❶ 为什么移动通信中的下行频率比上行频率的高
GSM基站覆盖延伸系统应用后系统上、下行平衡考虑
一、引言
随着移动用户的增加,移动用户的活动范围越来越广,移动网络要不断加深覆盖的范围及深度。然而在解决山区道路、边远地区村落的覆盖问题时,如新建基站、直放站等传统网络优化方式在工程实施上难度很高,投资成本和效益回报也不合理。
众所周知,通过加强基站的发射功率可以扩大基站到终端的覆盖范围。通过自由空间衰耗公式:Ls=32.45+20*log(f)MHz +20log(d)Km可以知道,基站发射功率提高6dBm,覆盖距离将提高一倍。手机接收信号加强,但普通手机的最大功率33dBm,如果远离基站,手机的上行信号如果不增强就无法解析。造成系统上、下行覆盖不平衡,后果便是单通、质量差、掉话等。基站覆盖延伸系统从基站系统上、下行两个方向改善基站覆盖范围,是解决信号广度、深度覆盖的一种好办法。
二、基站覆盖延伸系统简介
基站覆盖延伸系统主要由基站放大器和塔顶放大器两部分组成,简称基放和塔放。基放是安装在基站机房里,用于提高基站发射功率,扩大下行信号覆盖范围。塔放是安装在基站天线口的低噪声放大设备,用来增强手机上行发射功率,提高基站接收灵敏度。基站覆盖延伸系统工作原理如图1所示。
通常基站载频发射功率为43dBm/单载波。而200W的基放输出功率能达到53dBm/单载波,下行信号增强10dB。基站覆盖延伸系统对上行信号增强约10dB。整个系统能有效地延伸基站的覆盖范围。
三、加装基站覆盖延伸后对系统上、下行覆盖的影响
1、加装塔放对系统噪声系数的分析:
噪声系数NF用来描述放大器对信噪比的恶化程度,噪声系数越小,输出的信噪比恶化程度就越小。
对一个多级放大系统,它的系统噪声系数为:
NF = F1+ (F2-1)/G1 + (F3-1)/G1*G2 + ……
其中:F1、F2、F3…是第一级到第三级的的噪声系数,无源器件的噪声系数等于其损耗值。
G1,G2…是第一级到第二级的增益,无源器件增益等于其损耗值得倒数。
从以上公式可以看出,多级放大系统的噪声系数主要取决于第一级的噪声系数F1。
塔放的原理就是通过在基站接收系统的前端,即紧靠接收天线下增加一个低噪声放大器来实现对基站接收性能的改善。
2、上、下行平衡的分析
2.1 上、下行平衡的定义
在我们所要求的覆盖区域内,保证上、下链路正常传输,基站和手机分别接收的信号可以解调,从而保证双向通信的正常建立。
2.2 原基站系统上、下行平衡的理论推算
如图所示:
理论上基站口的上行接收灵敏度MBTS=-110dBm,上行分集接收增益约F=4dB,手机的接收灵敏度MMS=-104dBm,手机的最大发射功率PMS=33dBm,假设BTS到天线口的信号衰减量R=4dB,天线增益为S,基站发射功率为T。
若要求上、下行平衡,则上行可允许的最大空间损耗HRX=下行可允许的最大空间损耗HTX。
其中: MBTS=PMS-HRX+F+S-R
MMS=T-R+S-HTX
所以: HRX =PMS-MBTS +F+S-R
HTX =T-R+S- MMS
由HRX= HTX可得:
为保证上下行的理想平衡,基站口的发射有效功率为
T= PMS-MBTS +F+MMS
=33dBm-(-110dBm)+4dB+(-104dBm)=43dBm
由此可以看出,基站单载波发射功率在(20W)43dBm时,上行覆盖范围和下行覆盖范围相当,系统处于较理想的平衡状态。
2.3、加装基放后的上、下行平衡推算。
2.3.1 塔放增益的选择。
未加装塔放的原基站系统噪声系数Nfsys(天线口)约为:
Nfsys = Nfbts+ Lc 【公式-1】
其中:Nfbts是基站本身的噪声系数
Lc为馈线回路的损耗
加装塔放后系统噪声系数约为:
NF = NFTA + (Nfsys-1)/GTA 【公式-2】
从上述两公式中可以得出以下结论:
⑴ 基站在使用塔放前噪声系数Nfsys是由BTS设备本身噪声系数Nfbts和天馈线损耗Lc决定的。
