导航:首页 > 网络安全 > 如何加快神经网络训练速度1001无标题

如何加快神经网络训练速度1001无标题

发布时间:2022-11-27 22:22:35

❶ 神经网络浅谈

人工智能技术是当前炙手可热的话题,而基于神经网络的深度学习技术更是热点中的热点。去年谷歌的Alpha Go 以4:1大比分的优势战胜韩国的李世石九段,展现了深度学习的强大威力,后续强化版的Alpha Master和无师自通的Alpha Zero更是在表现上完全碾压前者。不论你怎么看,以深度学习为代表的人工智能技术正在塑造未来。

下图为英伟达(NVIDIA)公司近年来的股价情况, 该公司的主要产品是“图形处理器”(GPU),而GPU被证明能大大加快神经网络的训练速度,是深度学习必不可少的计算组件。英伟达公司近年来股价的飞涨足以证明当前深度学习的井喷之势。

好,话不多说,下面简要介绍神经网络的基本原理、发展脉络和优势。

神经网络是一种人类由于受到生物神经细胞结构启发而研究出的一种算法体系,是机器学习算法大类中的一种。首先让我们来看人脑神经元细胞:

一个神经元通常具有多个树突 ,主要用来接受传入信息,而轴突只有一条,轴突尾端有许多轴突末梢,可以给其他多个神经元传递信息。轴突末梢跟其他神经元的树突产生连接,从而传递信号

下图是一个经典的神经网络(Artificial Neural Network,ANN):

乍一看跟传统互联网的拓扑图有点类似,这也是称其为网络的原因,不同的是节点之间通过有向线段连接,并且节点被分成三层。我们称图中的圆圈为神经元,左边三个神经元组成的一列为输入层,中间神经元列为隐藏层,右边神经元列为输出层,神经元之间的箭头为权重。

神经元是计算单元,相当于神经元细胞的细胞核,利用输入的数据进行计算,然后输出,一般由一个线性计算部分和一个非线性计算部分组成;输入层和输出层实现数据的输入输出,相当于细胞的树突和轴突末梢;隐藏层指既不是输入也不是输出的神经元层,一个神经网络可以有很多个隐藏层。

神经网络的关键不是圆圈代表的神经元,而是每条连接线对应的权重。每条连接线对应一个权重,也就是一个参数。权重具体的值需要通过神经网络的训练才能获得。我们实际生活中的学习体现在大脑中就是一系列神经网络回路的建立与强化,多次重复的学习能让回路变得更加粗壮,使得信号的传递速度加快,最后对外表现为“深刻”的记忆。人工神经网络的训练也借鉴于此,如果某种映射关系出现很多次,那么在训练过程中就相应调高其权重。

1943年,心理学家McCulloch和数学家Pitts参考了生物神经元的结构,发表了抽象的神经元模型MP:

符号化后的模型如下:

Sum函数计算各权重与输入乘积的线性组合,是神经元中的线性计算部分,而sgn是取符号函数,当输入大于0时,输出1,反之输出0,是神经元中的非线性部分。向量化后的公式为z=sgn(w^T a)(w^T=(w_1,w_2,w_3),a=〖(a_1,a_2,a_3)〗^T)。

但是,MP模型中,权重的值都是预先设置的,因此不能学习。该模型虽然简单,并且作用有限,但已经建立了神经网络大厦的地基

1958年,计算科学家Rosenblatt提出了由两层神经元组成(一个输入层,一个输出层)的神经网络。他给它起了一个名字–“感知器”(Perceptron)

感知器是当时首个可以学习的人工神经网络。Rosenblatt现场演示了其学习识别简单图像的过程,在当时引起了轰动,掀起了第一波神经网络的研究热潮。

但感知器只能做简单的线性分类任务。1969年,人工智能领域的巨擘Minsky指出这点,并同时指出感知器对XOR(异或,即两个输入相同时输出0,不同时输出1)这样的简单逻辑都无法解决。所以,明斯基认为神经网络是没有价值的。

随后,神经网络的研究进入低谷,又称 AI Winter 。

Minsky说过单层神经网络无法解决异或问题,但是当增加一个计算层以后,两层神经网络不仅可以解决异或问题,而且具有非常好的非线性分类效果。

下图为两层神经网络(输入层一般不算在内):

上图中,输出层的输入是上一层的输出。

向量化后的公式为:

注意:

每个神经元节点默认都有偏置变量b,加上偏置变量后的计算公式为:

同时,两层神经网络不再使用sgn函数作为激励函数,而采用平滑的sigmoid函数:

σ(z)=1/(1+e^(-z) )

其图像如下:

理论证明: 两层及以上的神经网络可以无限逼近真实的对应函数,从而模拟数据之间的真实关系 ,这是神经网络强大预测能力的根本。但两层神经网络的计算量太大,当时的计算机的计算能力完全跟不上,直到1986年,Rumelhar和Hinton等人提出了反向传播(Backpropagation,BP)算法,解决了两层神经网络所需要的复杂计算量问题,带动了业界使用两层神经网络研究的热潮。

但好景不长,算法的改进仅使得神经网络风光了几年,然而计算能力不够,局部最优解,调参等一系列问题一直困扰研究人员。90年代中期,由Vapnik等人发明的SVM(Support Vector Machines,支持向量机)算法诞生,很快就在若干个方面体现出了对比神经网络的优势:无需调参;高效;全局最优解。

