导航:首页 > 网络安全 > 如何理解神经网络的卷积层

如何理解神经网络的卷积层

发布时间:2022-12-07 20:29:24

⑴ 卷积神经网络工作原理直观的解释

其实道理很简单,因为卷积运算,从频域角度看,是频谱相乘所以图像跟卷积核做卷积时,两者频谱不重叠的部分相乘,自然是0,那图像这部分频率的信息就被卷积核过滤了。而图像,本质上就是二维离散的信号,像素点值的大小代表该位置的振幅,所以图像包含了一系列频率的特征。比如图像边缘部分,像素值差别大,属于高频信号,背景部分,像素值差别小,是低频信号。所以如果卷积核具有‘高通’性质,就能起到提取图像边缘的作用,低通则有模糊的效果。所以,卷积神经网络的牛逼之处在于通过卷积层的不同卷积核,提取图像不同频段的特征;以及通过池化层,提取不同粒度的特征。

⑵ 理解神经网络卷积层、全连接层

https://zhuanlan.hu.com/p/32472241

卷积神经网络,这玩意儿乍一听像是生物和数学再带点计算机技术混合起来的奇怪东西。奇怪归奇怪,不得不说,卷积神经网络是计算机视觉领域最有影响力的创造之一。

2012年是卷积神经网络崛起之年。这一年,Alex Krizhevsky带着卷积神经网络参加了ImageNet竞赛(其重要程度相当于奥运会)并一鸣惊人,将识别错误率从26%降到了15%,。从那开始,很多公司开始使用深度学习作为他们服务的核心。比如,Facebook在他们的自动标记算法中使用了它,Google在照片搜索中使用了,Amazon在商品推荐中使用,Printerst应用于为他们的家庭饲养服务提供个性化定制,而Instagram应用于他们的搜索引擎。

然而,神经网络最开始也是最多的应用领域是图像处理。那我们就挑这块来聊聊,怎样使用卷积神经网络(下面简称CNN)来进行图像分类。

图像分类是指,向机器输入一张图片,然后机器告诉我们这张图片的类别(一只猫,一条狗等等),或者如果它不确定的话,它会告诉我们属于某个类别的可能性(很可能是条狗但是我不太确定)。对我们人类来说,这件事情简单的不能再简单了,从出生起,我们就可以很快地识别周围的物体是什么。当我们看到一个场景,我们总能快速地识别出所有物体,甚至是下意识的,没有经过有意的思考。但这种能力,机器并不具有。所以我们更加要好好珍惜自己的大脑呀! (:зゝ∠)

电脑和人看到的图片并不相同。当我们输入一张图片时,电脑得到的只是一个数组,记录着像素的信息。数组的大小由图像的清晰度和大小决定。假设我们有一张jpg格式的480 480大小的图片,那么表示它的数组便是480 480*3大小的。数组中所有数字都描述了在那个位置处的像素信息,大小在[0,255]之间。

这些数字对我们来说毫无意义,但这是电脑们可以得到的唯一的信息(也足够了)。抽象而简单的说,我们需要一个接受数组为输入,输出一个数组表示属于各个类别概率的模型。

既然问题我们已经搞明白了,现在我们得想想办法解决它。我们想让电脑做的事情是找出不同图片之间的差别,并可以识别狗狗(举个例子)的特征。

我们人类可以通过一些与众不同的特征来识别图片,比如狗狗的爪子和狗有四条腿。同样地,电脑也可以通过识别更低层次的特征(曲线,直线)来进行图像识别。电脑用卷积层识别这些特征,并通过更多层卷积层结合在一起,就可以像人类一样识别出爪子和腿之类的高层次特征,从而完成任务。这正是CNN所做的事情的大概脉络。下面,我们进行更具体的讨论。

在正式开始之前,我们先来聊聊CNN的背景故事。当你第一次听说卷积神经网络的时候,你可能就会联想到一些与神经学或者生物学有关的东西,不得不说,卷积神经网络还真的与他们有某种关系。

CNN的灵感的确来自大脑中的视觉皮层。视觉皮层某些区域中的神经元只对特定视野区域敏感。1962年,在一个Hubel与Wiesel进行的试验( 视频 )中,这一想法被证实并且拓展了。他们发现,一些独立的神经元只有在特定方向的边界在视野中出现时才会兴奋。比如,一些神经元在水平边出现时兴奋,而另一些只有垂直边出现时才会。并且所有这种类型的神经元都在一个柱状组织中,并且被认为有能力产生视觉。

在一个系统中,一些特定的组件发挥特定的作用(视觉皮层中的神经元寻找各自特定的特征)。这一想法应用于很多机器中,并且也是CNN背后的基本原理。 (译者注:作者没有说清楚。类比到CNN中,应是不同的卷积核寻找图像中不同的特征)

回到主题。

更详细的说,CNN的工作流程是这样的:你把一张图片传递给模型,经过一些卷积层,非线性化(激活函数),池化,以及全连层,最后得到结果。就像我们之前所说的那样,输出可以是单独的一个类型,也可以是一组属于不同类型的概率。现在,最不容易的部分来了:理解各个层的作用。

首先,你要搞清楚的是,什么样的数据输入了卷积层。就像我们之前提到的那样,输入是一个32 × 32 × 3(打个比方)的记录像素值的数组。现在,让我来解释卷积层是什么。解释卷积层最好的方法,是想象一个手电筒照在图片的左上角。让我们假设手电筒的光可以招到一个5 × 5的区域。现在,让我们想象这个手电筒照过了图片的所有区域。在机器学习术语中,这样一个手电筒被称为卷积核(或者说过滤器,神经元) (kernel, filter, neuron) 。而它照到的区域被称为感知域 (receptive field) 。卷积核同样也是一个数组(其中的数被称为权重或者参数)。很重要的一点就是卷积核的深度和输入图像的深度是一样的(这保证可它能正常工作),所以这里卷积核的大小是5 × 5 × 3。

现在,让我们拿卷积核的初始位置作为例子,它应该在图像的左上角。当卷积核扫描它的感知域(也就是这张图左上角5 × 5 × 3的区域)的时候,它会将自己保存的权重与图像中的像素值相乘(或者说,矩阵元素各自相乘,注意与矩阵乘法区分),所得的积会相加在一起(在这个位置,卷积核会得到5 × 5 × 3 = 75个积)。现在你得到了一个数字。然而,这个数字只表示了卷积核在图像左上角的情况。现在,我们重复这一过程,让卷积核扫描完整张图片,(下一步应该往右移动一格,再下一步就再往右一格,以此类推),每一个不同的位置都产生了一个数字。当扫描完整张图片以后,你会得到一组新的28 × 28 × 1的数。 (译者注:(32 - 5 + 1) × (32 - 5 + 1) × 1) 。这组数,我们称为激活图或者特征图 (activation map or feature map) 。

如果增加卷积核的数目,比如,我们现在有两个卷积核,那么我们就会得到一个28 × 28 × 2的数组。通过使用更多的卷积核,我们可以更好的保留数据的空间尺寸。

在数学层面上说,这就是卷积层所做的事情。

让我们来谈谈,从更高角度来说,卷积在做什么。每一个卷积核都可以被看做特征识别器。我所说的特征,是指直线、简单的颜色、曲线之类的东西。这些都是所有图片共有的特点。拿一个7 × 7 × 3的卷积核作为例子,它的作用是识别一种曲线。(在这一章节,简单起见,我们忽略卷积核的深度,只考虑第一层的情况)。作为一个曲线识别器,这个卷积核的结构中,曲线区域内的数字更大。(记住,卷积核是一个数组)

现在我们来直观的看看这个。举个例子,假设我们要把这张图片分类。让我们把我们手头的这个卷积核放在图片的左上角。

记住,我们要做的事情是把卷积核中的权重和输入图片中的像素值相乘。

(译者注:图中最下方应是由于很多都是0所以把0略过不写了。)

基本上,如果输入图像中有与卷积核代表的形状很相似的图形,那么所有乘积的和会很大。现在我们来看看,如果我们移动了卷积核呢?

