候选状态 有多少信息需要保存。
(3)输出门

‘陆’ 如何把大量数据导入神经网络模型中

有同样的问题,将数据倒入XLS中那也是是手动的一个一个的读取要是想连续的读取是不是应该编写一个程序?

‘柒’ 神经网络模型-27种神经网络模型们的简介

​ 

【1】Perceptron(P) 感知机

【1】感知机 

感知机是我们知道的最简单和最古老的神经元模型,它接收一些输入,然后把它们加总,通过激活函数并传递到输出层。

【2】Feed Forward(FF)前馈神经网络

 【2】前馈神经网络

前馈神经网络(FF),这也是一个很古老的方法——这种方法起源于50年代。它的工作原理通常遵循以下规则:

1.所有节点都完全连接

2.激活从输入层流向输出,无回环

3.输入和输出之间有一层(隐含层)

在大多数情况下,这种类型的网络使用反向传播方法进行训练。

【3】Radial Basis Network(RBF) RBF神经网络

 【3】RBF神经网络

RBF 神经网络实际上是 激活函数是径向基函数 而非逻辑函数的FF前馈神经网络(FF)。两者之间有什么区别呢?

逻辑函数--- 将某个任意值映射到[0 ,... 1]范围内来,回答“是或否”问题。适用于分类决策系统,但不适用于连续变量。

相反, 径向基函数--- 能显示“我们距离目标有多远”。 这完美适用于函数逼近和机器控制(例如作为PID控制器的替代)。

简而言之,RBF神经网络其实就是, 具有不同激活函数和应用方向的前馈网络 。

【4】Deep Feed Forword(DFF)深度前馈神经网络

【4】DFF深度前馈神经网络 

DFF深度前馈神经网络在90年代初期开启了深度学习的潘多拉盒子。 这些依然是前馈神经网络,但有不止一个隐含层 。那么,它到底有什么特殊性?

在训练传统的前馈神经网络时,我们只向上一层传递了少量的误差信息。由于堆叠更多的层次导致训练时间的指数增长,使得深度前馈神经网络非常不实用。 直到00年代初,我们开发了一系列有效的训练深度前馈神经网络的方法; 现在它们构成了现代机器学习系统的核心 ,能实现前馈神经网络的功能,但效果远高于此。

【5】Recurrent Neural Network(RNN) 递归神经网络

【5】RNN递归神经网络 

RNN递归神经网络引入不同类型的神经元——递归神经元。这种类型的第一个网络被称为约旦网络(Jordan Network),在网络中每个隐含神经元会收到它自己的在固定延迟(一次或多次迭代)后的输出。除此之外,它与普通的模糊神经网络非常相似。

当然,它有许多变化 — 如传递状态到输入节点,可变延迟等,但主要思想保持不变。这种类型的神经网络主要被使用在上下文很重要的时候——即过去的迭代结果和样本产生的决策会对当前产生影响。最常见的上下文的例子是文本——一个单词只能在前面的单词或句子的上下文中进行分析。

【6】Long/Short Term Memory (LSTM) 长短时记忆网络

【6】LSTM长短时记忆网络 

LSTM长短时记忆网络引入了一个存储单元,一个特殊的单元,当数据有时间间隔(或滞后)时可以处理数据。递归神经网络可以通过“记住”前十个词来处理文本,LSTM长短时记忆网络可以通过“记住”许多帧之前发生的事情处理视频帧。 LSTM网络也广泛用于写作和语音识别。

存储单元实际上由一些元素组成,称为门,它们是递归性的,并控制信息如何被记住和遗忘。

【7】Gated Recurrent Unit (GRU)

 【7】GRU是具有不同门的LSTM

GRU是具有不同门的LSTM。

听起来很简单,但缺少输出门可以更容易基于具体输入重复多次相同的输出,目前此模型在声音(音乐)和语音合成中使用得最多。

实际上的组合虽然有点不同:但是所有的LSTM门都被组合成所谓的更新门(Update Gate),并且复位门(Reset Gate)与输入密切相关。

它们比LSTM消耗资源少,但几乎有相同的效果。

【8】Auto Encoder (AE) 自动编码器

 【8】AE自动编码器

Autoencoders自动编码器用于分类,聚类和特征压缩。

当您训练前馈(FF)神经网络进行分类时,您主要必须在Y类别中提供X个示例,并且期望Y个输出单元格中的一个被激活。 这被称为“监督学习”。

另一方面,自动编码器可以在没有监督的情况下进行训练。它们的结构 - 当隐藏单元数量小于输入单元数量(并且输出单元数量等于输入单元数)时,并且当自动编码器被训练时输出尽可能接近输入的方式,强制自动编码器泛化数据并搜索常见模式。

