‘壹’ 日本防卫省研发人工智能用深度学习防御网络攻击
据日本《产经新闻》1月7日报道称,日本防卫省于6日宣布:为强化对网络攻击的应对能力,已经确定要将人工智能(AI)引入日本自卫队信息通信网络的防御系统中。预计将于明年开始为期两年的调查研究,于2020年着手进行软件开发,2022年实际运用,并且也开始考虑在日本政府全体的网络防御系统中应用AI。
目前,军方人员介入网络安全战场早已成为常态,美国着名的网络安全公司Cybereason其创办人正是来自以色列国防部下属精英网络部队8200部队。值得注意的是,2015年该公司接受了来自日本软银的为数1亿美元的融资,不知《产经新闻》提到的“以色列技术”是否来自该公司呢?
‘贰’ 为什么网络安全很重要
现在的网络犯罪分子可以找到很多漏洞,并对内部系统造成损害。这样的事件将导致资金,机密信息和客户数据的丢失,并且还会破坏业务在市场上的声誉。2020年3月,Mariott International遭受了重大数据泄露,其中520万客人的信息被访问,使用特许经营物业的两名员工的登录凭据。大流行和远程工作甚至没有放过Twitter。2020年6月,几位知名人士的帐户通过电话网络钓鱼被劫持。强大的网络安全技术是企业生存的现代必需品,但更重要的是,网络卫生意识也已成为当务之急。在当今的业务基础架构中,网络安全不仅限于 IT 专业人员和与之相关的公司。网络安全适合所有人,律师,室内装饰师,音乐家,投资银行家等,都会发现网络安全系统对他们的工作和业务有益。通过泰科云Techcloudpro实施和学习网络安全,小型企业将使其员工更加负责任,律师事务所将有动力保护其数据,室内设计师将找到更有效的方法来控制其繁重的文件。
‘叁’ 人工智能有什么缺陷
第一脆弱性。人工智能系统还无法超出场景或语境理解行为,虽然在下棋或游戏等有固定规则的范围内不会暴露出这一弱点,但是一旦场景发生变化或这种变化超出一定范围,人工智能可能就立刻无法“思考”。
第二、不可预测性。用户无法预测人工智能会做出何种决策,这既是一种优势,也会带来风险,因为系统可能会做出不符合设计者初衷的决策。
第三、安全问题和漏洞。机器会重结果而轻过程,它只会通过找到系统漏洞,实现字面意义上的目标,但其采用的方法不一定是设计者的初衷。例如,网站会推荐一些极端主义视频,因为刺激性内容可以增加浏览时间。再如,网络安全系统会判断人是导致破坏性软件植入的主要原因,于是索性不允许人进入系统。
第四、人机交互失败。尽管让机器提供建议,由人类做最后决策,是解决人工智能某些弱点的常用方法,但由于决策者对系统局限性或系统反馈的认知能力不同,这一问题并不能得到根本解决。
(3)人工智能网络安全系统扩展阅读:
当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具,在以后的岁月中,无数科学家为这个目标努力着。如今人工智能已经不再是几个科学家的专利了,全世界几乎所有大学的计算机系都有人在研究这门学科,学习计算机的大学生也必须学习这样一门课程,在大家不懈的努力下,如今计算机似乎已经变得十分聪明了。
例如,1997年5月,IBM公司研制的深蓝(DEEP BLUE)计算机战胜了国际象棋大师卡斯帕洛夫(KASPAROV)。大家或许不会注意到,在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。
人工智能始终是计算机科学的前沿学科,计算机编程语言和其它计算机软件都因为有了人工智能的进展而得以存在。
‘肆’ 关于人工智能的弱点你觉得有哪些呢在未来几百年后人工智能可以会比人类更聪明,但并不意味着会超过人类
不容忽视的是,当前的人工智能技术也存在弱点,美国智库“新美国安全中心”最近发布《人工智能:每个决策者需要知道什么》报告,提示人工智能的一些弱点可能对国家安全等领域造成巨大影响。