由于以上原因,SVM迅速打败了神经网络算法成为主流。神经网络的研究再一次进入低谷, AI Winter again 。

多层神经网络一般指两层或两层以上的神经网络(不包括输入层),更多情况下指两层以上的神经网络。

2006年,Hinton提出使用 预训练 ”(pre-training)和“微调”(fine-tuning)技术能优化神经网络训练,大幅度减少训练多层神经网络的时间

并且,他给多层神经网络相关的学习方法赋予了一个新名词–“ 深度学习 ”,以此为起点,“深度学习”纪元开始了:)

“深度学习”一方面指神经网络的比较“深”,也就是层数较多;另一方面也可以指神经网络能学到很多深层次的东西。研究发现,在权重参数不变的情况下,增加神经网络的层数,能增强神经网络的表达能力。

但深度学习究竟有多强大呢?没人知道。2012年,Hinton与他的学生在ImageNet竞赛中,用多层的卷积神经网络成功地对包含一千类别的一百万张图片进行了训练,取得了分类错误率15%的好成绩,这个成绩比第二名高了近11个百分点,充分证明了多层神经网络识别效果的优越性。

同时,科研人员发现GPU的大规模并行矩阵运算模式完美地契合神经网络训练的需要,在同等情况下,GPU的速度要比CPU快50-200倍,这使得神经网络的训练时间大大减少,最终再一次掀起了神经网络研究的热潮,并且一直持续到现在。

2016年基于深度学习的Alpha Go在围棋比赛中以4:1的大比分优势战胜了李世石,深度学习的威力再一次震惊了世界。

神经网络的发展历史曲折荡漾,既有被捧上神坛的高潮,也有无人问津的低谷,中间经历了数次大起大落,我们姑且称之为“三起三落”吧,其背后则是算法的改进和计算能力的持续发展。

下图展示了神经网络自发明以来的发展情况及一些重大时间节点。

当然,对于神经网络我们也要保持清醒的头脑。由上图,每次神经网络研究的兴盛期持续10年左右,从最近2012年算起,或许10年后的2022年,神经网络的发展将再次遇到瓶颈。

神经网络作为机器学习的一种,其模型训练的目的,就是使得参数尽可能的与真实的模型逼近。理论证明,两层及以上的神经网络可以无限逼近真实的映射函数。因此,给定足够的训练数据和训练时间,总能通过神经网络找到无限逼近真实关系的模型。

具体做法:首先给所有权重参数赋上随机值,然后使用这些随机生成的参数值,来预测训练数据中的样本。假设样本的预测目标为yp ,真实目标为y,定义值loss,计算公式如下:

loss = (yp -y) ^2

这个值称之为 损失 (loss),我们的目标就是使对所有训练数据的损失和尽可能的小,这就转化为求loss函数极值的问题。

一个常用方法是高等数学中的求导,但由于参数不止一个,求导后计算导数等于0的运算量很大,所以常用梯度下降算法来解决这样的优化问题。梯度是一个向量,由函数的各自变量的偏导数组成。

比如对二元函数 f =(x,y),则梯度∇f=(∂f/∂x,∂f/∂y)。梯度的方向是函数值上升最快的方向。梯度下降算法每次计算参数在当前的梯度,然后让参数向着梯度的反方向前进一段距离,不断重复,直到梯度接近零时截止。一般这个时候,所有的参数恰好达到使损失函数达到一个最低值的状态。下图为梯度下降的大致运行过程:

在神经网络模型中,由于结构复杂,每次计算梯度的代价很大。因此还需要使用 反向传播 (Back Propagation)算法。反向传播算法利用了神经网络的结构进行计算,不一次计算所有参数的梯度,而是从后往前。首先计算输出层的梯度,然后是第二个参数矩阵的梯度,接着是中间层的梯度,再然后是第一个参数矩阵的梯度,最后是输入层的梯度。计算结束以后,所要的两个参数矩阵的梯度就都有了。当然,梯度下降只是其中一个优化算法,其他的还有牛顿法、RMSprop等。

确定loss函数的最小值后,我们就确定了整个神经网络的权重,完成神经网络的训练。

在神经网络中一样的参数数量,可以用更深的层次去表达。

由上图,不算上偏置参数的话,共有三层神经元,33个权重参数。

由下图,保持权重参数不变,但增加了两层神经元。

在多层神经网络中,每一层的输入是前一层的输出,相当于在前一层的基础上学习,更深层次的神经网络意味着更深入的表示特征,以及更强的函数模拟能力。更深入的表示特征可以这样理解,随着网络的层数增加,每一层对于前一层次的抽象表示更深入。

如上图,第一个隐藏层学习到“边缘”的特征,第二个隐藏层学习到“边缘”组成的“形状”的特征,第三个隐藏层学习到由“形状”组成的“图案”的特征,最后的隐藏层学习到由“图案”组成的“目标”的特征。通过抽取更抽象的特征来对事物进行区分,从而获得更好的区分与分类能力。

前面提到, 明斯基认为Rosenblatt提出的感知器模型不能处理最简单的“异或”(XOR)非线性问题,所以神经网络的研究没有前途,但当增加一层神经元后,异或问题得到了很好地解决,原因何在?原来从输入层到隐藏层,数据发生了空间变换,坐标系发生了改变,因为矩阵运算本质上就是一种空间变换。

如下图,红色和蓝色的分界线是最终的分类结果,可以看到,该分界线是一条非常平滑的曲线。

但是,改变坐标系后,分界线却表现为直线,如下图:

同时,非线性激励函数的引入使得神经网络对非线性问题的表达能力大大加强。

对于传统的朴素贝叶斯、决策树、支持向量机SVM等分类器,提取特征是一个非常重要的前置工作。在正式训练之前,需要花费大量的时间在数据的清洗上,这样分类器才能清楚地知道数据的维度,要不然基于概率和空间距离的线性分类器是没办法进行工作的。然而在神经网络中,由于巨量的线性分类器的堆叠(并行和串行)以及卷积神经网络的使用,它对噪声的忍耐能力、对多通道数据上投射出来的不同特征偏向的敏感程度会自动重视或忽略,这样我们在处理的时候,就不需要使用太多的技巧用于数据的清洗了。有趣的是,业内大佬常感叹,“你可能知道SVM等机器学习的所有细节,但是效果并不好,而神经网络更像是一个黑盒,很难知道它究竟在做什么,但工作效果却很好”。

人类对机器学习的环节干预越少,就意味着距离人工智能的方向越近。神经网络的这个特性非常有吸引力。

1) 谷歌的TensorFlow开发了一个非常有意思的神经网络 入门教程 ,用户可以非常方便地在网页上更改神经网络的参数,并且能看到实时的学习效率和结果,非常适合初学者掌握神经网络的基本概念及神经网络的原理。网页截图如下:

2) 深度学习领域大佬吴恩达不久前发布的《 神经网络和深度学习 》MOOC,现在可以在网易云课堂上免费观看了,并且还有中文字幕。

3) 《神经网络于深度学习》(Michael Nielsen着)、《白话深度学习与TensorFlow》也是不错的入门书籍。

❷ OPENNN如何加快神经网络训练速度(54个输入,100个隐层,1个输出)

开头注释:针对这些问题,都是在tensorflow框架下,去寻找代码解决问题的。所以非tensorflow框架下编程的,可以看看出现该类问题的原因,以及解决问题的方向,具体的解决问题的代码需要自行查阅资料。

情况1:训练速度慢

针对实体链接任务,搭建了Bi-LSTM+CNN的模型,目前训练速度很慢,半个小时才出一个批次的预测结果。

类比于手写数字识别,无论是使用LSTM,还是CNN,都不会很慢,最慢的至少在10分钟内能出每一个批次的预测结果。

❸ 神经网络设计如何提高精度

增加神经网络训练目标,以提高精度要求:

trainParam.goal = 0.01 %0.01表示训练目标误差为0.01

❹ 如何训练神经网络

1、先别着急写代码

训练神经网络前,别管代码,先从预处理数据集开始。我们先花几个小时的时间,了解数据的分布并找出其中的规律。

Andrej有一次在整理数据时发现了重复的样本,还有一次发现了图像和标签中的错误。所以先看一眼数据能避免我们走很多弯路。

由于神经网络实际上是数据集的压缩版本,因此您将能够查看网络(错误)预测并了解它们的来源。如果你的网络给你的预测看起来与你在数据中看到的内容不一致,那么就会有所收获。

一旦从数据中发现规律,可以编写一些代码对他们进行搜索、过滤、排序。把数据可视化能帮助我们发现异常值,而异常值总能揭示数据的质量或预处理中的一些错误。

2、设置端到端的训练评估框架

处理完数据集,接下来就能开始训练模型了吗?并不能!下一步是建立一个完整的训练+评估框架。

在这个阶段,我们选择一个简单又不至于搞砸的模型,比如线性分类器、CNN,可视化损失。获得准确度等衡量模型的标准,用模型进行预测。

这个阶段的技巧有:

· 固定随机种子

使用固定的随机种子,来保证运行代码两次都获得相同的结果,消除差异因素。

· 简单化

在此阶段不要有任何幻想,不要扩增数据。扩增数据后面会用到,但是在这里不要使用,现在引入只会导致错误。

· 在评估中添加有效数字

在绘制测试集损失时,对整个测试集进行评估,不要只绘制批次测试损失图像,然后用Tensorboard对它们进行平滑处理。

· 在初始阶段验证损失函数

验证函数是否从正确的损失值开始。例如,如果正确初始化最后一层,则应在softmax初始化时测量-log(1/n_classes)。

· 初始化

正确初始化最后一层的权重。如果回归一些平均值为50的值,则将最终偏差初始化为50。如果有一个比例为1:10的不平衡数据集,请设置对数的偏差,使网络预测概率在初始化时为0.1。正确设置这些可以加速模型的收敛。

· 人类基线

监控除人为可解释和可检查的损失之外的指标。尽可能评估人的准确性并与之进行比较。或者对测试数据进行两次注释,并且对于每个示例,将一个注释视为预测,将第二个注释视为事实。

· 设置一个独立于输入的基线

最简单的方法是将所有输入设置为零,看看模型是否学会从输入中提取任何信息。

· 过拟合一个batch

增加了模型的容量并验证我们可以达到的最低损失。

· 验证减少训练损失

尝试稍微增加数据容量。

❺ bp神经网络训练速度慢怎么调整

BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

❻ weka 中用rbf神经网络算法进行训练,速度奇慢无比,不知道要改哪些参数,在哪里改,请具体说一下,谢谢啦

像是rbf这类算法碰到高维度大容量的数据集就是慢的像老牛拉车...很多论文上的实验模型都是训练了n小时的结果。
建议尝试用属性选择搞几个特征子集出来,试试看哪个的效果好就用哪个代替原始数据集。个人感觉算法的参数调整对提高模型的训练效率来说意义不大,用属性选择降低数据集的维度是最有效的。