【9】Variational AE (VAE)  变分自编码器

 【9】VAE变分自编码器

变分自编码器,与一般自编码器相比,它压缩的是概率,而不是特征。

尽管如此简单的改变,但是一般自编码器只能回答当“我们如何归纳数据?”的问题时,变分自编码器回答了“两件事情之间的联系有多强大?我们应该在两件事情之间分配误差还是它们完全独立的?”的问题。

【10】Denoising AE (DAE) 降噪自动编码器

 【10】DAE降噪自动编码器

虽然自动编码器很酷,但它们有时找不到最鲁棒的特征,而只是适应输入数据(实际上是过拟合的一个例子)。

降噪自动编码器(DAE)在输入单元上增加了一些噪声 - 通过随机位来改变数据,随机切换输入中的位,等等。通过这样做,一个强制降噪自动编码器从一个有点嘈杂的输入重构输出,使其更加通用,强制选择更常见的特征。

【11】Sparse AE (SAE) 稀疏自编码器

【11】SAE稀疏自编码器 

稀疏自编码器(SAE)是另外一个有时候可以抽离出数据中一些隐藏分组样试的自动编码的形式。结构和AE是一样的,但隐藏单元的数量大于输入或输出单元的数量。

【12】Markov Chain (MC) 马尔科夫链

 【12】Markov Chain (MC) 马尔科夫链

马尔可夫链(Markov Chain, MC)是一个比较老的图表概念了,它的每一个端点都存在一种可能性。过去,我们用它来搭建像“在单词hello之后有0.0053%的概率会出现dear,有0.03551%的概率出现you”这样的文本结构。

这些马尔科夫链并不是典型的神经网络,它可以被用作基于概率的分类(像贝叶斯过滤),用于聚类(对某些类别而言),也被用作有限状态机。

【13】Hopfield Network (HN) 霍普菲尔网络

【13】HN霍普菲尔网络 

霍普菲尔网络(HN)对一套有限的样本进行训练,所以它们用相同的样本对已知样本作出反应。

在训练前,每一个样本都作为输入样本,在训练之中作为隐藏样本,使用过之后被用作输出样本。

在HN试着重构受训样本的时候,他们可以用于给输入值降噪和修复输入。如果给出一半图片或数列用来学习,它们可以反馈全部样本。

【14】Boltzmann Machine (BM) 波尔滋曼机

【14】 BM 波尔滋曼机 

波尔滋曼机(BM)和HN非常相像,有些单元被标记为输入同时也是隐藏单元。在隐藏单元更新其状态时,输入单元就变成了输出单元。(在训练时,BM和HN一个一个的更新单元,而非并行)。

这是第一个成功保留模拟退火方法的网络拓扑。

多层叠的波尔滋曼机可以用于所谓的深度信念网络,深度信念网络可以用作特征检测和抽取。

【15】Restricted BM (RBM) 限制型波尔滋曼机

【15】 RBM 限制型波尔滋曼机 

在结构上,限制型波尔滋曼机(RBM)和BM很相似,但由于受限RBM被允许像FF一样用反向传播来训练(唯一的不同的是在反向传播经过数据之前RBM会经过一次输入层)。

【16】Deep Belief Network (DBN) 深度信念网络

【16】DBN 深度信念网络 

像之前提到的那样,深度信念网络(DBN)实际上是许多波尔滋曼机(被VAE包围)。他们能被连在一起(在一个神经网络训练另一个的时候),并且可以用已经学习过的样式来生成数据。

【17】Deep Convolutional Network (DCN) 深度卷积网络

【17】 DCN 深度卷积网络

当今,深度卷积网络(DCN)是人工神经网络之星。它具有卷积单元(或者池化层)和内核,每一种都用以不同目的。

卷积核事实上用来处理输入的数据,池化层是用来简化它们(大多数情况是用非线性方程,比如max),来减少不必要的特征。

他们通常被用来做图像识别,它们在图片的一小部分上运行(大约20x20像素)。输入窗口一个像素一个像素的沿着图像滑动。然后数据流向卷积层,卷积层形成一个漏斗(压缩被识别的特征)。从图像识别来讲,第一层识别梯度,第二层识别线,第三层识别形状,以此类推,直到特定的物体那一级。DFF通常被接在卷积层的末端方便未来的数据处理。