⑵使用塔放后的基站接收噪声系数NF主要取决于塔放的噪声系数NFTA。在馈线较长,损耗Lc越大时,加装塔放对基站系统的接收灵敏度改善越明显。
⑶ 塔放增益GTA越大,基站接收系统噪声NF越小。但塔放增益GTA增大,也会提高白噪声KTB电平,影响基站对信号的接收。
一般GSM基站对0级信号通话质量的底部噪声定义是小于-113dBm。常温情况下,GSM系统的白噪声NKTB=-121dBm,为保证上行的通话质量,接收噪声电平值要满足以下要求:塔放增益GTA +(-121dBm)+ NF - Lc≤-113dBm。加装塔放后系统噪声系数NF约等于2dB。一般情况下,Lc≤4dB,所以塔放增益G≤10dB。当然每个站点塔放的工作增益应根据馈线回路的损耗Lc的大小做适当调整。
2.3.2基放功率的选择。
一般情况下,基站口的发射功率是43dBm/单载波时,下行覆盖-104dBm的地方,手机信号到达基站刚好能够被解调,属于较理想的平衡状态。
这里我们还是首先假设条件如下:
基站口上行接收灵敏度为-110dBm(分集处理增益4dB);
手机的最大发射功率为33dBm。
基站接收信号最低载噪比 C/I=9;
基站自身的噪声系数为Nfbts =3.5dB;
通过基站解调上行信号的最低载噪比C/I=9-Nfbts=9-3.5=5.5dB,
塔放噪声系数为NFTA=1.5dB;
馈线回路的损耗Lc=4dB;
塔放增益GTA =10dB;
要使得手机信号到达基站能够被正确解调需要同时满足两个条件:1、到达基站(分集增益4dB后)电平值信号电平值不低于-110dBm;2、基站解调时信号载噪比C/I不得低于3.5dB。下面我们来分析加装塔放前后天线口需要的电平值的大小区别。
⑴ 未加装塔放前基站天线口的最低接收信号电平
= 基站口上行接收灵敏度(分集处理前) + Lc
= -110dBm + 4dB
= -106dBm
基站处理后解调前C/I=-106-Lc-NKTB-Nfbts =7.5dB> 5.5dB
两个条件都满足时天线口的最低电平值为P前 = -106dBm
⑵ 加装塔放后的基站天线口的最低接收信号电平
= 基站口上行接收灵敏度 + Lc - 塔放增益
= -110 + 4-10
= -116dBm
加装延伸系统后的整体噪声系数NF约为2dB,那么
基站处理后的C/I= -116- NKTB-NF= 3dB <5.5dB
由于C/I不能达到5.5dB,不能被正确解调。
为了保证解调时的最低C/I值5.5dB,所需要的天线口最低接收电平值为-116+(5.5-3)=-113.5dBm
两个条件都满足时天线口的最低电平值为P后= -113.5dBm
⑶通过比较可以看出,加装塔放后基站上行灵敏度抬高值为
P前-P后 = -106-(-113.5)=7.5dB
在以上情况下,塔放提高了基站的接收灵敏度7.5dB。很显然对于Lc越大,提高的基站接收灵敏度就越大,具体详细列表如下:
馈线回路 基站设备噪声 加装塔放后整体 基站接收
的损耗Lc 系数Nfbts 噪声系数 灵敏度改善量
3dB 3.5dB 2 dB 6.5 dB
4 dB 7.5 dB
5 dB 8.5 dB
由以上结论可以看出,要想使得基站在加装覆盖延伸系统后仍保持理想平衡状态,基放的功率Pj=43+基站接收灵敏度改善量。
以上结论是基于上下行传输损耗完全一致来推断的。如果基站的分集接收效果好于4dB,或者在草原、沙漠、海域等区域信号覆盖需求大于通话质量需求的情况下,基站放大器功率也可以适当放大。
四、由于上、下行平衡原因可能出现的问题探讨
在实际的应用中,无线信号的绕射、反射、和周围无线环境的影响,下行信号强于-94dBm时对正常通信才具有保障。无形之中将手机的接收信号强度由原来理论的-104dBm提升到-94dBm,所以,我们将-94dBm作为下行信号覆盖的边缘场强来对上、下行的平衡来做分析,来探讨可能出现的问题及克服办法。
Lc=4dB情况下,使用了53dBm(200W)的基放,下行覆盖范围延伸了10dB。塔放改善了基站接收灵敏度7.5dB。覆盖范围的延伸情况如下图所示:
由此可以得出以下结论:
⑴ 在下行信号高于-91.5dBm的B、A区域内,上、下行都具有距理论极限10dB的余量,上、下行可以正常通信,我们认为是平衡的。
⑵ 在下行信号为-101.5dBm ~ -91.5dBm的D、C区域内,下行有2.5dB以上余量,基本可以正常通信;上行具有的余量在0~10dB之间,从而上行通信具有一些不可靠性。
⑶ 在下行信号为-104dBm ~ -101.5dBm的E区域内,下行有0~2.5dB的余量,具有不可靠性;上行具有的信噪比已经不能满足要求,不能通信。我们认为这个区域是不平衡的。
安装基站覆盖延伸系统后基站统计指标的变化是和基站周围的用户分布相关的。在Lc=4dB情况下,如果大部分用户多分布在B、C区域内,覆盖延伸系统开通前基站掉话率较高,开通后该指标会大大改善。相反如果用户大多分布在D、E区域内,开通前用户不能通话,不会对掉话指标造成影响;但开通后,这些用户进入了不可靠通话区域,就会大大影响基站掉话率指标。通常的办法是加大基站天线俯仰角,或降低下行发射功率,缩小下行覆盖范围接近上行覆盖范围。或者通过基站参数设置抬高该基站允许接入电平值,改善基站统计指标。
结束语:基站覆盖延伸系统可以以最快捷的方式扩大系统覆盖范围。但不同的用户分布范围、不同的基站馈路损耗值Lc就对基站有不同的指标影响。因此在使用该设备之前需要作详细的现场勘查,根据具体情况来设计覆盖功率,否则会引起质差、掉话率高等指标恶化的问题。
❷ 蜂窝系统四大主要功能
常见的蜂窝移动通信系统按照功能的不同可以分为三类,它们分别是宏蜂窝、微蜂窝以及智能蜂窝,通常这三种蜂窝技术各有特点。 [2]
宏蜂窝技术
蜂窝移动通信系统中,在网络运营初期,运营商的主要目标是建设大型的宏蜂窝小区,取得尽可能大的地域覆盖率,宏蜂窝每小区的覆盖半径大多为1 km~25 km,基站天线尽可能做得很高。在实际的宏蜂窝小内,通常存在着两种特殊的微小区域。一是“盲点”,由于电波在传播过程中遇到障碍物而造成的阴影区域,该区域通信质量严重低劣;二是“热点”,由于空间业务负荷的不均匀分布而形成的业务繁忙区域,它支持宏蜂窝中的大部分业务。以上两“点”问题的解决,往往依靠设置直放站、分裂小区等办法。除了经济方面的原因外,从原理上讲,这两种方法也不能无限制地使用,因为扩大了系统覆盖,通信质量要下降;提高了通信质量,往往又要牺牲容量。近年来,随着用户的增加,宏蜂窝小区进行小区分裂,变得越来越小。当小区小到一定程度时,建站成本就会急剧增加,小区半径的缩小也会带来严重的干扰,另一方面,盲区仍然存在,热点地区的高话务量也无法得到很好的吸收,微蜂窝技术就是为了解决以上难题而产生的。
微蜂窝技术
与宏蜂窝技术相比,微蜂窝技术具有覆盖范围小、传输功率低以及安装方便灵活等优点,该小区的覆盖半径为30 m~300 m,基站天线低于屋顶高度,传播主要沿着街道的视线进行,信号在楼顶的泄露小。微蜂窝可以作为宏蜂窝的补充和延伸,微蜂窝的应用主要有两方面:一是提高覆盖率,应用于一些宏蜂窝很难覆盖到的盲点地区,如地铁、地下室;二是提高容量,主要应用在高话务量地区,如繁华的商业街、购物中心、体育场等。微蜂窝在作为提高网络容量的应用时一般与宏蜂窝构成多层网。宏蜂窝进行大面积的覆盖,作为多层网的底层,微蜂窝则小面积连续覆盖叠加在宏蜂窝上,构成多层网的上层,微蜂窝和宏蜂窝在系统配置上是不同的小区,有独立的广播信道。
智能蜂窝技术
智能蜂窝技术是指基站采用具有高分辨阵列信号处理能力的自适应天线系统,智能地监测移动台所处的位置,并以一定的方式将确定的信号功率传递给移动台的蜂窝小区。对于上行链路而言,采用自适应天线阵接收技术,可以极大地降低多址干扰,增加系统容量;对于下行链路而言,则可以将信号的有效区域控制在移动台附近半径为100~200 波长的范围内,使同道干扰大小为减小。智能蜂窝小区既可以是宏蜂窝,也可以是微蜂窝。利用智能蜂窝小区的概念进行组网设计,能够显着地提高系统容量,改善系统性能。
❸ 蜂窝网络的可靠性