❼ 如何用FPGA加速卷积神经网络

深度学习本身是一个非常庞大的知识体系。本文更多想从程序员的视角出发,让大家观察一下深度学习对程序员意味着什么,以及我们如何利用这样一个高速发展的学科,来帮助程序员提升软件开发的能力。
本文根据费良宏在2016QCon全球软件开发大会(上海)上的演讲整理而成。
前言
1973年,美国上映了一部热门的科幻电影《WestWorld》,三年之后又有一个续集叫做《FutureWorld》。这部电影在80年代初被引进到中国叫《未来世界》。那部电影对我来讲简直可以说得上是震撼。影片中出现了很多机器人,表情丰富的面部下面都是集成电路板。这让那时候的我觉得未来世界都是那么遥远、那么神秘。
时间到了2016年,很多朋友可能都在追看HBO斥巨资拍摄的同一题材的系列剧《WestWorld》。如果前两部电影还是局限在机器人、人工智能这样的话题,2016年的新剧则在剧情和人工智能的思考方面有了很大的突破。不再渲染机器人是否会威胁到人类,而是在探讨“Dreamsaremainlymemories”这一类更具哲理的问题。
“记忆究竟如何影响了智能”这个话题非常值得我们去思考,也给我们一个很好的启示——今天,人工智能领域究竟有了怎样的发展和进步。
今天我们探讨的话题不仅仅是简单的人工智能。如果大家对深度学习感兴趣,我相信各位一定会在搜索引擎上搜索过类似相关的关键字。我在Google上以deeplearning作为关键字得到了2,630万个搜索的结果。这个数字比一周之前足足多出了300多万的结果。这个数字足以看得出来深度学习相关的内容发展的速度,人们对深度学习的关注也越来越高。
从另外的一个角度,我想让大家看看深度学习在市场上究竟有多么热门。从2011年到现在一共有140多家专注人工智能、深度学习相关的创业公司被收购。仅仅在2016年这种并购就发生了40多起。
其中最疯狂的是就是Google,已经收购了 11 家人工智能创业公司,其中最有名的就是击败了李世石九段的 DeepMind。排名之后的就要数 Apple、Intel以及Twitter。以Intel 公司为例,仅在今年就已经收购了 3 家创业公司,Itseez、Nervana 和 Movidius。这一系列大手笔的并购为了布局人工智能以及深度学习的领域。
当我们去搜索深度学习话题的时候,经常会看到这样的一些晦涩难懂的术语:Gradient descent(梯度下降算法)、Backpropagation(反向传播算法)、Convolutional Neural Network(卷积神经网络)、受限玻耳兹曼机(Restricted Boltzmann Machine)等。
如打开任何一篇技术文章,你看到的通篇都是各种数学公式。大家看到如下左边的图,其实并不是一篇高水准的学术论文,而仅仅是维基网络关于玻耳兹曼机的介绍。维基网络是科普层面的内容,内容复杂程度就超过了大多数数学知识的能力。
在这样的背景之下,我今天的的话题可以归纳成三点:第一,我们为什么要学习深度学习;第二,深度学习最核心的关键概念就是神经网络,那么究竟什么是神经网络;第三,作为程序员,当我们想要成为深度学习开发者的时候,我们需要具备怎样的工具箱,以及从哪里着手进行开发。
为什么要学习深度学习
首先,我们谈谈为什么要学习深度学习。在这个市场当中,最不缺乏的就是各种概念以及各种时髦新技术的词汇。深度学习有什么不一样的地方?我非常喜欢AndrewNg(吴恩达)曾经用过的一个比喻。
他把深度学习比喻成一个火箭。这个火箭有一个最重要的部分,就是它的引擎,目前来看在这个领域里面,引擎的核心就是神经网络。大家都知道,火箭除了引擎之外还需要有燃料,那么大数据其实就构成了整个火箭另外的重要组成部分——燃料。以往我们谈到大数据的时候,更多是强调存储和管理数据的能力,但是这些方法和工具更多是对于以往历史数据的统计、汇总。
而对于今后未知的东西,这些传统的方法并不能够帮助我们可以从大数据中得出预测的结论。如果考虑到神经网络和大数据结合,我们才可能看清楚大数据真正的价值和意义。AndrewNg就曾经说过“我们相信(神经网络代表的深度学习)是让我们获得最接近于人工智能的捷径”。这就是我们要学习深度学习的一个最重要的原因。
其次,随着我们进行数据处理以及运算能力的不断提升,深度学习所代表的人工智能技术和传统意义上人工智能技术比较起来,在性能上有了突飞猛进的发展。这主要得益于在过去几十间计算机和相关产业不断发展带来的成果。在人工智能的领域,性能是我们选择深度学习另一个重要的原因。
这是一段Nvidia在今年公布的关于深度学习在无人驾驶领域应用的视频。我们可以看到,将深度学习应用在自动驾驶方面,仅仅经历了3千英里的训练,就可以达到什么样的程度。在今年年初进行的实验上,这个系统还不具备真正智能能力,经常会出现各种各样的让人提心吊胆的状况,甚至在某些情况下还需要人工干预。
但经过了3千英里的训练之后,我们看到在山路、公路、泥地等各种复杂的路况下面,无人驾驶已经有了一个非常惊人的表现。请大家注意,这个深度学习的模型只经过了短短几个月、3千英里的训练。
如果我们不断完善这种模型的话,这种处理能力将会变得何等的强大。这个场景里面最重要的技术无疑就是深度学习。我们可以得出一个结论:深度学习可以为我们提供强大的能力,如果程序员拥有了这个技术的话,无异于会让每个程序员如虎添翼。
神经网络快速入门
如果我们对于学习深度学习没有任何疑虑的话,接下来就一定会关心我需要掌握什么样的知识才能让我进入到这个领域。这里面最重要的关键技术就是“神经网络”。说起“神经网络”,容易混淆是这样两个完全不同的概念。
一个是生物学神经网络,第二个才是我们今天要谈起的人工智能神经网络。可能在座的各位有朋友在从事人工智能方面的工作。当你向他请教神经网络的时候,他会抛出许多陌生的概念和术语让你听起来云里雾里,而你只能望而却步了。