第一,脆弱性。目前的人工智能系统还无法超出场景或语境理解行为,其在下棋或游戏等有固定规则的范围内不会暴露出这一弱点,而一旦场景发生变化或这种变化超出一定范围,人工智能可能就立刻无法“思考”。
第二,不可预测性。用户无法预测人工智能会做出何种决策,这既是一种优势,也会带来风险,因为系统可能会做出不符合设计者初衷的决策。
第三,弱可解释性。人工智能或许可以帮助人类做出好的决策,但决策理由目前仍然是一个“黑箱”。例如,图像识别能力可以发现图片中的校车,但无法解释哪些图像特征让它作出这种判断,而在医学诊断领域,诊断的理由往往是重要的。
第四,安全问题和漏洞。机器会重结果而轻过程,通过找到系统漏洞,实现字面意义上的目标,但其采用的方法不一定是设计者的初衷。例如,网站会推荐一些极端主义视频,因为刺激性内容可以增加浏览时间。再如,网络安全系统会判断人是导致破坏性软件植入的主要原因,于是索性不允许人进入系统。
第六,系统事故。在算法不能共享的对抗性环境中,系统性错误很容易发生,导致做出无法估量的决策。比如,在国家安全领域,两种相互对抗的算法为了获得优势会采用某些导致毁灭性后果的行为,尤其在网络安全和电子战过程中,对抗性决策会非常迅速,人类几乎来不及叫停。
第七,人机交互失败。尽管让机器提供建议,由人类做最后决策是解决人工智能某些弱点的常用方法,但由于决策者对系统局限性或系统反馈的认知能力不同,这一问题并不能得到根本解决。2016年特斯拉自动驾驶汽车撞毁事故中,人类操作员就没能理解系统给出的提示而发生致命性事故,在军事、边境安全、交通安全、执法等诸多领域都面临类似挑战。
第八,机器学习漏洞可被对手利用。在对抗性过程中,对手还会释放有毒数据或利用人工智能行为方式的某些漏洞发起攻击,目前还没有抵御这种攻击的有效办法。
‘伍’ 机器学习与人工智能将应用于哪些安全领域
近年来,人工智能程序在世界多个领域中都得到了广泛应用,在人们的日常生产和生活中也应用较为广泛,成为当今社会从事生产的重要支柱,并且也是社会生产的未来重要发展方向。尤其在互联网、信息领域、安防领域应用效果显着。该文结合自身对人工智能的研究,对人工智能在安全领域的应用进行相关探讨。
关键词:人工智能 安全领域 应用
中图分类号:TP393 文献标识码:A 文章编号:1672-3791(2019)01(a)-00-02
人工智能是进入21世纪以来重要的一项研究和科研课题,通过多年的研究和实践,已经取得了一些成效,且仍然是未来的主要研究课题和方向。人工智能不仅能够解放人工传统劳动力,还可以提升多个领域的工作效率和效果。在安防领域、网络领域、信息安全领域都有非常突出的优秀表现。下面针对于人工智能在安全领域的应用进行如下的分析和探讨,以推动人工智能的发展,实现我国社会的快速进步,下面进行详细的分析和探讨。
1 人工智能在网络安全领域的应用
人工智能在网络安全领域的应用有非常突出的特点和优势,由于近些年来大数据量的爆发、计算能力的大幅度增长,同时也让人工智能技术实现了质的飞跃。第一,针对于大数据的分析和识别威胁方面,可以为大数据做出安全保障。利用人工智能能够对原本模糊、非线性的海量数据进行甄别,非常有效地提升了大数据的安全检测效率、准确度,并能够进行自动化的检测。第二,针对于关联性安全态势方面的分析,利用人工智能可以全方位地分析出内外部所存在的安全隐患。其可以针对于非常多的对网络安全有影响的因素进行发现、分析、评估和预测的功能,是进行网络安全分析的一种有效方式和方法,其还能提供更加精准的安全性度量。通过对相应要素的归纳、分析、处理等,从而进行关联性安全态势分析和预测,最终可以对网络安全要素、情况进行综合性分析,同时还能够对其发展势头进行有效的预测,进而构建出完善的网络安全威胁台式感知系统。第三,利用人工智能技术实现自学习应急响应防御系统,可以构建并完善一套主动式安全防御系统。如今的网络安全防御需要更快、更准的能力,同时借助于人工智能的学习和进化能力,可以针对即将发生或位置的攻击行为,同时与安全策略和威胁情报进行有机结合,最终实现智慧型、主动性的安全防御措施和策略。
