Ⅰ 城市道路网密度多少合适
《城市道路交通规划设计规范》 (GB50220-95)的第20页有一个表不同人口规模的城市各种级别的道路的密度都有相应的规划指标
Ⅱ 路网密度的计算方法
计算方法:路网密度等于某一计算区域内所有的道路的总长度与区域总面积之比,单位为千米每平方千米。
城市范围内由不同功能、等级、区位的道路,以一定的密度和适当的形式组成的网络体系结构。
对交通而言,路网密度越高,道路长度越长,能提供更多的道路接入空间,也能提供更密的人行和非机动车网络以及公交线路服务空间,同时路网的联通度更好,所谓的容错能力或者循环能力更强。
对非工业仓储等城市用地而言,路网越密,地块划分越小,能提供更多的沿街面、更多的开放空间,提升街道邻里的交流机会,提升城市空间趣味,从而提高地区的多元化和活力以及土地价值。
(2)网络密度指标如何分析扩展阅读
在谈道路分类(等级)时都会涉及到Mobility和Accessibility两个概念,一般等级越高的道路Mobility功能越强,等级越低Accessibility功能越强。
对路网密度而言也可以存在类似的逻辑,路网密度越高就能提供更多的Access的可能性,但与之同时道路宽度减小,交叉口密集,Mobility会相对下降。在同等条件下用平均车速判断拥堵的时候,越密的路网拥堵可能性越大。总而言之,路网的疏密与道路交通的不同功能存在一定的关系。
Ⅲ 网络科学的网络属性
度
对于一个节点,若看作源节点,
出度:由源节点指向其他节点的边数;
入度:其他节点指向源节点的边数;
度:出度与入度的和。
密度:
网络密度 是网络中已有的边数与总的可能存在的边数的比率,(通俗说就是现有的边数与所有的点都连接的边数的比值)。对于一个有N个节点的无向图网络,理论上边数最大为,则密度,其中是图中存在的边,对于一个有向图网络,密度,其中是单向的边。
平均度:
网络图的平均度和密度有着密切的关系,其平均度,在ER随机图模型中,我们可以计算其中是连接两个节点的概率。
平均路径长度(Average path length)
平均路径长度:首先计算通过寻找所有成对的节点之间的最短路径长度,然后把它们的长度求和,然后除以总对数,就是平均路径长度。这告诉我们平均路径长度是一个节点到网络中的另一个节点所要走的平均长度。
网络直径(Diameter of a network)
作为测量网络图的另一个度量标准,我们可以定义网络直径为网络中最短路径的最大值,换句话说,首先计算每个节点到其他节点的最短路径,则网络直径就是最短路径的最大值。直径代表着线性网络的大小。
聚集系数(Clustering coefficient)
聚类系数是测量“all-my-friends-know-each-other”。通常被描述为我的朋友的朋友还是我的朋友。更准确的是,一个节点的聚类系数是这个节点存在的连接点数与最大可能的连接点数的比值,一个网络整体的聚类系数是各个节点聚类系数的取平均值,同时具有小的平均路径和高的群聚系数,就形成了小世界效应。
则节点的聚类是,其中是邻居节点的数量,是邻居节点的邻居的连接数,则邻居节点的最大连接数为。
连通性
连通性扮演者重要的作用在分析和解释网络的连通性时,图根据连通性被归类在四个不同的类别: 派系/完全图:所有节点都能连接到其他所有节点的图是一个完全连通图。如果所有节点都有其他全部节点的内部链接和外部链接,则这个网络都是对称的。 最大连通子图:最大的连通分支。 弱连通图:一个节点集合中存在任何其他节点都能相互到达的路径,忽略边的方向性。 强连通图:一个节点集合中存在任何节点都能相互到达路径,需要考虑边的方向性。
Ⅳ 脑网络分析的指标
1. 边( link,edge) ,脑区间的功能连接
2. 节点(vertex 或 node) ,脑区
3. 节点度(degree) ,度ki,直接连接在一个节点的边的个数, 节点的度越大则该节点的连接就越多, 节点在网络中的地位也就越重要.
4. 度分布(degree distribution) , 度分布P(k) 是网络最基本的一个拓扑性质, 它表示在网络中等概率随机选取的节点度值正好为k 的概率, 实际分析中一般用 网络中度值为k 的节点占总节点数的比例近似表示 . 拥有不同度分布形式的网络在面对网络攻击时会表现出截然不同的网络行为。
5. 区域核心节点(provincial hub)
6. 连接中枢点( connector hub)
7. 中心度(centrality) 中间中心度bi(centrality). 一个节点对网络中其他节点的信息流的影响。中心度是一个用来 刻画网络中节点作用和地位的统计指标 , 中心度最大的节点被认为是网络中的 核心节点(hub) .