对于人工智能神经网络这个概念,大多数的程序员都会觉得距离自己有很大的距离。因为很难有人愿意花时间跟你分享神经网络的本质究竟是什么。而你从书本上读的到的理论和概念,也很让你找到一个清晰、简单的结论。
今天就我们来看一看,从程序员角度出发神经网络究竟是什么。我第一次知道神经网络这个概念是通过一部电影——1991年上映的《终结者2》。男主角施瓦辛格有一句台词:
“MyCPUisaneural-netprocessor;alearningcomputer.”(我的处理器是一个神经处理单元,它是一台可以学习的计算机)。从历史来看人类对自身智力的探索,远远早于对于神经网络的研究。
1852年,意大利学者因为一个偶然的失误,将人类的头颅掉到硝酸盐溶液中,从而获得第一次通过肉眼关注神经网络的机会。这个意外加速了对人类智力奥秘的探索,开启了人工智能、神经元这样概念的发展。
生物神经网络这个概念的发展,和今天我们谈的神经网络有什么关系吗?我们今天谈到的神经网络,除了在部分名词上借鉴了生物学神经网络之外,跟生物学神经网络已经没有任何关系,它已经完全是数学和计算机领域的概念,这也是人工智能发展成熟的标志。这点大家要区分开,不要把生物神经网络跟我们今天谈到的人工智能有任何的混淆。
90年代中期,由Vapnik等人提出了支持向量机算法(Support Vector Machines,支持向量机)。很快这个算法就在很多方面体现出了对比神经网络的巨大优势,例如:无需调参、高效率、全局最优解等。基于这些理由,SVM算法迅速打败了神经网络算法成为那个时期的主流。而神经网络的研究则再次陷入了冰河期。
在被人摒弃的十年里面,有几个学者仍然在坚持研究。其中很重要的一个人就是加拿大多伦多大学的Geoffery Hinton教授。2006年,他的在着名的《Science》杂志上发表了论文,首次提出了“深度信念网络”的概念。
与传统的训练方式不同,“深度信念网络”有一个“预训练”(pre-training)的过程,这可以方便的让神经网络中的权值找到一个接近最优解的值,之后再使用“微调”(fine-tuning)技术来对整个网络进行优化训练。这两个技术的运用大幅度减少了训练多层神经网络的时间。在他的论文里面,他给多层神经网络相关的学习方法赋予了一个新名词— “深度学习”。
很快,深度学习在语音识别领域崭露头角。接着在2012年,深度学习技术又在图像识别领域大展拳脚。Hinton与他的学生在ImageNet竞赛中,用多层的卷积神经网络成功地对包含一千个类别的一百万张图片进行了训练,取得了分类错误率15%的好成绩,这个成绩比第二名高了将近11个百分点。
这个结果充分证明了多层神经网络识别效果的优越性。从那时起,深度学习就开启了新的一段黄金时期。我们看到今天深度学习和神经网络的火热发展,就是从那个时候开始引爆的。
利用神经网络构建分类器,这个神经网络的结构是怎样的?
其实这个结构非常简单,我们看到这个图就是简单神经网络的示意图。神经网络本质上就是一种“有向图”。图上的每个节点借用了生物学的术语就有了一个新的名词 – “神经元”。连接神经元的具有指向性的连线(有向弧)则被看作是“神经”。这这个图上神经元并不是最重要的,最重要的是连接神经元的神经。每个神经部分有指向性,每一个神经元会指向下一层的节点。
节点是分层的,每个节点指向上一层节点。同层节点没有连接,并且不能越过上一层节点。每个弧上有一个值,我们通常称之为”权重“。通过权重就可以有一个公式计算出它们所指的节点的值。这个权重值是多少?我们是通过训练得出结果。它们的初始赋值往往通过随机数开始,然后训练得到的最逼近真实值的结果作为模型,并可以被反复使用。这个结果就是我们说的训练过的分类器。
节点分成输入节点和输出节点,中间称为隐层。简单来说,我们有数据输入项,中间不同的多个层次的神经网络层次,就是我们说的隐层。之所以在这样称呼,因为对我们来讲这些层次是不可见的。输出结果也被称作输出节点,输出节点是有限的数量,输入节点也是有限数量,隐层是我们可以设计的模型部分,这就是最简单的神经网络概念。
如果简单做一个简单的类比,我想用四层神经网络做一个解释。左边是输入节点,我们看到有若干输入项,这可能代表不同苹果的RGB值、味道或者其它输入进来的数据项。中间隐层就是我们设计出来的神经网络,这个网络现在有不同的层次,层次之间权重是我们不断训练获得一个结果。
最后输出的结果,保存在输出节点里面,每一次像一个流向一样,神经是有一个指向的,通过不同层进行不同的计算。在隐层当中,每一个节点输入的结果计算之后作为下一层的输入项,最终结果会保存在输出节点上,输出值最接近我们的分类,得到某一个值,就被分成某一类。这就是使用神经网络的简单概述。
除了从左到右的形式表达的结构图,还有一种常见的表达形式是从下到上来表示一个神经网络。这时候,输入层在图的最下方,输出层则在图的最上方。从左到右的表达形式以AndrewNg和LeCun的文献使用较多。而在Caffe框架里则使用的则是从下到上的表达。
简单来说,神经网络并不神秘,它就是有像图,利用图的处理能力帮助我们对特征的提取和学习的过程。2006年Hinton的那篇着名的论文中,将深度学习总结成三个最重要的要素:计算、数据、模型。有了这三点,就可以实现一个深度学习的系统。
程序员需要的工具箱
对于程序员来说,掌握理论知识是为了更好的编程实践。那就让我们看看,对于程序员来说,着手深度学习的实践需要准备什么样的工具。
硬件
从硬件来讲,我们可能需要的计算能力,首先想到的就是CPU。除了通常的CPU架构以外,还出现了附加有乘法器的CPU,用以提升计算能力。此外在不同领域会有DSP的应用场景,比如手写体识别、语音识别、等使用的专用的信号处理器。还有一类就是GPU,这是一个目前深度学习应用比较热门的领域。最后一类就是FPGA(可编程逻辑门阵列)。