无线蜂窝网在提高无线网络的覆盖率方面起到关键性作用。在宽带无线城域网中,可采用网状结构来实现低成本高效率的大面积覆盖。网状结构的优点很多,如网络出故障时提供有效的迂回路由,确保通信畅通无阻;与专线或菊花链相比更具弹性和可靠性,而且网络具有自配置、自组织和自愈的能力。
首先进入这个市场的有Tropos、Mesh-Network和BelAir网络公司,此外NortelNetworks也不甘落后。从目前来看,互联网和FTTH(光纤到户)都是蜂窝网的应用领域。
长期以来,无线网络信奉中央控制模式,这也带来潜在的风险,比如传输瓶颈、遗留的老系统或单点故障等。但是,无线蜂窝网络作为无线交换另一项技术日渐兴起。通过组织成的网格拓扑结构,从交换机到接入点,蜂窝网络都能分配智能。
这种拓扑结构的发展符合计算机行业体系结构的演变过程。首先,计算环境是独立主机系统,随后是客户机/服务器,然后是对等网络。网络的体系结构将毫无疑问进化成一个分布式、动态的无线体系结构。
蜂窝网络允许节点或接入点与其他节点通信,而不需要路由到中心交换点,从而消除了集中式的故障,提供自我恢复和自我组织的功能。虽然通信量的决策是在本地实施,但系统可以在全球管理。 今天的无线局域蜂窝网络采用基于802.11a/b/g标准,但是它们可以扩展到任何射频技术,如UltraWideband或802.15.4Zigbee。因为网络智能保留在每一个接入点,所以不需要集中式交换机——只需要智能接入点和网络处理器、交换能力和系统软件。
网络在蜂窝结构中相互连接时,首先,节点的自我发现功能必须确定它们是作为无线设备的接入点来服务,还是作为来自另一节点的信息量的骨干网来服务,或者两项功能都具备。
其次,单一的节点用发现查询/响应协议来定位它们的邻居。这些网络协议必须简洁,所以不能增加信息流量的负担,即它们不能超过可用带宽的1%到2%。
一旦某节点识别出另一个节点,它们会计算路径信息,如接收信号的强度、吞吐量、错误率和遗留的老系统等。这些信息必须在节点之间交换,但又不能占用太多的带宽。基于这些信息,每一个节点都能够选择通向其邻居的最佳路径,从而使每一时刻的服务质量达到最优。
网络发现和路径选择的过程在后台运行,这样每一个节点保留现有邻居的列表并不断重新计算最佳路径。因为在维护、重新安排或出故障时,假如一个节点从网络中断开,临近它的节点可以迅速地重新配置它们的信息列表并重新计算路径,以便在网络发生变化时,保持信息流量。这种自我恢复的特性或纠错能力,是蜂窝结构与集线器辐射网络的区别所在。 每一个节点都是自我管理的,作为一个有组织的网络的一部分,它可以作为单一实体从中心点得到管理和配置。采用SNMP协议,系统管理员可以设置和监控单个元素、节点、域或整个网络。发现协议简化了寻找和定位节点,并在管理显示屏上显示的任务。
因为蜂窝网络依赖于管理、控制和发现信息,它们必须保障自身流量和用户流量的安全。带内信息通过加密隧道进行传输,可以防止窃听或类似的攻击。基于标准的安全技术,如802.1x和高级加密标准等加密技术,确保只有经授权的无线网络设备和节点能连接进来并得到正确的加密。
当布线困难或费用昂贵时,蜂窝网络是一项极佳的无线技术。商用市场上最普遍的蜂窝网络体系结构,是由从无线链接上的路由数据包到中心有线网络构成的。此体系结构对那些希望创建无线宽带蜂窝网络,比如用802.11热点来覆盖广泛的地理范围的无线Internet供应商(WISP)来说,是最佳的选择。利用802.11这个无需政府授权的频段,蜂窝网络技术能够以比现有蜂窝技术低得多的成本来提供高带宽。此结果将导致未来的手机接入互联网的费用保持在人们能够普遍接受的价格水平,从而带来一个全新的无线设备和服务市场,比如在手持媒体播放器上传输视频。
在企业级市场,蜂窝架构让IT部门将无线覆盖延伸到没有布线基础设施的地区。在这种状况下,蜂窝接入点与现有无线网络接入点整合,来延长Wi-Fi,覆盖到那些无法通过有线接入的地区。需要指出的是,蜂窝网络接入点的增加会提高网络的潜力。在802.11环境中,当数据包在用户设备和有线网络之间传递时,每一个无线跳将会增加1ms~2ms的延迟。