可以看到,得到的值小多了!这是因为感知域中没有与卷积核表示的相一致的形状。还记得吗,卷积层的输出是一张激活图。所以,在单卷积核卷积的简单情况下,假设卷积核是一个曲线识别器,那么所得的激活图会显示出哪些地方最有可能有曲线。在这个例子中,我们所得激活图的左上角的值为6600。这样大的数字表明很有可能这片区域中有一些曲线,从而导致了卷积核的激活 (译者注:也就是产生了很大的数值。) 而激活图中右上角的数值是0,因为那里没有曲线来让卷积核激活(简单来说就是输入图像的那片区域没有曲线)。

但请记住,这只是一个卷积核的情况,只有一个找出向右弯曲的曲线的卷积核。我们可以添加其他卷积核,比如识别向左弯曲的曲线的。卷积核越多,激活图的深度就越深,我们得到的关于输入图像的信息就越多。

在传统的CNN结构中,还会有其他层穿插在卷积层之间。我强烈建议有兴趣的人去阅览并理解他们。但总的来说,他们提供了非线性化,保留了数据的维度,有助于提升网络的稳定度并且抑制过拟合。一个经典的CNN结构是这样的:

网络的最后一层很重要,我们稍后会讲到它。

现在,然我们回头看看我们已经学到了什么。

我们讲到了第一层卷积层的卷积核的目的是识别特征,他们识别像曲线和边这样的低层次特征。但可以想象,如果想预测一个图片的类别,必须让网络有能力识别高层次的特征,例如手、爪子或者耳朵。让我们想想网络第一层的输出是什么。假设我们有5个5 × 5 × 3的卷积核,输入图像是32 × 32 × 3的,那么我们会得到一个28 × 28 × 5的数组。来到第二层卷积层,第一层的输出便成了第二层的输入。这有些难以可视化。第一层的输入是原始图片,可第二层的输入只是第一层产生的激活图,激活图的每一层都表示了低层次特征的出现位置。如果用一些卷积核处理它,得到的会是表示高层次特征出现的激活图。这些特征的类型可能是半圆(曲线和边的组合)或者矩形(四条边的组合)。随着卷积层的增多,到最后,你可能会得到可以识别手写字迹、粉色物体等等的卷积核。

如果,你想知道更多关于可视化卷积核的信息,可以看这篇 研究报告 ,以及这个 视频 。

还有一件事情很有趣,当网络越来越深,卷积核会有越来越大的相对于输入图像的感知域。这意味着他们有能力考虑来自输入图像的更大范围的信息(或者说,他们对一片更大的像素区域负责)。

到目前为止,我们已经识别出了那些高层次的特征吧。网络最后的画龙点睛之笔是全连层。

简单地说,这一层接受输入(来自卷积层,池化层或者激活函数都可以),并输出一个N维向量,其中,N是所有有可能的类别的总数。例如,如果你想写一个识别数字的程序,那么N就是10,因为总共有10个数字。N维向量中的每一个数字都代表了属于某个类别的概率。打个比方,如果你得到了[0 0.1 0.1 0.75 0 0 0 0 0 0.05],这代表着这张图片是1的概率是10%,是2的概率是10%,是3的概率是75%,是9的概率5%(小贴士:你还有其他表示输出的方法,但现在我只拿softmax (译者注:一种常用于分类问题的激活函数) 来展示)。全连层的工作方式是根据上一层的输出(也就是之前提到的可以用来表示特征的激活图)来决定这张图片有可能属于哪个类别。例如,如果程序需要预测哪些图片是狗,那么全连层在接收到一个包含类似于一个爪子和四条腿的激活图时输出一个很大的值。同样的,如果要预测鸟,那么全连层会对含有翅膀和喙的激活图更感兴趣。

基本上,全连层寻找那些最符合特定类别的特征,并且具有相应的权重,来使你可以得到正确的概率。

现在让我们来说说我之前有意没有提到的神经网络的可能是最重要的一个方面。刚刚在你阅读的时候,可能会有一大堆问题想问。第一层卷积层的卷积核们是怎么知道自己该识别边还是曲线的?全连层怎么知道该找哪一种激活图?每一层中的参数是怎么确定的?机器确定参数(或者说权重)的方法叫做反向传播算法。

在讲反向传播之前,我们得回头看看一个神经网络需要什么才能工作。我们出生的时候并不知道一条狗或者一只鸟长什么样。同样的,在CNN开始之前,权重都是随机生成的。卷积核并不知道要找边还是曲线。更深的卷积层也不知道要找爪子还是喙。

等我们慢慢长大了,我们的老师和父母给我们看不同的图片,并且告诉我们那是什么(或者说,他们的类别)。这种输入一幅图像以及这幅图像所属的类别的想法,是CNN训练的基本思路。在细细讲反向传播之前,我们先假设我们有一个包含上千张不同种类的动物以及他们所属类别的训练集。

反向传播可以被分成四个不同的部分。前向传播、损失函数、反向传播和权重更新。

在前向传播的阶段,我们输入一张训练图片,并让它通过整个神经网络。对于第一个输入图像,由于所有权重都是随机生成的,网络的输出很有可能是类似于[.1 .1 .1 .1 .1 .1 .1 .1 .1 .1]的东西,一般来说并不对任一类别有偏好。具有当前权重的网络并没有能力找出低层次的特征并且总结出可能的类别。

下一步,是损失函数部分。注意,我们现在使用的是训练数据。这些数据又有图片又有类别。打个比方,第一张输入的图片是数字“3”。那么它的标签应该是[0 0 0 1 0 0 0 0 0 0]。一个损失函数可以有很多定义的方法,但比较常见的是MSE(均方误差)。被定义为(实际−预测)22(实际−预测)22。

记变量L为损失函数的值。正如你想象的那样,在第一组训练图片输入的时候,损失函数的值可能非常非常高。来直观地看看这个问题。我们想到达CNN的预测与数据标签完全一样的点(这意味着我们的网络预测的很对)。为了到达那里,我们想要最小化误差。如果把这个看成一个微积分问题,那我们只要找到哪些权重与网络的误差关系最大。