这四种方法各有其优缺点,每种产品会有很大的差异。相比较而言CPU虽然运算能力弱一些,但是擅长管理和调度,比如读取数据,管理文件,人机交互等,工具也丰富。DSP相比而言管理能力较弱,但是强化了特定的运算能力。
这两者都是靠高主频来解决运算量的问题,适合有大量递归操作以及不便拆分的算法。GPU的管理能力更弱一些,但是运算能力更强。但由于计算单元数量多,更适合整块数据进行流处理的算法。
FPGA在管理与运算处理方面都很强,但是开发周期长,复杂算法开发难度较大。就实时性来说,FPGA是最高的。单从目前的发展来看,对于普通程序员来说,现实中普遍采用的计算资源就还是是CPU以及GPU的模式,其中GPU是最热门的领域。
这是我前天为这次分享而准备的一个AWS 上p2的实例。仅仅通过几条命令就完成了实例的更新、驱动的安装和环境的设置,总共的资源创建、设置时间大概在10分钟以内。而之前,我安装调试前面提到的那台计算机,足足花了我两天时间。
另外,从成本上还可以做一个对比。p2.8xLarge 实例每小时的费用是7.2美元。而我自己那台计算机总共的花费了是¥16,904元。这个成本足够让我使用350多个小时的p2.8xLarge。在一年里使用AWS深度学习站就可以抵消掉我所有的付出。随着技术的不断的升级换代,我可以不断的升级我的实例,从而可以用有限的成本获得更大、更多的处理资源。这其实也是云计算的价值所在。
云计算和深度学习究竟有什么关系?今年的8月8号,在IDG网站上发表了一篇文章谈到了这个话题。文章中做了这样一个预言:如果深度学习的并行能力不断提高,云计算所提供的处理能力也不断发展,两者结合可能会产生新一代的深度学习,将带来更大影响和冲击。这是需要大家考虑和重视的一个方向!
软件
深度学习除了硬件的基础环境之外。程序员会更关心与开发相关的软件资源。这里我罗列了一些曾经使用过的软件框架和工具。
Scikit-learn是最为流行的一个Python机器学习库。它具有如下吸引人的特点:简单、高效且异常丰富的数据挖掘/数据分析算法实现; 基于NumPy、SciPy以及matplotlib,从数据探索性分析,数据可视化到算法实现,整个过程一体化实现;开源,有非常丰富的学习文档。
Caffe专注在卷及神经网络以及图像处理。不过Caffe已经很久没有更新过了。这个框架的一个主要的开发者贾扬清也在今年跳槽去了Google。也许曾经的霸主地位要让位给他人了。
Theano 是一个非常灵活的Python 机器学习的库。在研究领域非常流行,使用上非常方便易于定义复杂的模型。Tensorflow 的API 非常类似于Theano。我在今年北京的QCon 大会上也分享过关于Theano 的话题。
Jupyter notebook 是一个很强大的基于ipython的python代码编辑器,部署在网页上,可以非常方便的进行交互式的处理,很适合进行算法研究合数据处理。
Torch 是一个非常出色的机器学习的库。它是由一个比较小众的lua语言实现的。但是因为LuaJIT 的使用,程序的效率非常出色。Facebook在人工智能领域主打Torch,甚至现在推出了自己的升级版框架Torchnet。
深度学习的框架非常之多,是不是有一种乱花渐欲迷人眼的感觉?我今天向各位程序员重点介绍的是将是TensorFlow。这是2015年谷歌推出的开源的面向机器学习的开发框架,这也是Google第二代的深度学习的框架。很多公司都使用了TensorFlow开发了很多有意思的应用,效果很好。
用TensorFlow可以做什么?答案是它可以应用于回归模型、神经网络以深度学习这几个领域。在深度学习方面它集成了分布式表示、卷积神经网络(CNN)、递归神经网络(RNN) 以及长短期记忆人工神经网络(Long-Short Term Memory, LSTM)。
关于Tensorflow 首先要理解的概念就是Tensor。在辞典中对于这个词的定义是张量,是一个可用来表示在一些向量、标量和其他张量之间的线性关系的多线性函数。实际上这个表述很难理解,用我自己的语言解释Tensor 就是“N维数组”而已。
使用 TensorFlow, 作为程序员必须明白 TensorFlow这样几个基础概念:它使用图 (Graph) 来表示计算任务;在被称之为 会话 (Session) 的上下文 (context) 中执行图;使用 Tensor 表示数据;通过 变量 (Variable) 维护状态;使用 feed 和 fetch 可以为任意的操作(arbitrary operation) 赋值或者从其中获取数据。
一句话总结就是,TensorFlow 就是有状态图的数据流图计算环境,每个节点就是在做数据操作,然后提供依赖性和指向性,提供完整数据流。
TensorFlow安装非常简单,但官网提供下载的安装包所支持的CUDA 的版本是7.5。考虑到CUDA 8 的让人心动的新特以及不久就要正式发布的现状。或许你想会考虑立即体验CUDA 8,那么就只能通过编译Tensorflow源代码而获得。目前TensorFlow已经支持了Python2.7、3.3+。
此外,对于使用Python 语言的程序员还需要安装所需要的一些库,例如:numpy、protobuf等等。对于卷积处理而言,cuDNN是公认的性能最好的开发库,请一定要安装上。常规的Tensorsorflow的安装很简单,一条命令足矣:
$ pip3 install —upgrade
如果想评估一下或者简单学习一下,还可以通过Docker进行安装,安装的命令如下:
$ docker run -it -p 8888:8888 gcr.io/tensorflow/tensorflow
