计算机网络中信号传输方式分为调制解调(模拟信号)和编解码(数字信号)两种,常用的传输方式有网线传输,光纤传输,无线传输,目前新推出一些调制解调方式传输,使用双线就能传输网络数字信号,但前提是需要在线缆两端加上调制解调器,有需要的可以进一步交流。
❷ 网线是怎么传信号的
现在五百米的都没事,以前做监控不用电线,用网线五百米内距离传输信号衰弱的不厉害。
❸ 数据是如何在网络上传输的
我们电脑上的数据,是如何“走”到远端的另一台电脑的呢?这是个最基础的问题,可能很多人回答不上来,尽管我们每天都在使用网络。这里我们以一个最简单的“ping”命令,来解释一个数据包“旅程”。
假设:我的电脑A,向远在外地的朋友电脑B传输数据,最简单的就是“ping”一下,看看这个家伙的那一端网络通不通。A与B之间只有一台路由器。(路由器可能放在学校,社区或者电信机房,无所谓,基本原理是一样的)
具体过程如下------
1.“ping”命令所产生的数据包,我们归类为ICMP协议。说白了就是向目的地发送一个数据包,然后等待回应,如果回应正常则目的地的网络就是通的。当我们输入了“ping”命令之后,我们的机器(电脑A)就生成了一个包含ICMP协议域的数据包,姑且称之为“小德”吧~~~~
2.“小德”已经将ICMP协议打包到数据段里了,可是还不能发送,因为一个数据要想向外面传送,还得经过“有关部门”的批准------IP协议。IP要将你的“写信人地址”和“收信人地址”写到数据段上面,即:将数据的源IP地址和目的IP地址分别打包在“小德”的头部和尾部,这样一来,大家才知道你的数据是要送到哪里。
3.准备工作还没有完。接下来还有部门要审核------ARP。ARP属于数据链路层协议,主要负责把IP地址对应到硬件地址。直接说吧,都怪交换机太“傻”,不能根据IP地址直接找到相应的计算机,只能根据硬件地址来找。于是,交换机就经常保留一张IP地址与硬件地址的对应表以便其查找目的地。而ARP就是用来生成这张表的。比如:当“小德”被送到ARP手里之后,ARP就要在表里面查找,看看“小德”的IP地址与交换机的哪个端口对应,然后转发过去。如果没找到,则发一个广播给所有其他的交换机端口,问这是谁的IP地址,如果有人回答,就转发给它。
4.经过一番折腾,“小德”终于要走出这个倒霉的局域网了。可在此之前,它们还没忘给“小德”屁股后面盖个“戳”,说是什么CRC校验值,怕“小德”在旅行途中缺胳膊少腿,还得麻烦它们重新发送。。。。。我靠~~~~注:很多人弄不清FCS和CRC。所谓的CRC是一种校验方法,用来确保数据在传输过程中不会丢包,损坏等等,FCS是数据包(准确的说是frame)里的一个区域,用来存放CRC的计算结果的。到了目的地之后,目的计算机要检查FCS里的CRC值,如果与原来的相同,则说明数据在途中没有损坏。
5.在走出去之前,那些家伙最后折磨了一次“小德”------把小德身上众多的0和1,弄成了什么“高电压”“低电压”,在双绞线上传送了出去。晕~~出趟门就这么麻烦吗?
6.坐着双绞线旅游,爽!可当看到很多人坐着同轴电缆,还有坐光纤的时候,小德又感觉不是那么爽了。就在这时,来到了旅途的中转站------路由器。这地方可是高级场所,人家直接查看IP地址!剩下的一概不管,交给下面的人去做。够牛吧?路由器的内部也有一张表,叫做路由表,里面标识着哪一个网络的IP对应着路由器的哪一个端口。这个表也不是天生就有的,而是靠路由器之间互相“学习”之后生成的,当然也可以由管理员手工设定。这个“学习”的过程是依靠路由协议来完成的,比如RIP,EIGRP,OSPF等等。
7.当路由器查看了“小德”的IP地址以后,根据路由表知道了小德要去的网络,接着就把小德转到了相应的端口了。至此,路由器的主要工作完成,下面又是打包,封装成frame,转换成电压信号等一系列“折腾”的活,就由数据链路层和物理层的模块去干吧。
8.小德从路由器的出口出来,便来到了目的地----电脑B----所属的网络的默认网关。默认网关可以是路由器的一个端口,也可以是局域网里的各种服务器。不管怎样,下面的过程还是一样的:到交换机里的ARP表查询“小德”的IP地址,看看属于哪个局域网段或端口,然后就转发到B了。