这就相当于数学中的δLδWδLδW (译者注:对L关于W求导) ,其中,W是某个层的权重。现在,我们要对网络进行 反向传播 。这决定了哪些权重与误差的关系最大,并且决定了怎样调整他们来让误差减小。计算完这些导数以后,我们就来到了最后一步: 更新权重 。在这里,我们以与梯度相反的方向调整层中的权重。

学习率是一个有程序员决定的参数。一个很高的学习率意味着权重调整的幅度会很大,这可能会让模型更快的拥有一组优秀的权重。然而,一个太高的学习率可能会让调整的步伐过大,而不能精确地到达最佳点。

前向传播、损失函数、反向传播和更新权重,这四个过程是一次迭代。程序会对每一组训练图片重复这一过程(一组图片通常称为一个batch)。当对每一张图片都训练完之后,很有可能你的网络就已经训练好了,权重已经被调整的很好。

最后,为了验证CNN是否工作的很好,我们还有另一组特殊的数据。我们把这组数据中的图片输入到网络中,得到输出并和标签比较,这样就能看出网络的表现如何了。

⑶ 卷积神经网络通俗理解

卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也被称为“平移不变人工神经网络

⑷ 卷积神经网络

卷积神经网络 (Convolutional Neural Networks,CNN)是一种前馈神经网络。卷积神经网络是受生物学上感受野(Receptive Field)的机制而提出的。感受野主要是指听觉系统、本体感觉系统和视觉系统中神经元的一些性质。比如在视觉神经系统中,一个神经元的感受野是指视网膜上的特定区域,只有这个区域内的刺激才能够激活该神经元。

卷积神经网络又是怎样解决这个问题的呢?主要有三个思路:

在使用CNN提取特征时,到底使用哪一层的输出作为最后的特征呢?

答:倒数第二个全连接层的输出才是最后我们要提取的特征,也就是最后一个全连接层的输入才是我们需要的特征。

全连接层会忽视形状。卷积层可以保持形状不变。当输入数据是图像时,卷积层会以3维数据的形式接收输入数据,并同样以3维数据的形式输出至下一层。因此,在CNN中,可以(有可能)正确理解图像等具有形状的数据。

CNN中,有时将 卷积层的输入输出数据称为特征图(feature map) 。其中, 卷积层的输入数据称为输入特征图(input feature map) 输出数据称为输出特征图(output feature map)。

卷积层进行的处理就是 卷积运算 。卷积运算相当于图像处理中的“滤波器运算”。

滤波器相当于权重或者参数,滤波器数值都是学习出来的。 卷积层实现的是垂直边缘检测

边缘检测实际就是将图像由亮到暗进行区分,即边缘的过渡(edge transitions)。

卷积层对应到全连接层,左上角经过滤波器,得到的3,相当于一个神经元输出为3.然后相当于,我们把输入矩阵拉直为36个数据,但是我们只对其中的9个数据赋予了权重。

步幅为1 ,移动一个,得到一个1,相当于另一个神经单元的输出是1.

并且使用的是同一个滤波器,对应到全连接层,就是权值共享。

在这个例子中,输入数据是有高长方向的形状的数据,滤波器也一样,有高长方向上的维度。假设用(height, width)表示数据和滤波器的形状,则在本例中,输入大小是(4, 4),滤波器大小是(3, 3),输出大小是(2, 2)。另外,有的文献中也会用“核”这个词来表示这里所说的“滤波器”。

对于输入数据,卷积运算以一定间隔滑动滤波器的窗口并应用。这里所说的窗口是指图7-4中灰色的3 × 3的部分。如图7-4所示,将各个位置上滤
波器的元素和输入的对应元素相乘,然后再求和(有时将这个计算称为乘积累加运算)。然后,将这个结果保存到输出的对应位置。将这个过程在所有位置都进行一遍,就可以得到卷积运算的输出。

CNN中,滤波器的参数就对应之前的权重。并且,CNN中也存在偏置。

在进行卷积层的处理之前,有时要向输入数据的周围填入固定的数据(比如0等),这称为填充(padding),是卷积运算中经常会用到的处理。比如,在图7-6的例子中,对大小为(4, 4)的输入数据应用了幅度为1的填充。“幅度为1的填充”是指用幅度为1像素的0填充周围。

应用滤波器的位置间隔称为 步幅(stride)

假设输入大小为(H, W),滤波器大小为(FH, FW),输出大小为(OH, OW),填充为P,步幅为S。

但是所设定的值必须使式(7.1)中的 和 分别可以除尽。当输出大小无法除尽时(结果是小数时),需要采取报错等对策。顺便说一下,根据深度学习的框架的不同,当值无法除尽时,有时会向最接近的整数四舍五入,不进行报错而继续运行。

之前的卷积运算的例子都是以有高、长方向的2维形状为对象的。但是,图像是3维数据,除了高、长方向之外,还需要处理通道方向。

在3维数据的卷积运算中,输入数据和滤波器的通道数要设为相同的值。

因此,作为4维数据,滤波器的权重数据要按(output_channel, input_channel, height, width)的顺序书写。比如,通道数为3、大小为5 × 5的滤
波器有20个时,可以写成(20, 3, 5, 5)。

对于每个通道,均使用自己的权值矩阵进行处理,输出时将多个通道所输出的值进行加和即可。

卷积运算的批处理,需要将在各层间传递的数据保存为4维数据。具体地讲,就是按(batch_num, channel, height, width)的顺序保存数据。

这里需要注意的是,网络间传递的是4维数据,对这N个数据进行了卷积运算。也就是说,批处理将N次的处理汇总成了1次进行。

池化是缩小高、长方向上的空间的运算。比如,如图7-14所示,进行将2 × 2的区域集约成1个元素的处理,缩小空间大小。

图7-14的例子是按步幅2进行2 × 2的Max池化时的处理顺序。“Max池化”是获取最大值的运算,“2 × 2”表示目标区域的大小。如图所示,从
2 × 2的区域中取出最大的元素。此外,这个例子中将步幅设为了2,所以2 × 2的窗口的移动间隔为2个元素。另外,一般来说,池化的窗口大小会和步幅设定成相同的值。比如,3 × 3的窗口的步幅会设为3,4 × 4的窗口的步幅会设为4等。

除了Max池化之外,还有Average池化等。相对于Max池化是从目标区域中取出最大值,Average池化则是计算目标区域的平均值。 在图像识别领域,主要使用Max池化。 因此,本书中说到“池化层”时,指的是Max池化。

池化层的特征
池化层有以下特征。
没有要学习的参数
池化层和卷积层不同,没有要学习的参数。池化只是从目标区域中取最大值(或者平均值),所以不存在要学习的参数。
通道数不发生变化
经过池化运算,输入数据和输出数据的通道数不会发生变化。如图7-15所示,计算是按通道独立进行的。

对微小的位置变化具有鲁棒性(健壮)
​ 输入数据发生微小偏差时,池化仍会返回相同的结果。因此,池化对输入数据的微小偏差具有鲁棒性。比如,3 × 3的池化的情况下,如图
​ 7-16所示,池化会吸收输入数据的偏差(根据数据的不同,结果有可能不一致)。