【18】Deconvolutional Network (DN) 去卷积网络

 【18】 DN 去卷积网络

去卷积网络(DN)是将DCN颠倒过来。DN能在获取猫的图片之后生成像(狗:0,蜥蜴:0,马:0,猫:1)一样的向量。DNC能在得到这个向量之后,能画出一只猫。

【19】Deep Convolutional Inverse Graphics Network (DCIGN) 深度卷积反转图像网络

【19】 DCIGN 深度卷积反转图像网络

深度卷积反转图像网络(DCIGN),长得像DCN和DN粘在一起,但也不完全是这样。

事实上,它是一个自动编码器,DCN和DN并不是作为两个分开的网络,而是承载网路输入和输出的间隔区。大多数这种神经网络可以被用作图像处理,并且可以处理他们以前没有被训练过的图像。由于其抽象化的水平很高,这些网络可以用于将某个事物从一张图片中移除,重画,或者像大名鼎鼎的CycleGAN一样将一匹马换成一个斑马。

【20】Generative Adversarial Network (GAN) 生成对抗网络

 【20】 GAN 生成对抗网络

生成对抗网络(GAN)代表了有生成器和分辨器组成的双网络大家族。它们一直在相互伤害——生成器试着生成一些数据,而分辨器接收样本数据后试着分辨出哪些是样本,哪些是生成的。只要你能够保持两种神经网络训练之间的平衡,在不断的进化中,这种神经网络可以生成实际图像。

【21】Liquid State Machine (LSM) 液体状态机

 【21】 LSM 液体状态机

液体状态机(LSM)是一种稀疏的,激活函数被阈值代替了的(并不是全部相连的)神经网络。只有达到阈值的时候,单元格从连续的样本和释放出来的输出中积累价值信息,并再次将内部的副本设为零。

这种想法来自于人脑,这些神经网络被广泛的应用于计算机视觉,语音识别系统,但目前还没有重大突破。

【22】Extreme  Learning Machine (ELM) 极端学习机

【22】ELM 极端学习机 

极端学习机(ELM)是通过产生稀疏的随机连接的隐藏层来减少FF网络背后的复杂性。它们需要用到更少计算机的能量,实际的效率很大程度上取决于任务和数据。

【23】Echo State Network (ESN) 回声状态网络

【23】 ESN 回声状态网络

回声状态网络(ESN)是重复网络的细分种类。数据会经过输入端,如果被监测到进行了多次迭代(请允许重复网路的特征乱入一下),只有在隐藏层之间的权重会在此之后更新。

据我所知,除了多个理论基准之外,我不知道这种类型的有什么实际应用。。。。。。。

【24】Deep Resial Network (DRN) 深度残差网络

​【24】 DRN 深度残差网络 

深度残差网络(DRN)是有些输入值的部分会传递到下一层。这一特点可以让它可以做到很深的层级(达到300层),但事实上它们是一种没有明确延时的RNN。

【25】Kohonen Network (KN) Kohonen神经网络

​ 【25】 Kohonen神经网络

Kohonen神经网络(KN)引入了“单元格距离”的特征。大多数情况下用于分类,这种网络试着调整它们的单元格使其对某种特定的输入作出最可能的反应。当一些单元格更新了, 离他们最近的单元格也会更新。

像SVM一样,这些网络总被认为不是“真正”的神经网络。

【26】Support Vector Machine (SVM)

​【26】 SVM 支持向量机 

支持向量机(SVM)用于二元分类工作,无论这个网络处理多少维度或输入,结果都会是“是”或“否”。

SVM不是所有情况下都被叫做神经网络。

【27】Neural Turing Machine (NTM) 神经图灵机

​【27】NTM 神经图灵机 

神经网络像是黑箱——我们可以训练它们,得到结果,增强它们,但实际的决定路径大多数我们都是不可见的。

神经图灵机(NTM)就是在尝试解决这个问题——它是一个提取出记忆单元之后的FF。一些作者也说它是一个抽象版的LSTM。

记忆是被内容编址的,这个网络可以基于现状读取记忆,编写记忆,也代表了图灵完备神经网络。

阅读全文

与类别如何输入到神经网络相关的资料

热点内容
哪个网络大学是开卷考试 浏览:712
校园网络硬件设备有哪些 浏览:952
恢复网络信号的方法 浏览:398
金属外壳笔记本网络信号差 浏览:392
网络延时信号强度 浏览:658
网桥用来传输网络要怎么修改 浏览:622
怎么设置网络驱动 浏览:583
神经网络的权重大小多少合适 浏览:285
深圳新微物联网是哪个网络 浏览:82
网络恶意评论有多少 浏览:293
奶茶店网络营销 浏览:894
wifi可用网络主页连不上 浏览:259
网络机顶盒哪里有的买 浏览:330
宁德罗江科目三预约老是网络异常 浏览:209
珠海网络营销服务费 浏览:133
马来西亚无线通信网络有限公司 浏览:463
计算机网络isr是什么意思 浏览:546
山西省网络安全知识答题答案 浏览:272
东台手机电信4g网络 浏览:403
上海汇丰名都哪个运营商网络好 浏览:702

友情链接