9.进了B的网卡之后,还要层层“剥皮”,基本上和从A出来的程序是一样的------电脑B先校验一下CRC值,看看数据是否完整;然后检查一下frame的封装,看到是IP协议之后,就把“小德”交给IP“部门”了;IP协议一看目的地址,正确,再看看应用协议,是ICMP。于是知道了该怎么做了------产生一个回应数据包,(可以命名为“回应小德”),并准备以同样的顺序向远端的A发送。。至于刚刚收到的那个数据包就丢弃了。
10.“回应小德”这个数据包又开始了上述同样的循环,只不过这次发送者是B而接收者是A了。
以上是一个最简单的路由过程,任何复杂的网络都是在次基础之上实现的。
❹ 网络信号时靠什么传播的
信号一般在三种介质里传播,光缆,电缆,空气。
就拿手机信号说一下吧,首先用光缆传送到基站,然后基站又用电缆传送到铁塔上的天线,天线又从空气中传送到你手机,简单说就是这么一个过程。
❺ 网线是怎么传输数据的
一般情况下,网络从上至下分为五层:应用层、传输层、网络层、数据链路层、物理层。每一层都有各自需要遵守的规则,称之为“协议”。TCP/IP协议就是一组最常用的网络协议。
网线在网络中属于物理层,计算机中所需要传输的数据根据这些协议被分解成一个一个数据包(其中包括本地机和目的机的地址)后,按照一定的原则最后通过网线传输给目的机。通俗讲,和我们去寄信的道理一样,先写好信的内容(计算机上的数据)、装信封然后在封面上写地址(打包成数据包,里面包含本地机和目的机的地址)、寄出(传输),那么网线就相当于你的地址和你要寄到的地址之间的路。
(1)如上所述,和电线传输电的原理一样,只不过网线上传输的就是脉冲电信号,而且遵守一定的电气规则。
(2)计算机上的数据都是用0和1来保存的,所以在网线上传输时就要用一个电压表示数据0,用另一个电压表示数据1。
(3)网线上传输的是数字信号
(4)网线在传输数据就是传输电信号,就会有电流通过,那么就会产生电磁场,几根线之间的电磁场就会互相干扰,会影响电压,使得数据失真,所以把绞在一起就可以有效的抵消掉这种线之间的互相电磁干扰。
网线中传输的是数字信号,网卡工作在物理层,是将数据根据OSI的七层协议,从要传输的数据一级一级的转换成帧数据,用电信号的方式传输出去,接收方依同样的原理,转换成对方的原始数据。
RJ-45的接头实现了网卡和网线的连接。它里面有8个铜片可以和网线中的4对双绞(8根)线对应连接。其中100M的网络中1、2是传送数据的,3、6是接收数据的。1、2之间是一对差分信号,也就是说它们的波形一样,但是相位相差180度,同一时刻的电压幅度互为正负。这样的信号可以传递的更远,抗干扰能力强。同样的,3、6也一样是差分信号。
网线中的8根线,每两根扭在一起成为一对。我们制作网线的时候,一定要注意要让1、2在其中的一对,3、6在一对。否则长距离情况下使用这根网线的时候会导致无法连接或连接很不稳定。
首先说一下差分方式传输。所谓差分方式传输,就是发送端在两条信号线上传输幅值相等相位相反的电信号,接收端对接受的两条线信号作减法运算,这样获得幅值翻倍的信号。其抗干扰的原理是:假如两条信号线都受到了同样(同相、等幅)的干扰信号,由于接受端对接受的两条线的信号作减法运算,因此干扰信号被 基本抵消,那么怎样才能保证两条信号线受到的干扰信号尽量是同相、等幅的呢?办法之一那就要将两根线扭在一起,按照电磁学的原理分析出:可以近似地认为两条信号线受到的干扰信号是同相、等幅的。 两条线交在一起后,既会抵抗外界的干扰也会防止自己去干扰别人。一般常用的就是双绞线。
大多数局域网使用非屏蔽双绞线(UTP—Unshielded Twisted Pair)作为布线的传输介质来组网,网线由一定距离长的双绞线与RJ45头组成。双绞线由8根不同颜色的线分成4对绞合在一起,成队扭绞的作用是尽可能减少电磁辐射与外部电磁干扰的影响,双绞线可按其是否外加金属网丝套的屏蔽层而区分为屏蔽双绞线(STP)和非屏蔽双绞线(UTP)。在EIA/TIA-568A标准中,将双绞线按电气特性区分有:三类、四类、五类线。网络中最常用的是三类线和五类线,超五类,目前已有六类以上线。第三类双绞线在LAN中常用作为10Mbps以太网的数据与话音传输,符合IEEE802.3 10Base-T的标准。第五类双绞线目前占有最大的LAN市场,最高速率可达100Mbps,符合IEEE802.3 100Base-T的标准。做好的网线要将RJ45水晶头接入网卡或HUB等网络设备的RJ45插座内。相应地RJ45插头座也区分为三类或五类电气特性。RJ45水晶头由金属片和塑料构成,特别需要注意的是引脚序号,当金属片面对我们的时候从左至右引脚序号是1-8, 这序号做网络联线时非常重要,不能搞错。双绞线的最大传输距离为100米。 EIA/TIA的布线标准中规定了两种双绞线的线序568B与568A。