TensorFlow有很多优点。首先,目前为止,深度学习的开发框架里面TensorFlow的文档做的最好,对程序员学习而言是非常好的一点。第二,TensorFlow有丰富的参考实例,作为参考学习起来非常容易。
第三,开发者社区活跃,在任何一个深度学习的社区里,都有大量关于TensorFlow的讨论。第四,谷歌的支持力度非常大,从2015年到现在升级速度非常快,这是其他开源框架远远达不到的结果。
参考TensorFlow的白皮书,我们会看到未来TensorFlow还将会有巨大的发展潜力。让我特别感兴趣是这两个方向。第一,支持跨多台机器的 parallelisation。尽管在0.8版本中推出了并行化的能力,但是目前还不完善。随着未来不断发展,依托云计算的处理能力的提升这个特性将是非常让人振奋的。
第二,支持更多的开发语言,对于开发者来说这是一个绝大的利好,通过使用自己擅长的语言使用TensorFlow应用。这些开发语言将会扩展到Java、Lua以及R 等。
在这里我想给大家展示一个应用Tensorflow 的例子。这个例子的代码托管在这个网址上 。白俄罗斯的现代印象派艺术家Leonid Afremov善于用浓墨重彩来表现都市和风景题材,尤其是其雨景系列作品。他习惯用大色块的铺陈来营造光影效果,对反光物体和环境色的把握非常精准。
于是我就找到了一张上海东方明珠电视塔的一张摄影作品,我希望通过Tensorflow 去学习一下Leonid Afremov 的绘画风格,并将这张东方明珠的照片处理成那种光影色彩丰富的作品风格。利用Tensorflow 以及上面提到的那个项目的代码,在一个AWS 的p2类型的实例上进行了一个一千次的迭代,于是就得到了下图这样的处理结果。
这个处理的代码只有350行里,模型使用了一个成名于2014年ImageNet比赛中的明星 VGG。这个模型非常好,特点就是“go depper”。
TensorFlow 做出这样的作品,并不仅仅作为娱乐供大家一笑,还可以做更多有意思的事情。将刚才的处理能力推广到视频当中,就可以看到下图这样的效果,用梵高着名的作品”星月夜“的风格就加工成了这样新的视频风格。
可以想象一下,如果这种处理能力在更多领域得以应用,它会产生什么样的神奇结果?前景是美好的,让我们有无限遐想。事实上我们目前所从事的很多领域的应用开发都可以通过使用神经网络和深度学习来加以改变。对于深度学习而言,掌握它并不是难事。每一个程序员都可以很容易的掌握这种技术,利用所具备的资源,让我们很快成为深度学习的程序开发人员。
结束语
未来究竟是什么样,我们没有办法预言。有位作家Ray Kurzweil在2005年写了《奇点临近》一书。在这本书里面他明确告诉我们,那个时代很快到来。作为那个时代曙光前的人群,我们是不是有能力加速这个过程,利用我们学习的能力实现这个梦想呢?
中国人工智能的发展
人工智能的时代无疑已经到来,这个时代需要的当然就是掌握了人工智能并将其解决具体问题的工程师。坦率的说,市场上这一类的工程师还属于凤毛麟角。职场上的薪酬待遇可以看得出来这样的工程师的抢手的程度。人工智能这门学科发展到今天,就学术自身而言已经具备了大规模产业化的能力。
所以说,对于工程师而言当务之急就是尽快的掌握应用人工智能的应用技术。当下在互联网上关于人工智能的学习资料可以说已经是“汗牛充栋”,那些具备了快速学习能力的工程师一定会在人工智能的大潮当中脱颖而出。
中国发展人工智能产业的环境已经具备。无论从创业环境、人员的素质乃至市场的机遇而言完全具备了产生产业变革的一切条件。与美国相比较,在人工智能的许多领域中国团队的表现也可以说是不逞多让。就人工智能的技术层面而言,中国的工程师与全球最好的技术团队正处于同一个起跑线上。
时不我待,中国的工程师是有机会在这个领域大展身手的。不过值得注意的是,要切忌两点:一是好高骛远,盲目与国外攀比。毕竟积累有长短,术业有专攻,我们要立足于已有的积累,寻求逐步的突破。二是一拥而上,盲目追求市场的风口。人工智能的工程化需要大量的基础性的积累,并非一蹴而就简单复制就可以成功。
中国的科研技术人员在人工智能领域的成就有目共睹。在王咏刚的一篇文章里面,他统计了从2013年到2015年SCI收录的“深度学习”论文,中国在2014年和2015年超已经超过了美国居于领跑者的位置。
另外一让我感到惊讶的事情,Google的JeffDean在2016年发表过一篇名为《TensorFlow:Asystemforlarge-scalemachinelearning》的论文。文章的22个作者里面,明显是中国名字的作者占已经到了1/5。如果要列举中国人/华人在人工智能领域里的大牛,吴恩达、孙剑、杨强、黄广斌、马毅、张大鹏……很容易就可以说出一大串。
对于中国来说目前的当务之急是人工智能技术的产业化,唯有如此我们才可以讲科研/智力领域的优势转化为整体的、全面的优势。在这一点上,中国是全球最大的消费市场以及制造业强国,我们完全有机会借助市场的优势成为这个领域的领先者。
硅谷创新企业
硅谷虽然去过许多回,但一直无缘在那里长期工作。在人工智能领域的市场我们听到的更多是围绕Google、Apple、Intel、Amazon这样的一些大型科技公司的一举一动。但是在美国市场上还有一大批小型的创业企业在人工智能这个领域有惊艳的表现。仅以硅谷区域的公司为例:
Captricity,提供了手写数据的信息提取;
VIVLab,针对语音识别开发了虚拟助手服务;
TERADEEP,利用FPGA提供了高效的卷积神经网络的方案;
还有提供无人驾驶解决方案的NetraDyne。
这个名单还可以很长,还有许许多多正在利用人工智能技术试图去创造历史的团队正在打造他们的梦想。这些团队以及他们正在专注的领域是值得我们去学习和体会的。