另外,人工智能在网络安全防御领域的应用场景也十分丰富,其主要应用在网络入侵检测、预测性恶意软件防御、网络安全动态感知等方面,这些方面在多个场景都将人工智能充分应用。例如,在DDOS检测方面,僵尸网络监测方面,都得到了良好的应用。
2 人工智能在安防领域的应用
传统的安防领域一般是通过被动防御的方式开展相关工作,而在安防工作中应用人工智能,就使得传统的被动防御转变为主动防御,从而不仅拓宽了安防的边界束缚,同样也增加了安防的主动防御手段。例如,在“智能算法、计算机视觉、语音识别”等方面的应用,这些应用使得当今的安防效率大幅度提升,也让安防方案的有效性大大增加。人工智能在安防领域的应用较为实际,其中主要在公安、交通、楼宇等多个方面都有实际的应用,其中以公共安全为主要的应用范围。例如,在公安进行罪犯排查过程中,就可以利用人工智能进行人脸识别(图1)、行为分析等多方面的技术应用,从而综合海量的数据和犯罪风险评估结果等,提高罪犯排查的成功率。尤其在今年,人工智能技术在安防领域的应用更加迅猛发展。在相关人工智能产品的生产上游厂家和机器生产厂家中,都将人工智能作为企业的产业布局和未来发展主要方向。从而在市场中越来越多的人工智能硬件产品技术得到了进步和发展,同时也为人工智能的发展提供了良好的基础。进而拥有人工智能的安防产品将越来越智能化,其能够创造更多的安防价值和作用。同时智能安防还可以做到事前预防,事发时干预,事后能够有效追溯的功能。进而提升我国安防水平和质量。
3 人工智能在信息安全领域的应用
网络安全和人工智能这些在当今时代已经不再是新鲜词汇,这些词汇在全球各大媒体中出现或组合出现的频率越来越高,以此可以看出人工智能在网络安全方面的应用和成果也越来越显着,同时在未来的网络安全方面也变得越来越重要。例如,其中AI技术就会是未来的网络安全重要技术。而人工智能则是未来解决网络安全问题和方案的核心内容。现今时代的数据量更是剧增,人工智能技术将是未来网络安全的重要工作内容和组成部分。虽然目前人工智能仍然处在一个比较初期的阶段,但对于未来的发展趋势来看,人工智能在网络安全中的应用研究已经迫在眉睫。
虽然人工智能在生产生活中得到广泛应用,同时也取得了良好的效果,但同时在信息安全方面也带来了安全隐患。去年国务院曾经明确指出,在大力发展人工智能的同时,也应该提高对其带来的威胁和安全问题的重视,确保人工智能可以朝着安全、可靠、可控的方向发展。信息安全领域应用人工智能主要体现在网络入侵、恶意软件防御等方面。同样随着网络的发展,“网络战”也是各国军事对抗中的一项重要内容和手段,而在这其中应用人工智能技术,能够实现军事网络对抗中的需求,不仅可以准确地感知和评估网络战的台式,还能够快速地做出决策,以及诊断出网络入侵,自动对其进行跟踪。
另外将AI技术应用在反恶意软件领域,这些恶意软件的防护是当今很多企业的重点关注问题,其中包含了病毒软件和勒索软件等。伴随着人工智能在网络安全领域的应用,也涌现出诸多拥有代表性的企业,比如一些研究的大实验室,如MIT CSAIL等,在该领域内是表现十分突出的实验室,受到了诸多达投资上的青睐。当前时期,可以归纳为人工智能的第三次浪潮,美国政府相关部门也造就规划好了人工智能的发展路线和战略,我国的人工智能安全在网络安全领域的应用也继续提升,我国也应该做好迎接人工智能时代的充分准备。
4 结语