标准568B:橙白--1,橙--2,绿白--3,蓝--4,蓝白--5,绿--6,棕白--7,棕--8
标准568A:绿白--1,绿--2,橙白--3,蓝--4,蓝白--5,橙--6,棕白--7,棕--8
568A和568B两者有何区别呢?后者是前者的升级和完善,但是后者还处于草案阶段,包含永久链路的定义和六类标准。另外在综合布线的施工中,有着568A和568B两种不同的打线方式,两种方式对性能没有影响,但是必须强调的是在一个工程中只能使用一种打线方式。
至于5类和超5类的不同主要是应用的不同。5类系统在使用过程中只是使用其中的两对线缆,采用的是半双工,而超5类为了满足千兆以太网的应用,采用四对全双工传输。因而远端串扰(FEXT),回波损耗(RL)、综合近端串扰(PSNEXT)、综合ACR和传输延迟也成为必须考虑的参数。所以超5类比5类有着更高的性能要求。6类和5类实质的区别在于它们的带宽不同,5类只有100MHz,六类是250MHz。它们支持的应用也因为性能的不同而不同,6类支持更高级别的应用。在性能上6类也比5类有更高的要求,为了提高性能,在结构上6类比5类也要复杂一些RJ45接头的8个接脚的识别方法是,铜接点朝自己,头朝右,从上往下数,分别是1、2、3、4、5、6、7、8。
在整个网络布线中应用一种布线方式,但两端都有RJ-45 的网络联线无论是采用568A,还是568B, 在网络中都是通用的。规定双工方式下本地的1、2两脚为信号发送端,3、6两脚为信号接收端,所以讲,这两对信号必须分别使用一对双绞线进行信号传输。在做线时要特别注意。现在100M网一般使用568B方式,1、2两脚使用橙色的那对线,其中白橙线接1脚;3、6两脚使用绿色的那对线,其中白绿线接3脚,绿线接6脚,剩下的两对线在10M、100M快速以太网中一般不用,通常将两个接头的4、5和7、8两接头分别使用 一对双绞线直连,4、5用蓝色的那对线,4为蓝色,5为白蓝色;7、8用棕色的那对线,7为白棕色、8为棕色。如果网线两头都按一种方式这么做的话就叫做直连缆方式或直通线方式。
如果网线的两头不按一种方式,一头是568B,另一头是568A,那么这种做法叫交*缆,其实就是只须将其中一个 头在568B的基础上1、2和3、6对调一下就行。不同的做法用在不同的环境,后面会讨论。
很多人以为做直连缆时将线排成,这是错误的。这既不是568A也不是568B。这种做法3、6信号线未绞在一起,失去了双绞线的屏蔽作用。虽然在传输距离近时能正常使用不容易被发现,当传输距离远时会出现丢包,或者导致局域网速度慢,很多人会怀疑网卡质量和网线质量,往往不会想到是线做的有问题。
当网线作为局域网线路时,电压不超过3伏
作为电话线路时,电话在待机状态(即没拿起来时)供电电压为-48V(反向电位) 当电话被打通需要震铃时,供电电压为+48V(正向电位)并且叠加24V 25HZ交流,使其成为72V交流25HZ震荡信号。这样就会震铃了。 当拿起电话后(无论是对方打来还是你自己拿起)电压从-48V下降并转换为+8—+18V(这个由你线路距离局端设备远近而不同) 电话是以恒流方式供电。也就是,电流一定,功率越大,电压越高。并且除了震铃之外,其他的全部为直流送电,包括脉冲直流 并且,如果是之后新装的线路中,大多地区已经使用数字模拟混合接入,即若你的电话为06年之后购买并符合标准的,则为数字信号,用载波模式装载到线路中传输,若为之前的或者局端设备还没有更新,那么则是模拟信号,用电流高低震荡的方式传送。
作为电口出来的网线时,网线供电器的输出电压一般是24V或者48V,INTEL的设备就是24V,CISCO和神脑的设备就是48V,这样经过100米的网线传输后,电压还是足够的,而这些网络设备内部还有一个转换电路,将这些可能高于要求的电压降到正常范围内。
数字信号从Internet上下载下来,通过ISP接入你所在区域的交换机,通过D/A变换变成模拟信号,经过4线至2线的变换后,传到你的调制解调器,再经过一次A/D变换,还原成计算机可接受的数字信号。
评论