8. 度中心度(degree centrality) ,最常用的 度中心度以节点度刻画其在网络中的中心程度
9. 介数中心度( betweenness centrality) ,介数中心度(betweenness centrality)则从信息流的角度出发定义节点的中心程度. 介数中心性用来确定网络中最中心的节点,即网络中起桥梁作用的节点。hub脑区大多数位于接受多个脑区信息的联络皮层,比如豆状核,海马,颞中回,顶上回,额上回等。 节点i 的介数 Bi 定义为通过该节点的最短路径的数目。归一化介数可通过如下公式计算:
介数越大的节点代表网络中越关键的节点(如 hub 节点),在该研究中我们定义网络的hub 节点为 bi 大于 1.5 倍的所有节点的介数平均值。
对于网络G 中的任意一点i, 其介数中心度的计算公式如下
10. 节点强度( node strength) , 加权网络中由于考虑了边的权值,无权网络中的度与度的分布特征在加权网络中进一步推广为强度与强度的分布。与节点度相比, 节点强度不仅考虑了与节点连接的边的数目,更进一步考虑了与节点连接的相应的边的权值 ,能够更加科学的衡量作者的局部网络特征,在采用累积频次加权的作者合作加权网络中,节点强度是指作者与其合作对象的累积绝对合作频次。
11. 最短路径长度(shortest path length) ,最短路径长度,(shortest path length).最短路径对网络的信息传输起着重要的作用, 是描述网络内部结构非常重要的一个参数. 最短路径刻画了网络中某一节点的信息到达另一节点的最优路径,通过最短路径可以更快地传输信息, 从而节省系统资源. 两个节点i,j之间边数最少的一条通路称为此两点之间的最短路径, 该通路所经过的边的数目即为节点i,j之间的最短路径长度, lij. 网络最短路径长度L 描述了网络中任意两个节点间的最短路径长度的平均值
12. 特征路径长度( characteristic path length) Lp ,网络整体路由效率的程度。对于特征路径长度的计算,有断键重连的标准小世界网络方法和添加长键转化小世界网络方法。 该指标衡量了网络的信息并行处理的能力或全局效率(1/ Lp),特征路径长度的增加说明了脑区之间的信息传输和交互效率降低。 一个网络的特征路径长度 Lp , 是网络中任意两节点的最短路径的平均 :
13. 聚类系数( clustering coefficient) ,聚类系数Cp,网络的聚类程度,集群系数衡量的是网络的集团化程度, 是度量网络的另一个重要参数, 表示某一节点i 的邻居间互为邻居的可能. 节点i 的集群系数Ci的值等于该节点邻居间实际连接的边的数目(ei)与可能的最大连接边数(ki(ki–1)/2)的比值。 该指标衡量了网络的局部聚集性或者信息传输的局部效率。 网络中所有节点集群系数的平均值为网络的集群系数。
14.局部效率(local efficiency) ,局部效率Eloc,衡量如何高效的传播信息通过节点的直接相邻节点,由于集群系数只考虑了邻居节点间的直接连接, 后来有人提出局部效率(local efficiency)Eloc的概念. 集群系数和局部效率度量了网络的局部信息传输能力, 也在一定程度上反映了网络防御随机攻击的能力。任意节点i 的局部效率为
该指标描述了网络的容错能力,表明当移除节点 i 后它直接相邻的节点间的通信效率。
15.全局效率( global efficiency) ,全局效率 Eglob 描述了网络对于信息并行处理的能力,定义为任意两节点的最短路径的调和平均值的倒数,全局效率Eglob,衡量如何有效的通过整个网络传播信息,通常最短路径长度要在某一个连通图中进行运算, 因为 如果网络中存在不连通的节点会导致这两个节点间的最短路径长度值为无穷 . 因此有人提出了全局效率(global efficiency)Eglob的概念。最短路径长度和全局效率度量了网络的全局传输能力. 最短路径长度越短, 网络全局效率越高, 则网络节点间传递信息的速率就越快. 全局效率的降低说明脑区之间的信息传输和交互效率降低。
16.外径(Diameter) ,The longest of all the geodesics, and the geodesics is a shortest path between two nodes. If we are looking for the diameter of a network, we are really looking at all the shortest paths and then choosing the longest one.
17.平均最短路径(Average path length) , It's calculated by finding the shortest path between all the nodes, adding them up, and then dividing by the total number of pairs. It will show us the number of steps on average it takes to get from one member to another in the network. For example, 721 million users with an average path length of just 4.74, in these network, we show that it is at once both global and local, it connects nodes which are far away but also has the dense local structure, and this is called the small world phenomena.