人工智能在多个安全领域的应用,体现出人工智能的未来发展趋势,其是人类在未来生产、生活中的重要组成部分,因此,我国应该大力支持和发展人工智能在安全领域的应用,同时我们也好积极地利用人工智能进行安全防范,提高各行各业的安全性,推动人工智能的不断发展,同时也实现我国社会的快速发展,推动人类社会的不断前进。
‘陆’ 人工智能和网络安全选哪个好
我个人认为二者各有各的特点,主要看自己内心的想法,人工智能与网络安全的结合目前还是一个新兴产业,但具有发展前途,特别是计算安全领域还有很多尚未解决且具有挑战性的问题需要人们不断去探索和追寻答案。以下是我的个人看法,希望能够对大家有帮助。
生活中就比如说给自己的用户名设置足够长度的密码,最好使用大小写混合和特殊符号,不要为了贪图好记而使用纯数字密码,不要使用与自己相关的资料作为个人密码,如自己或男(女)朋友的生日,电话号码,身份证号码等等,这些对于网络安全都是至关重要的。在我们的日常生活中,难免会遇到大大小小的安全问题,安全知识大全可以帮助我们解决安全的一些小问题。所以,积极学习网络安全也是非常有必要的一件事情。
以上就是我的个人见解,希望能够对大家有用。
‘柒’ 人工智能在安全中的应用
人工智能在网络安全领域有以下具体应用(包括但不限于):
(1)防范网络攻击
AI技术可以辅助人类搜索并修复软件错误和漏洞,以防御潜在的网络攻击。目前,麻省理工学院(CSAIL)和机器学习初创公司PatternEx已经研发出了名为A12的人工智能平台,该平台整合了人类专家的输入及AI系统连续循环反馈,进行了主动式的上下文建模学习,使得A12算法系统比仅使用机器学习的算法系统攻击检测率提高了10倍。
(2)犯罪预防
AI技术可以协助预测恐怖分子或其他威胁何时会袭击目标,可以利用包括载客数量和交通变化的数据来源,动态增加警察的数目来保证安全等。
(3)隐私保护
通过AI技术可以进行差异隐私,对不同的用户提供定制化的隐私保护体验。例如,差异化的隐私保护让苹果可以在不损害任何个人隐私的情况下,从大量用户那里收集数据。
‘捌’ 人工智能在网络安全领域的应用有哪些
近年来,在网络安全防御中出现了多智能体系统、神经网络、专家系统、机器学习等人工智能技术。一般来说,AI主要应用于网络安全入侵检测、恶意软件检测、态势分析等领域。
1、人工智能在网络安全领域的应用——在网络入侵检测中。
入侵检测技术利用各种手段收集、过滤、处理网络异常流量等数据,并为用户自动生成安全报告,如DDoS检测、僵尸网络检测等。目前,神经网络、分布式代理系统和专家系统都是重要的人工智能入侵检测技术。2016年4月,麻省理工学院计算机科学与人工智能实验室(CSAIL)与人工智能初创企业PatternEx联合开发了基于人工智能的网络安全平台AI2。通过分析挖掘360亿条安全相关数据,AI2能够准确预测、检测和防范85%的网络攻击。其他专注于该领域的初创企业包括Vectra Networks、DarkTrace、Exabeam、CyberX和BluVector。
2、人工智能在网络安全领域的应用——预测恶意软件防御。
预测恶意软件防御使用机器学习和统计模型来发现恶意软件家族的特征,预测进化方向,并提前防御。目前,随着恶意病毒的增多和勒索软件的突然出现,企业对恶意软件的保护需求日益迫切,市场上出现了大量应用人工智能技术的产品和系统。2016年9月,安全公司SparkCognition推出了DeepArmor,这是一款由人工智能驱动的“Cognition”杀毒系统,可以准确地检测和删除恶意文件,保护网络免受未知的网络安全威胁。在2017年2月举行的RSA2017大会上,国内外专家就人工智能在下一代防病毒领域的应用进行了热烈讨论。预测恶意软件防御的公司包括SparkCognition、Cylance、Deep Instinct和Invincea。
3、人工智能在网络安全领域的应用——在动态感知网络安全方面。