❽ 一般神经网络要训练多久

决定神经网络训练多久有很多因素,如用的是CPU还是GPU,神经网络的结点数、层数,学习速率,激活函数等。一般在测试集的准确率不再明显增加时就可以停止训练了。

❾ 如何提高神经网络的外推能力

人工神经网络以其智能性见长,那么神经网络能真的学到一个映射的本质吗?也就是说,对一个映射给出一定的必要的训练样本训练后,网络能否对样本以外的样本给出较为准确的预测。泛化能力也就是神经网络用于对未知数据预测的能力。神经网络对训练样本区间范围内的样本有较好的泛化能力,而对于训练样本确定的范围外的样本不能认为有泛化能力。常规的几种增强泛化能力的方法,罗列如下:

1、较多的输入样本可以提高泛化能力;
但不是太多,过多的样本导致过度拟合,泛化能力不佳;样本包括至少一次的转折点数据。

2、隐含层神经元数量的选择,不影响性能的前提下,尽量选择小一点的神经元数量。隐含层节点太多,造成泛化能力下降,造火箭也只要几十个到几百个神经元,拟合几百几千个数据何必要那么多神经元?

3、误差小,则泛化能力好;误差太小,则会过度拟合,泛化能力反而不佳。

4、学习率的选择,特别是权值学习率,对网络性能有很大影响,太小则收敛速度很慢,且容易陷入局部极小化;太大则,收敛速度快,但易出现摆动,误差难以缩小;一般权值学习率比要求误差稍微稍大一点点;另外可以使用变动的学习率,在误差大的时候增大学习率,等误差小了再减小学习率,这样可以收敛更快,学习效果更好,不易陷入局部极小化。

5、训练时可以采用随时终止法,即是误差达到要求即终止训练,以免过度拟合;可以调整局部权值,使局部未收敛的加快收敛。

❿ 神经网络训练速度最慢的算法是哪一个

为什么要最慢的算法。。就我现在用过的算法来说,有个叫dpsgd的算法最慢。。这个算法为了保护dataset本身的隐私,将梯度下降的速度限定在一个范围内,本来15分钟能训练一个epoch的样本现在需要三个小时左右。

文章是这个网页链接

阅读全文

与如何加快神经网络训练速度1001无标题相关的资料

热点内容
网络接口卡是怎么解释的 浏览:775
2019下半年网络甜宠剧有哪些 浏览:946
没网络信号rtk能实时定位吗 浏览:3
网络运输共享计划 浏览:736
从哪里查数据网络 浏览:372
黑白网络安全手抄报 浏览:646
网络电视和天威电视哪个好用 浏览:650
dns怎么设置网络更好 浏览:857
老挝哪个网络最好用 浏览:833
电脑网络自动连接 浏览:274
如何禁止网络并启用 浏览:5
手机访问电脑需要网络连接网络连接 浏览:665
您的网络已经欠费了去哪里交 浏览:177
在广东大专院校计算机网络哪个好 浏览:560
网络语普及贴是什么意思 浏览:500
电脑显示未识别的网络怎么设置 浏览:924
有哪些情况会被限制网络 浏览:683
无线联通卡没有网络卡里有钱 浏览:63
网络电视可以看但是wifi连不上网了 浏览:214
大型的无线网络设计 浏览:417

友情链接