18.AAL模板, AAL全称是Anatomical Automatic Labeling,AAL分区是由 Montreal Neurological Institute (MNI)机构提供的。AAL模板一共有116个区域,但只有90个属于大脑,剩余26个属于小脑结构,研究的较少。
19.MNI空间, 是Montreal Neurological Institute根据一系列正常人脑的磁共振图像而建立的坐标系统。Native空间就是原始空间。图像没有做任何变换时就是在原始空间。在这个空间中图像的维度、原点、voxel size等都是不同的, 不同被试的图像之间不具有可比性 , 计算出来的任何特征都不能进行统计分析 ,或是用于机器学习。所以 必须对所有被试的图像进行配准标准化到同一个模板上,这样所有被试的维度、原点、voxel size就一样了。 使用MNI标准模板,就表示把图像转换至MNI空间了。 一般而言MNI模板是最常用的,研究的比较多。 标准空间的图像也是指MNI空间的图像。
20.Talairach空间, 和MNI空间的坐标有对应的关系,很多软件都提供这个功能,如Mricron、REST等。Talairach空间只要是为了判别当前坐标在什么结构上,注意Talairach atlas and Talairach coordinates 就是Stereotaxic space.
21.全局网络度Kp ,节点 i 的连接度 Ki 定义为与该节点直接相连的边的数目,高度连接的节点的度较大。该指标用来描述一个网络的稀疏度。全局网络的度Kp 为网络中所有节点的度的平均:
22.小世界属性,基于体素和基于脑区的研究都表明人脑功能网络都具有高效的小世界属性。 For example, 721 million users with an average path length of just 4.74, in these network, we show that it is at once both global and local, it connects nodes which are far away but also has the dense local structure, and this is called t he small world phenomena . 小世界网络( small-world network) 网络的小世界属性:高的聚类系数和短的特征路径长度。小世界的拓扑结构支持大脑信息处理的分化和整合功能,是一种经济型的结构,支持高度复杂动态结构的同时,使得配线代价最低。具有小世界属性的动态系统通常有较好的抗攻击性,而且表现出比较高的信息传输速度,计算能力和同步性。
23. 攻击性, 用来定量描述某个节点的失败对网络行为的影响。节点 i 的攻击性Vi 定义为: 当去掉节点 i 及其连接的边后网络全局效率的变化 ,可通过如下公式计算:
其中 Eglob’表示去掉节点 i 及其连接的边后网络的全局效率。 攻击性同介数中心性一样也是反映了节点在网络中的重要性。
24.节点效率ei, 衡量一个节点与其他节点通信的效率
25.结构性连接,
26.模块化结构,
27.结构性脑网络( structural brain networks 或anatomical brain networks)
28.功能性脑网络( functional brain networks)
29.因效性脑网络( effective brain networks)
30.无标度网络( scale-free network)
31.随机网络( random network)
32.规则网络( regular network)
33.无向网络( undirected network)
34.加权网络( weighted network)
35.相位同步( phase synchronization)
36.连接密度(connection density/cost)
37.互相关分析( cross-correlation analysis)
38.因果关系分析( Causality analysis)
39.直接传递函数分析( Directed Transfer Function,DTF)
40.部分定向相干分析( Partial Directed Coherence,PDC)
多变量自回归建模( multivariate autoregressivemodel,MVAR)
独立成分分析( independent component analysis,ICA)
步似然性(synchronization likelihood, SL)
结构方程建模(structural equationmodeling, SEM)
动态因果建模(dynamic causalmodeling, DCM)
心理生理交互作用模型(Psychophysiological interaction model)
非度量多维定标(non-metric multidimensional scaling)
体素形态学(voxel-based morphometry,VBM)
统计参数映射(statistical parametric mapping,SPM)
皮尔逊相关系数(Pearson correlation)
偏相关系数(Partial correlation)
脑功能连接,度量空间上分离的不同脑区间在时间上和相关性和功能活动的统计依赖关系,是描述脑区之间协同工作模式的有效手段。
方法学:(1)定义被试的节点的方法:AAL模板和自动配准;(2)定义边:确定性的纤维跟踪算法,HARDI,DSI,概率跟踪算法;(3)二值网和加权网的选择;
最大连通子图大小,SOBCC(Size of Biggest Connected Component),代表网络连通分量的大小。
Ⅳ 衡量网络的技术指标有什么
延迟(delay)带宽(bandwith)是衡量计算机网络性能好坏的指标之一。
带宽表示的是网络的吞吐量,通常单位是mbps和kbps分别是百万位每秒和千位每秒。bit(位)是网络流量中的最小单位。八位二进制表示一个字节。
比如你家带宽有1Mbps其实只有1000/8=125KB而已……
Ⅵ ucinet社会网络分析怎么用来分析密度,中心度呀!!!求帮忙!!
ucinet-- network-- cohesion-- density-- density by group/overall
ucinet-- network-- centrality and power--选择你要算的东东