经过卷积层和池化层之后,进行Flatten,然后丢到全连接前向传播神经网络。

(找到一张图片使得某个filter响应最大。相当于filter固定,未知的是输入的图片。)未知的是输入的图片???

k是第k个filter,x是我们要找的参数。?这里我不是很明白。我得理解应该是去寻找最具有代表性的特征。

使用im2col来实现卷积层

卷积层的参数是需要学习的,但是池化层没有参数需要学习。全连接层的参数需要训练得到。

池化层不需要训练参数。全连接层的参数最多。卷积核的个数逐渐增多。激活层的size,逐渐减少。

最大池化只是计算神经网络某一层的静态属性,没有什么需要学习的,它只是一个静态属性

像这样展开之后,只需对展开的矩阵求各行的最大值,并转换为合适的形状即可(图7-22)。

参数
• input_dim ― 输入数据的维度:( 通道,高,长 )
• conv_param ― 卷积层的超参数(字典)。字典的关键字如下:
filter_num ― 滤波器的数量
filter_size ― 滤波器的大小
stride ― 步幅
pad ― 填充
• hidden_size ― 隐藏层(全连接)的神经元数量
• output_size ― 输出层(全连接)的神经元数量
• weitght_int_std ― 初始化时权重的标准差

LeNet

LeNet在1998年被提出,是进行手写数字识别的网络。如图7-27所示,它有连续的卷积层和池化层(正确地讲,是只“抽选元素”的子采样层),最后经全连接层输出结果。

和“现在的CNN”相比,LeNet有几个不同点。第一个不同点在于激活函数。LeNet中使用sigmoid函数,而现在的CNN中主要使用ReLU函数。
此外,原始的LeNet中使用子采样(subsampling)缩小中间数据的大小,而现在的CNN中Max池化是主流。

AlexNet

在LeNet问世20多年后,AlexNet被发布出来。AlexNet是引发深度学习热潮的导火线,不过它的网络结构和LeNet基本上没有什么不同,如图7-28所示。

AlexNet叠有多个卷积层和池化层,最后经由全连接层输出结果。虽然结构上AlexNet和LeNet没有大的不同,但有以下几点差异。
• 激活函数使用ReLU。
• 使用进行局部正规化的LRN(Local Response Normalization)层。
• 使用Dropout

TF2.0实现卷积神经网络

valid意味着不填充,same是填充
or the SAME padding, the output height and width are computed as:

out_height = ceil(float(in_height) / float(strides[1]))

out_width = ceil(float(in_width) / float(strides[2]))

And

For the VALID padding, the output height and width are computed as:

out_height = ceil(float(in_height - filter_height + 1) / float(strides[1]))

out_width = ceil(float(in_width - filter_width + 1) / float(strides[2]))
因此,我们可以设定 padding 策略。在 tf.keras.layers.Conv2D 中,当我们将 padding 参数设为 same 时,会将周围缺少的部分使用 0 补齐,使得输出的矩阵大小和输入一致。

⑸ 一文看懂卷积神经网络-CNN(基本原理+独特价值+实际应用)

在 CNN 出现之前,图像对于人工智能来说是一个难题,有2个原因:

图像需要处理的数据量太大,导致成本很高,效率很低

图像在数字化的过程中很难保留原有的特征,导致图像处理的准确率不高

下面就详细说明一下这2个问题:

图像是由像素构成的,每个像素又是由颜色构成的。

现在随随便便一张图片都是 1000×1000 像素以上的, 每个像素都有RGB 3个参数来表示颜色信息。

假如我们处理一张 1000×1000 像素的图片,我们就需要处理3百万个参数!

1000×1000×3=3,000,000

这么大量的数据处理起来是非常消耗资源的,而且这只是一张不算太大的图片!

卷积神经网络 – CNN 解决的第一个问题就是“将复杂问题简化”,把大量参数降维成少量参数,再做处理。

更重要的是:我们在大部分场景下,降维并不会影响结果。比如1000像素的图片缩小成200像素,并不影响肉眼认出来图片中是一只猫还是一只狗,机器也是如此。

图片数字化的传统方式我们简化一下,就类似下图的过程:

假如有圆形是1,没有圆形是0,那么圆形的位置不同就会产生完全不同的数据表达。但是从视觉的角度来看, 图像的内容(本质)并没有发生变化,只是位置发生了变化 。

所以当我们移动图像中的物体,用传统的方式的得出来的参数会差异很大!这是不符合图像处理的要求的。

而 CNN 解决了这个问题,他用类似视觉的方式保留了图像的特征,当图像做翻转,旋转或者变换位置时,它也能有效的识别出来是类似的图像。

那么卷积神经网络是如何实现的呢?在我们了解 CNN 原理之前,先来看看人类的视觉原理是什么?

深度学习的许多研究成果,离不开对大脑认知原理的研究,尤其是视觉原理的研究。

1981 年的诺贝尔医学奖,颁发给了 David Hubel(出生于加拿大的美国神经生物学家) 和TorstenWiesel,以及 Roger Sperry。前两位的主要贡献,是“ 发现了视觉系统的信息处理 ”,可视皮层是分级的。

人类的视觉原理如下:从原始信号摄入开始(瞳孔摄入像素 Pixels),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定,眼前的物体的形状,是圆形的),然后进一步抽象(大脑进一步判定该物体是只气球)。下面是人脑进行人脸识别的一个示例:

对于不同的物体,人类视觉也是通过这样逐层分级,来进行认知的:

我们可以看到,在最底层特征基本上是类似的,就是各种边缘,越往上,越能提取出此类物体的一些特征(轮子、眼睛、躯干等),到最上层,不同的高级特征最终组合成相应的图像,从而能够让人类准确的区分不同的物体。

那么我们可以很自然的想到:可以不可以模仿人类大脑的这个特点,构造多层的神经网络,较低层的识别初级的图像特征,若干底层特征组成更上一层特征,最终通过多个层级的组合,最终在顶层做出分类呢?

答案是肯定的,这也是许多深度学习算法(包括CNN)的灵感来源。

典型的 CNN 由3个部分构成:

卷积层

池化层

全连接层

如果简单来描述的话:

卷积层负责提取图像中的局部特征;池化层用来大幅降低参数量级(降维);全连接层类似传统神经网络的部分,用来输出想要的结果。

下面的原理解释为了通俗易懂,忽略了很多技术细节,如果大家对详细的原理感兴趣,可以看这个视频《 卷积神经网络基础 》。

卷积层的运算过程如下图,用一个卷积核扫完整张图片:

这个过程我们可以理解为我们使用一个过滤器(卷积核)来过滤图像的各个小区域,从而得到这些小区域的特征值。

在具体应用中,往往有多个卷积核,可以认为,每个卷积核代表了一种图像模式,如果某个图像块与此卷积核卷积出的值大,则认为此图像块十分接近于此卷积核。如果我们设计了6个卷积核,可以理解:我们认为这个图像上有6种底层纹理模式,也就是我们用6中基础模式就能描绘出一副图像。以下就是25种不同的卷积核的示例:

总结:卷积层的通过卷积核的过滤提取出图片中局部的特征,跟上面提到的人类视觉的特征提取类似。

池化层简单说就是下采样,他可以大大降低数据的维度。其过程如下:

上图中,我们可以看到,原始图片是20×20的,我们对其进行下采样,采样窗口为10×10,最终将其下采样成为一个2×2大小的特征图。

之所以这么做的原因,是因为即使做完了卷积,图像仍然很大(因为卷积核比较小),所以为了降低数据维度,就进行下采样。

总结:池化层相比卷积层可以更有效的降低数据维度,这么做不但可以大大减少运算量,还可以有效的避免过拟合。

这个部分就是最后一步了,经过卷积层和池化层处理过的数据输入到全连接层,得到最终想要的结果。

经过卷积层和池化层降维过的数据,全连接层才能”跑得动”,不然数据量太大,计算成本高,效率低下。

典型的 CNN 并非只是上面提到的3层结构,而是多层结构,例如 LeNet-5 的结构就如下图所示:

卷积层 – 池化层- 卷积层 – 池化层 – 卷积层 – 全连接层

在了解了 CNN 的基本原理后,我们重点说一下 CNN 的实际应用有哪些。

卷积神经网络 – CNN 很擅长处理图像。而视频是图像的叠加,所以同样擅长处理视频内容。下面给大家列一些比较成熟的应用�:

图像分类、检索

图像分类是比较基础的应用,他可以节省大量的人工成本,将图像进行有效的分类。对于一些特定领域的图片,分类的准确率可以达到 95%+,已经算是一个可用性很高的应用了。

典型场景:图像搜索…

目标定位检测

可以在图像中定位目标,并确定目标的位置及大小。

典型场景:自动驾驶、安防、医疗…

目标分割

简单理解就是一个像素级的分类。

他可以对前景和背景进行像素级的区分、再高级一点还可以识别出目标并且对目标进行分类。

典型场景:美图秀秀、视频后期加工、图像生成…

人脸识别

人脸识别已经是一个非常普及的应用了,在很多领域都有广泛的应用。

典型场景:安防、金融、生活…

骨骼识别

骨骼识别是可以识别身体的关键骨骼,以及追踪骨骼的动作。

典型场景:安防、电影、图像视频生成、游戏…

今天我们介绍了 CNN 的价值、基本原理和应用场景,简单总结如下:

CNN 的价值:

能够将大数据量的图片有效的降维成小数据量(并不影响结果)

能够保留图片的特征,类似人类的视觉原理

CNN 的基本原理:

卷积层 – 主要作用是保留图片的特征

池化层 – 主要作用是把数据降维,可以有效的避免过拟合

全连接层 – 根据不同任务输出我们想要的结果

CNN 的实际应用:

图片分类、检索

目标定位检测

目标分割

人脸识别

骨骼识别

本文首发在 easyAI - 人工智能知识库

《 一文看懂卷积神经网络-CNN(基本原理+独特价值+实际应用) 》

⑹ 卷积神经网络的 卷积层、激活层、池化层、全连接层

数据输入的是一张图片(输入层),CONV表示卷积层,RELU表示激励层,POOL表示池化层,Fc表示全连接层

全连接神经网络需要非常多的计算资源才能支撑它来做反向传播和前向传播,所以说全连接神经网络可以存储非常多的参数,如果你给它的样本如果没有达到它的量级的时候,它可以轻轻松松把你给他的样本全部都记下来,这会出现过拟合的情况。

所以我们应该把神经元和神经元之间的连接的权重个数降下来,但是降下来我们又不能保证它有较强的学习能力,所以这是一个纠结的地方,所以有一个方法就是 局部连接+权值共享 ,局部连接+权值共享不仅权重参数降下来了,而且学习能力并没有实质的降低,除此之外还有其它的好处,下来看一下,下面的这几张图片:

一个图像的不同表示方式

这几张图片描述的都是一个东西,但是有的大有的小,有的靠左边,有的靠右边,有的位置不同,但是我们构建的网络识别这些东西的时候应该是同一结果。为了能够达到这个目的,我们可以让图片的不同位置具有相同的权重(权值共享),也就是上面所有的图片,我们只需要在训练集中放一张,我们的神经网络就可以识别出上面所有的,这也是 权值共享 的好处。

而卷积神经网络就是局部连接+权值共享的神经网络。

现在我们对卷积神经网络有一个初步认识了,下面具体来讲解一下卷积神经网络,卷积神经网络依旧是层级结构,但层的功能和形式做了改变,卷积神经网络常用来处理图片数据,比如识别一辆汽车:

在图片输出到神经网络之前,常常先进行图像处理,有 三种 常见的图像的处理方式:

均值化和归一化

去相关和白化

图片有一个性质叫做局部关联性质,一个图片的像素点影响最大的是它周边的像素点,而距离这个像素点比较远的像素点二者之间关系不大。这个性质意味着每一个神经元我们不用处理全局的图片了(和上一层全连接),我们的每一个神经元只需要和上一层局部连接,相当于每一个神经元扫描一小区域,然后许多神经元(这些神经元权值共享)合起来就相当于扫描了全局,这样就构成一个特征图,n个特征图就提取了这个图片的n维特征,每个特征图是由很多神经元来完成的。

在卷积神经网络中,我们先选择一个局部区域(filter),用这个局部区域(filter)去扫描整张图片。 局部区域所圈起来的所有节点会被连接到下一层的 一个节点上 。我们拿灰度图(只有一维)来举例:

局部区域

图片是矩阵式的,将这些以矩阵排列的节点展成了向量。就能更好的看出来卷积层和输入层之间的连接,并不是全连接的,我们将上图中的红色方框称为filter,它是2*2的,这是它的尺寸,这不是固定的,我们可以指定它的尺寸。

我们可以看出来当前filter是2*2的小窗口,这个小窗口会将图片矩阵从左上角滑到右下角,每滑一次就会一下子圈起来四个,连接到下一层的一个神经元,然后产生四个权重,这四个权重(w1、w2、w3、w4)构成的矩阵就叫做卷积核。

卷积核是算法自己学习得到的,它会和上一层计算,比如,第二层的0节点的数值就是局部区域的线性组合(w1 0+w2 1+w3 4+w4 5),即被圈中节点的数值乘以对应的权重后相加。

卷积核计算

卷积操作

我们前面说过图片不用向量表示是为了保留图片平面结构的信息。 同样的,卷积后的输出若用上图的向量排列方式则丢失了平面结构信息。 所以我们依然用矩阵的方式排列它们,就得到了下图所展示的连接,每一个蓝色结点连接四个黄色的结点。

卷积层的连接方式

图片是一个矩阵然后卷积神经网络的下一层也是一个矩阵,我们用一个卷积核从图片矩阵左上角到右下角滑动,每滑动一次,当然被圈起来的神经元们就会连接下一层的一个神经元,形成参数矩阵这个就是卷积核,每次滑动虽然圈起来的神经元不同,连接下一层的神经元也不同,但是产生的参数矩阵确是一样的,这就是 权值共享