所以,在设计蜂窝网络时,需要仔细考虑蜂窝网络的大小及采用应用软件的类型。另一个让人关心的问题是蜂窝网络为私人所有。但是,我们开始看到关于标准化的努力在不断付诸实施,因为一些公司在基于现有802.11的技术上开发系统。事实上,1月11~16日召开的IEEE802.11工作小组会议上,成立了一个研究小组,为蜂窝网络开发建立一个业界公认的标准。这向前迈出了重大一步,因为蜂窝网络的使用将会随着标准的形成而得到发展。通过扩大无线网络的覆盖区域,超越现有的物理界线,蜂窝技术将会为现有802.11无线网络系统提供很好的补充。
1、也是提升效果最显着的是通过载波聚合(carrier aggregation,CA),这是增加上行/上传速度的主要解决方案。透过结合两个以上的载波,整体网络带宽得以扩展;正成为主流标准的LTE Cat 6,可利用单个20MHz的载波提供50Mbps的上行速度,即将问世的Cat 7标准则能利用两个20MHz载波,将上行速度提升一倍,达到100Mbps。
2、提升网络上行速度的方法是透过高阶调变(higher-order molation);基本的LTE利用正交振幅调变(Quadrature Amplitude Molation,QAM)让每个发射出的符号代表更多位,因此在相同的总带宽能提高数据传输速率。16 QAM能透过载波聚合让两个20MHz频段结合,让上行速度达到100Mbps。
3、而利用64QAM,上行速度可增加50%达 到150Mbps,不过转移至64 QAM需要更好的信号噪声比(signal-to-noise ratio);这会在智能手机靠近基地台时发生,而随着在人口密集的都会区有越来越多的大型或小型基地台布署,64QAM变得实际可行,能改善使用者体验。
❺ 提升手机网络上行速度有几种方法
身为智能手机使用者,我们已经很习惯每天用它看新闻视频、下载应用程序与游戏,或是观看YouTube的视频片段;而我们也越来越常把自己拍摄的影片上传到YouTube——根据该公司的统计,全球每一分钟就有300小时的视频内容上传。此外,全球一天有7,000万张照片被上传到Instagram。
显 然使用者渴望与其他人分享生活体验,而值得注意的是,在一些大型体育赛事或文化活动期间,移动通信网络上行流量(uplink traffic)就会大幅增加。我们会想要用智能手机做更多的事情,对网络流量的需求也越来越高,但目前的瓶颈在于上传速度。随着高画质的1,200万 以上像素、支持4K视频的摄影机成为手机标配,我们的移动通信网络必须要适应急遽增加的上传流量。
有三种方法能提升LTE网络的上传速度,第一个、也是提升效果最显着的是通过载波聚合(carrier aggregation,CA),这是增加上行/上传速度的主要解决方案。透过结合两个以上的载波,整体网络带宽得以扩展;正成为主流标准的LTE Cat 6,可利用单个20MHz的载波提供50Mbps的上行速度,即将问世的Cat 7标准则能利用两个20MHz载波,将上行速度提升一倍,达到100Mbps。
提升LTE网络上传速度的三种方法
Source:Will Strauss
第 二个提升网络上行速度的方法是透过高阶调变(higher-order molation);基本的LTE利用正交振幅调变(Quadrature Amplitude Molation,QAM)让每个发射出的符号代表更多位,因此在相同的总带宽能提高数据传输速率。16 QAM能透过载波聚合让两个20MHz频段结合,让上行速度达到100Mbps。
而利用64QAM,上行速度可增加50%达 到150Mbps,不过转移至64 QAM需要更好的信号噪声比(signal-to-noise ratio);这会在智能手机靠近基地台时发生,而随着在人口密集的都会区有越来越多的大型或小型基地台布署,64QAM变得实际可行,能改善使用者体验。
如果大家想要提高苹果手机的上网速度,可以参考以下方法。具体方法如下:
工具/原料:
1、首先在我们的手机桌面上找到设置并点击它。