网络安全态势感知技术利用数据融合、数据挖掘、智能分析和可视化技术,直观地显示和预测网络安全态势,为网络安全预警和防护提供保障,在不断自我学习的过程中提高系统的防御水平。美国公司Invincea开发了基于人工智能的旗舰产品X,以检测未知的威胁,而英国公司Darktrace开发了一种企业安全免疫系统。国内伟达安防展示了自主研发的“智能动态防御”技术,以及“人工智能”与“动态防御”六大“魔法”系列产品的整合。其他参与此类研究的初创企业包括LogRhythm、SecBI、Avata Intelligence等。
此外,人工智能应用场景被广泛应用于网络安全运行管理、网络系统安全风险自评估、物联网安全问题等方面。一些公司正在使用人工智能技术来应对物联网安全挑战,包括CyberX、network security、PFP、Dojo-Labs等。
以上就是《人工智能在网络安全领域的应用是什么?这个领域才是最关键的》,近年来,在网络安全防御中出现了多智能体系统、神经网络、专家系统、机器学习等人工智能技术,如果你想知道更多的人工智能安全的发展,可以点击本站其他文章进行学习。
‘玖’ 有哪些人工智能安全风险
在分析之前,让我们简要介绍一下人工智能的应用。人工智能因其在数据分析、知识提取和自主学习方面的突出优势,被广泛应用于网络保护、数据管理、信息审查、智能安全、金融风险控制和舆情监测等领域。在这些领域,往往会出现一些安全风险,常见风险如下:
1、人工智能安全风险——框架的安全风险
近年来,着名的深度学习框架TensorFlow和Caffe及其依赖库多次被发现存在安全漏洞,被攻击者利用,导致系统安全问题。以生成模型[3]为例。原始工作原理是:将输入X映射到低维表示的Z编码器,再映射回高维重构的X解码器,表示如下图所示:
如果输入是7,攻击后的输出可能是8。如图所示:
此外,人工智能可以用来编写计算机病毒和木马。原始的恶意脚本是手动编写的。人工智能技术可以通过插入拮抗样本[4],绕过安全检测,实现这些过程的自动化。同样,人工智能技术也可以自动生成智能僵尸网络[5],它可以在不等待僵尸网络控制命令的情况下对其他系统进行大规模、自动的攻击,大大提高了网络攻击的破坏程度。(页面)
2、人工智能安全风险——数据安全风险
攻击者可以通过网络的内部参数得到网络训练的数据集。人工智能技术还将增强数据挖掘能力,提高隐私泄露风险,比如2018年3月的Facebook数据泄露事件。
3、人工智能安全风险——算法的安全风险
深度学习网络目标函数的定义不准确、不合理或不正确,可能会导致错误甚至有害的结果。错误的目标函数、代价过高的目标函数以及表达能力有限的网络都可能导致网络产生错误的结果。例如,2018年3月,一辆优步自动驾驶汽车发生事故,机器人视觉系统未能及时识别突然出现在道路上的行人,导致行人发生碰撞并死亡。算法的偏差和人工智能的不可解释性也是主要问题。在美国,人工智能算法被用来预测罪犯,一些列表显示许多无辜的人受到了伤害,其中大部分是黑人,甚至系统的开发者也没有合理的解释这个决定。拮抗样本的存在也会导致算法的误判。通过给下面的图片添加一点噪声,人工智能将很有信心地确认熊猫是长臂猿。
4、人工智能安全风险——信息安全风险
有了足够的训练数据,人工智能可以产生用于非法活动的虚假信息。比如人工智能面部修饰DeepFakes,以及最近推出的DeepNude。一些罪犯使用假声音和假视频进行诈骗。现在谷歌已经发明了一种聊天机器人,它可以完全愚弄人们在电话上聊天。
以上就是《人工智能安全风险有哪些?安全在这个行业竟然这么重要》,在分析之前,让我们先简单介绍一下人工智能的应用。人工智能由于其在数据分析、知识提取和自主学习方面的突出优势,如果你想知道更多的人工智能安全的发展,可以点击本站的其他文章进行学习。