卷积核会和扫描的图片的那个局部矩阵作用产生一个值,比如第一次的时候,(w1 0+w2 1+w3 4+w4 5),所以,filter从左上到右下的这个过程中会得到一个矩阵(这就是下一层也是一个矩阵的原因),具体过程如下所示:

卷积计算过程

上图中左边是图矩阵,我们使用的filter的大小是3 3的,第一次滑动的时候,卷积核和图片矩阵作用(1 1+1 0+1 1+0 0+1 1+1 0+0 1+0 0+1 1)=4,会产生一个值,这个值就是右边矩阵的第一个值,filter滑动9次之后,会产生9个值,也就是说下一层有9个神经元,这9个神经元产生的值就构成了一个矩阵,这矩阵叫做特征图,表示image的某一维度的特征,当然具体哪一维度可能并不知道,可能是这个图像的颜色,也有可能是这个图像的轮廓等等。

单通道图片总结 :以上就是单通道的图片的卷积处理,图片是一个矩阵,我们用指定大小的卷积核从左上角到右下角来滑动,每次滑动所圈起来的结点会和下一层的一个结点相连,连接之后就会形成局部连接,每一条连接都会产生权重,这些权重就是卷积核,所以每次滑动都会产生一个卷积核,因为权值共享,所以这些卷积核都是一样的。卷积核会不断和当时卷积核所圈起来的局部矩阵作用,每次产生的值就是下一层结点的值了,这样多次产生的值组合起来就是一个特征图,表示某一维度的特征。也就是从左上滑动到右下这一过程中会形成一个特征图矩阵(共享一个卷积核),再从左上滑动到右下又会形成另一个特征图矩阵(共享另一个卷积核),这些特征图都是表示特征的某一维度。

三个通道的图片如何进行卷积操作?

至此我们应该已经知道了单通道的灰度图是如何处理的,实际上我们的图片都是RGB的图像,有三个通道,那么此时图像是如何卷积的呢?

彩色图像

filter窗口滑的时候,我们只是从width和height的角度来滑动的,并没有考虑depth,所以每滑动一次实际上是产生一个卷积核,共享这一个卷积核,而现在depth=3了,所以每滑动一次实际上产生了具有三个通道的卷积核(它们分别作用于输入图片的蓝色、绿色、红色通道),卷积核的一个通道核蓝色的矩阵作用产生一个值,另一个和绿色的矩阵作用产生一个值,最后一个和红色的矩阵作用产生一个值,然后这些值加起来就是下一层结点的值,结果也是一个矩阵,也就是一张特征图。

三通道的计算过程

要想有多张特征图的话,我们可以再用新的卷积核来进行左上到右下的滑动,这样就会形成 新的特征图

三通道图片的卷积过程

也就是说增加一个卷积核,就会产生一个特征图,总的来说就是输入图片有多少通道,我们的卷积核就需要对应多少通道,而本层中卷积核有多少个,就会产生多少个特征图。这样卷积后输出可以作为新的输入送入另一个卷积层中处理,有几个特征图那么depth就是几,那么下一层的每一个特征图就得用相应的通道的卷积核来对应处理,这个逻辑要清楚,我们需要先了解一下 基本的概念:

卷积计算的公式

4x4的图片在边缘Zero padding一圈后,再用3x3的filter卷积后,得到的Feature Map尺寸依然是4x4不变。

填充

当然也可以使用5x5的filte和2的zero padding可以保持图片的原始尺寸,3x3的filter考虑到了像素与其距离为1以内的所有其他像素的关系,而5x5则是考虑像素与其距离为2以内的所有其他像素的关系。

规律: Feature Map的尺寸等于

(input_size + 2 * padding_size − filter_size)/stride+1

我们可以把卷积层的作用 总结一点: 卷积层其实就是在提取特征,卷积层中最重要的是卷积核(训练出来的),不同的卷积核可以探测特定的形状、颜色、对比度等,然后特征图保持了抓取后的空间结构,所以不同卷积核对应的特征图表示某一维度的特征,具体什么特征可能我们并不知道。特征图作为输入再被卷积的话,可以则可以由此探测到"更大"的形状概念,也就是说随着卷积神经网络层数的增加,特征提取的越来越具体化。

激励层的作用可以理解为把卷积层的结果做 非线性映射

激励层

上图中的f表示激励函数,常用的激励函数几下几种:

常用的激励函数

我们先来看一下激励函数Sigmoid导数最小为0,最大为1/4,

激励函数Sigmoid

Tanh激活函数:和sigmoid相似,它会关于x轴上下对应,不至于朝某一方面偏向

Tanh激活函数

ReLU激活函数(修正线性单元):收敛快,求梯度快,但较脆弱,左边的梯度为0

ReLU激活函数

Leaky ReLU激活函数:不会饱和或者挂掉,计算也很快,但是计算量比较大

Leaky ReLU激活函数

一些激励函数的使用技巧 :一般不要用sigmoid,首先试RELU,因为快,但要小心点,如果RELU失效,请用Leaky ReLU,某些情况下tanh倒是有不错的结果。

这就是卷积神经网络的激励层,它就是将卷积层的线性计算的结果进行了非线性映射。可以从下面的图中理解。它展示的是将非线性操作应用到一个特征图中。这里的输出特征图也可以看作是"修正"过的特征图。如下所示:

非线性操作

池化层:降低了各个特征图的维度,但可以保持大分重要的信息。池化层夹在连续的卷积层中间,压缩数据和参数的量,减小过拟合,池化层并没有参数,它只不过是把上层给它的结果做了一个下采样(数据压缩)。下采样有 两种 常用的方式:

Max pooling :选取最大的,我们定义一个空间邻域(比如,2x2 的窗口),并从窗口内的修正特征图中取出最大的元素,最大池化被证明效果更好一些。

Average pooling :平均的,我们定义一个空间邻域(比如,2x2 的窗口),并从窗口内的修正特征图算出平均值

Max pooling

我们要注意一点的是:pooling在不同的depth上是分开执行的,也就是depth=5的话,pooling进行5次,产生5个池化后的矩阵,池化不需要参数控制。池化操作是分开应用到各个特征图的,我们可以从五个输入图中得到五个输出图。

池化操作

无论是max pool还是average pool都有分信息被舍弃,那么部分信息被舍弃后会损坏识别结果吗?

因为卷积后的Feature Map中有对于识别物体不必要的冗余信息,我们下采样就是为了去掉这些冗余信息,所以并不会损坏识别结果。

我们来看一下卷积之后的冗余信息是怎么产生的?

我们知道卷积核就是为了找到特定维度的信息,比如说某个形状,但是图像中并不会任何地方都出现这个形状,但卷积核在卷积过程中没有出现特定形状的图片位置卷积也会产生一个值,但是这个值的意义就不是很大了,所以我们使用池化层的作用,将这个值去掉的话,自然也不会损害识别结果了。

比如下图中,假如卷积核探测"横折"这个形状。 卷积后得到3x3的Feature Map中,真正有用的就是数字为3的那个节点,其余数值对于这个任务而言都是无关的。 所以用3x3的Max pooling后,并没有对"横折"的探测产生影响。 试想在这里例子中如果不使用Max pooling,而让网络自己去学习。 网络也会去学习与Max pooling近似效果的权重。因为是近似效果,增加了更多的参数的代价,却还不如直接进行最大池化处理。

最大池化处理

在全连接层中所有神经元都有权重连接,通常全连接层在卷积神经网络尾部。当前面卷积层抓取到足以用来识别图片的特征后,接下来的就是如何进行分类。 通常卷积网络的最后会将末端得到的长方体平摊成一个长长的向量,并送入全连接层配合输出层进行分类。比如,在下面图中我们进行的图像分类为四分类问题,所以卷积神经网络的输出层就会有四个神经元。

四分类问题

我们从卷积神经网络的输入层、卷积层、激活层、池化层以及全连接层来讲解卷积神经网络,我们可以认为全连接层之间的在做特征提取,而全连接层在做分类,这就是卷积神经网络的核心。

⑺ 卷积神经网络

关于花书中卷积网络的笔记记录于 https://www.jianshu.com/p/5a3c90ea0807 。

卷积神经网络(Convolutional Neural Network,CNN或ConvNet)是一种具有 局部连接、权重共享 等特性的深层前馈神经网络。卷积神经网络是受生物学上感受野的机制而提出。 感受野(Receptive Field) 主要是指听觉、视觉等神经系统中一些神经元的特性,即 神经元只接受其所支配的刺激区域内的信号

卷积神经网络最早是主要用来处理图像信息。如果用全连接前馈网络来处理图像时,会存在以下两个问题:

目前的卷积神经网络一般是由卷积层、汇聚层和全连接层交叉堆叠而成的前馈神经网络,使用反向传播算法进行训练。 卷积神经网络有三个结构上的特性:局部连接,权重共享以及汇聚 。这些特性使卷积神经网络具有一定程度上的平移、缩放和旋转不变性。

卷积(Convolution)是分析数学中一种重要的运算。在信号处理或图像处理中,经常使用一维或二维卷积。

一维卷积经常用在信号处理中,用于计算信号的延迟累积。假设一个信号发生器每个时刻t 产生一个信号 ,其信息的衰减率为 ,即在 个时间步长后,信息为原来的 倍。假设 ,那么在时刻t收到的信号 为当前时刻产生的信息和以前时刻延迟信息的叠加:

我们把 称为 滤波器(Filter)或卷积核(Convolution Kernel) 。假设滤波器长度为 ,它和一个信号序列 的卷积为:

信号序列 和滤波器 的卷积定义为:

一般情况下滤波器的长度 远小于信号序列长度 ,下图给出一个一维卷积示例,滤波器为 :

二维卷积经常用在图像处理中。因为图像为一个两维结构,所以需要将一维卷积进行扩展。给定一个图像 和滤波器 ,其卷积为:

下图给出一个二维卷积示例:

注意这里的卷积运算并不是在图像中框定卷积核大小的方框并将各像素值与卷积核各个元素相乘并加和,而是先把卷积核旋转180度,再做上述运算。

在图像处理中,卷积经常作为特征提取的有效方法。一幅图像在经过卷积操作后得到结果称为 特征映射(Feature Map)

最上面的滤波器是常用的高斯滤波器,可以用来对图像进行 平滑去噪 ;中间和最下面的过滤器可以用来 提取边缘特征

在机器学习和图像处理领域,卷积的主要功能是在一个图像(或某种特征)上滑动一个卷积核(即滤波器),通过卷积操作得到一组新的特征。在计算卷积的过程中,需要进行卷积核翻转(即上文提到的旋转180度)。 在具体实现上,一般会以互相关操作来代替卷积,从而会减少一些不必要的操作或开销。

互相关(Cross-Correlation)是一个衡量两个序列相关性的函数,通常是用滑动窗口的点积计算来实现 。给定一个图像 和卷积核 ,它们的互相关为:

互相关和卷积的区别仅在于卷积核是否进行翻转。因此互相关也可以称为不翻转卷积 。当卷积核是可学习的参数时,卷积和互相关是等价的。因此,为了实现上(或描述上)的方便起见,我们用互相关来代替卷积。事实上,很多深度学习工具中卷积操作其实都是互相关操作。

在卷积的标准定义基础上,还可以引入滤波器的 滑动步长 零填充 来增加卷积多样性,更灵活地进行特征抽取。

滤波器的步长(Stride)是指滤波器在滑动时的时间间隔。

零填充(Zero Padding)是在输入向量两端进行补零。

假设卷积层的输入神经元个数为 ,卷积大小为 ,步长为 ,神经元两端各填补 个零,那么该卷积层的神经元数量为 。

一般常用的卷积有以下三类:

因为卷积网络的训练也是基于反向传播算法,因此我们重点关注卷积的导数性质:

假设 。

, , 。函数 为一个标量函数。

则由 有:

可以看出, 关于 的偏导数为 和 的卷积

同理得到:

当 或 时, ,即相当于对 进行 的零填充。从而 关于 的偏导数为 和 的宽卷积

用互相关的“卷积”表示,即为(注意 宽卷积运算具有交换性性质 ):

在全连接前馈神经网络中,如果第 层有 个神经元,第 层有 个神经元,连接边有 个,也就是权重矩阵有 个参数。当 和 都很大时,权重矩阵的参数非常多,训练的效率会非常低。

如果采用卷积来代替全连接,第 层的净输入 为第 层活性值 和滤波器 的卷积,即:

根据卷积的定义,卷积层有两个很重要的性质:

由于局部连接和权重共享,卷积层的参数只有一个m维的权重 和1维的偏置 ,共 个参数。参数个数和神经元的数量无关。此外,第 层的神经元个数不是任意选择的,而是满足 。

卷积层的作用是提取一个局部区域的特征,不同的卷积核相当于不同的特征提取器。

特征映射(Feature Map)为一幅图像(或其它特征映射)在经过卷积提取到的特征,每个特征映射可以作为一类抽取的图像特征。 为了提高卷积网络的表示能力,可以在每一层使用多个不同的特征映射,以更好地表示图像的特征。

在输入层,特征映射就是图像本身。如果是灰度图像,就是有一个特征映射,深度 ;如果是彩色图像,分别有RGB三个颜色通道的特征映射,深度 。

不失一般性,假设一个卷积层的结构如下:

为了计算输出特征映射 ,用卷积核 分别对输入特征映射 进行卷积,然后将卷积结果相加,并加上一个标量偏置 得到卷积层的净输入 再经过非线性激活函数后得到输出特征映射 。

在输入为 ,输出为 的卷积层中,每个输出特征映射都需要 个滤波器以及一个偏置。假设每个滤波器的大小为 ,那么共需要 个参数。

汇聚层(Pooling Layer)也叫子采样层(Subsampling Layer),其作用是进行特征选择,降低特征数量,并从而减少参数数量。

常用的汇聚函数有两种:

其中 为区域 内每个神经元的激活值。

可以看出,汇聚层不但可以有效地减少神经元的数量,还可以使得网络对一些小的局部形态改变保持不变性,并拥有更大的感受野。

典型的汇聚层是将每个特征映射划分为 大小的不重叠区域,然后使用最大汇聚的方式进行下采样。汇聚层也可以看做是一个特殊的卷积层,卷积核大小为 ,步长为 ,卷积核为 函数或 函数。过大的采样区域会急剧减少神经元的数量,会造成过多的信息损失。

一个典型的卷积网络是由卷积层、汇聚层、全连接层交叉堆叠而成。

目前常用卷积网络结构如图所示,一个卷积块为连续 个卷积层和 个汇聚层( 通常设置为 , 为 或 )。一个卷积网络中可以堆叠 个连续的卷积块,然后在后面接着 个全连接层( 的取值区间比较大,比如 或者更大; 一般为 )。

目前,整个网络结构 趋向于使用更小的卷积核(比如 和 )以及更深的结构(比如层数大于50) 。此外,由于卷积的操作性越来越灵活(比如不同的步长),汇聚层的作用变得也越来越小,因此目前比较流行的卷积网络中, 汇聚层的比例也逐渐降低,趋向于全卷积网络

在全连接前馈神经网络中,梯度主要通过每一层的误差项 进行反向传播,并进一步计算每层参数的梯度。在卷积神经网络中,主要有两种不同功能的神经层:卷积层和汇聚层。而参数为卷积核以及偏置,因此 只需要计算卷积层中参数的梯度。

不失一般性,第 层为卷积层,第 层的输入特征映射为 ,通过卷积计算得到第 层的特征映射净输入 ,第 层的第 个特征映射净输入

由 得:

同理可得,损失函数关于第 层的第 个偏置 的偏导数为:

在卷积网络中,每层参数的梯度依赖其所在层的误差项 。

卷积层和汇聚层中,误差项的计算有所不同,因此我们分别计算其误差项。

第 层的第 个特征映射的误差项 的具体推导过程如下:

其中 为第 层使用的激活函数导数, 为上采样函数(upsampling),与汇聚层中使用的下采样操作刚好相反。如果下采样是最大汇聚(max pooling),误差项 中每个值会直接传递到上一层对应区域中的最大值所对应的神经元,该区域中其它神经元的误差项的都设为0。如果下采样是平均汇聚(meanpooling),误差项 中每个值会被平均分配到上一层对应区域中的所有神经元上。

第 层的第 个特征映射的误差项 的具体推导过程如下:

其中 为宽卷积。

LeNet-5虽然提出的时间比较早,但是是一个非常成功的神经网络模型。基于LeNet-5 的手写数字识别系统在90年代被美国很多银行使用,用来识别支票上面的手写数字。LeNet-5 的网络结构如图:

不计输入层,LeNet-5共有7层,每一层的结构为:

AlexNet是第一个现代深度卷积网络模型,其首次使用了很多现代深度卷积网络的一些技术方法,比如采用了ReLU作为非线性激活函数,使用Dropout防止过拟合,使用数据增强来提高模型准确率等。AlexNet 赢得了2012 年ImageNet 图像分类竞赛的冠军。

AlexNet的结构如图,包括5个卷积层、3个全连接层和1个softmax层。因为网络规模超出了当时的单个GPU的内存限制,AlexNet 将网络拆为两半,分别放在两个GPU上,GPU间只在某些层(比如第3层)进行通讯。

AlexNet的具体结构如下:

在卷积网络中,如何设置卷积层的卷积核大小是一个十分关键的问题。 在Inception网络中,一个卷积层包含多个不同大小的卷积操作,称为Inception模块。Inception网络是由有多个inception模块和少量的汇聚层堆叠而成

v1版本的Inception模块,采用了4组平行的特征抽取方式,分别为1×1、3× 3、5×5的卷积和3×3的最大汇聚。同时,为了提高计算效率,减少参数数量,Inception模块在进行3×3、5×5的卷积之前、3×3的最大汇聚之后,进行一次1×1的卷积来减少特征映射的深度。如果输入特征映射之间存在冗余信息, 1×1的卷积相当于先进行一次特征抽取

⑻ 卷积神经网络中的卷积的物理意义和现象

从数学上讲,卷积就是一种运算

在信号与系统中卷积的公式如下:

对应相乘再相加,这是在坐标轴上进行的

对于在图像中这样一个二维矩阵的卷积中,我们可以想象的就是卷积神经网络中的“平滑问题”

如下图所示为对图像做平滑,一个典型的8领域平滑,其结果中的每个值都来源于原对应位置和其周边8个元素与一个3X3矩阵的乘积,也就相当于对原矩阵,按照顺序将各区域元素与W矩阵相乘,W 矩阵为

这也被称作核(Kernel, 3X3)

最后我们可以得到如右图所示的数字“3”。

如果依次平滑过去便可以得到卷积图的像素值数值变化。

内核放置在图像的左上角。内核覆盖的像素值乘以相应的内核值,并且乘积相加。结果放置在与内核中心相对应的位置的新映像中。下图显示了第一步的一个例子。

内核被移动一个像素,这个过程被重新设置,直到图像中的所有可能的位置被过滤如下,这次是水平的Sobel过滤器。请注意,在卷积图像周围存在空值的边框。这是因为卷积的结果放在内核的中心。为了解决这个问题,我们使用了一个叫做“padding”或者更常见的“零填充”的过程。这仅仅意味着在原始图像周围放置了一个零边框,以使其四周变宽。卷积然后按正常进行,但是卷积结果现在将产生与原始大小相同的图像。

卷积后发现边缘空白,为了使图像有原来的尺寸,边缘填0,也即padding, 但是填完了再利用“核”再做一次卷积,所以执行下面的操作:

所以池化层的目的也比较明确,就是减小尺寸,去除padding产生的数据信息。

现在我们有了我们的卷积图像,我们可以使用色彩映射来显示结果。在这里,我只是规范了0到255之间的值,以便我可以应用灰度可视化:

神经网络中,卷积+池化是特征提取器,全连接层是分类器.

参考文献:

[1] https://www.hu.com/question/39022858

[2] https://mlnotebook.github.io/post/CNN1/

[3] https://www.hu.com/question/22298352

阅读全文

与如何理解神经网络的卷积层相关的资料

热点内容
公共网络延时特别高怎么办 浏览:541
日本苹果4网络设置 浏览:724
天童美语网络上课软件 浏览:254
网络合伙人如何找 浏览:169
带无线路由器网络信号弱 浏览:384
如何用电话知道对方网络密码 浏览:118
九江公安局网络安全支队 浏览:994
无线网络连接密码错误 浏览:428
随身wifi没有网络怎么用 浏览:36
如何切换至广电网络信号 浏览:314
网络收款助手在哪里 浏览:300
移动网络设置接哪个位置 浏览:20
网络安全宣传语录简短 浏览:310
网络上虚拟视频用哪一个软件 浏览:464
苹果xsmax网络天线在哪里 浏览:692
移动网络无法使用电信dns解析 浏览:663
4g网络如何解析信号 浏览:137
移动的网络台式电脑掉线 浏览:952
注册微信网络打不开什么原因 浏览:544
王者荣耀手机网络模式怎么设置 浏览:362

友情链接