❶ 初中几何辅助线添加方法技巧 为什么我一看几何题目就不知道辅助线应该如何添
添辅助线的规律
(一)添辅助线的目的:
解证几何问题的基本思路就是要利用已知几何条件求得所求几何关系。这往往需要将已知条件与所求条件集中到一个或两个几何关系十分明确的简单的几何图形之中。如一个三角形(特别是直角三角形、等腰三角形),一个平行四边形(特别是矩形、菱形、正方形),一个圆,或两个全等三角形,两个相似三角形之中。这种思路可称为条件集中法。
为了达到条件集中的目标,我们需要将远离的、分散的已知条件和所求条件,通过连线、作线、平移、翻转、旋转等方法来补全或构造一个三角形、一个平行四边形、一个圆、或两个全等三角形、两个相似三角形。以便于运用这些图形的几何关系(性质定理)解题,这就需要添加辅助线。
添加什么样的辅助线,总由以下三方面决定:
⑴由所求决定:问什么,先要作什么。
⑵由已知决定:已知什么,作出什么,并为充分运用已知条件提供的性质定理添加辅助线。
⑶由条件集中的需要决定:为补全或构造几何关系十分明确的一个三角形、一个平行四边形、一个圆,或两个全等三角形、两个相似三角形而添加辅助线。
(二)添辅助线的规律:
(1)三角形中:
①等腰Δ:常连底边上的中线或高或顶角的平分线(构造两个全等的直角Δ,或便于运用等腰Δ三线合一的性质。如图1)
②直角Δ斜边上有中点:连中线(构造两个等腰Δ,或便于运用直角Δ斜边上的中线的特殊性质。如图2)
③斜Δ有中点或中线:连中线(构造两个等底同高的等积Δ。如图3); 或自左右两顶点分别作中线的垂线(构造两个全等直角三角形。如图4); 或连中位线、或过一中点作另一边的平行线(构造两个相似比为1:2的相似Δ,或便于运用Δ中位线定理。如图5、6);或延长中位线或中线的一倍(构造两个全等Δ或补全为一个平行四边形。如图7、8)。或延长中线的1/3(构造两个全等Δ或补全为一个平行四边形。如图9)。
④有角平分线:过其上某一交点作角两边的垂线(构造两全等的直角Δ。如图10)或一边或两边的平行线(构造一个或两个等腰Δ或一菱形。如图11)。
⑤有角平分线:在此角的一边上自顶点取一段等于另一边并作相关连线(构造两个全等Δ。如图12、13)
⑥有角平分线遇垂线:常延长垂线(构造等腰Δ。如图14)。
(二)梯形:
①延长两腰交于一点(构造两相似Δ。如图15),
②由小底的一端作一腰的平行线(构造一集中有两腰及上下两底差的Δ和一平行四边形。如图16)。
③由小底的两端作大底的垂线(构造两直角Δ和一矩形。如图17)。
④有对角线时:由小底的一端作另一对角线的平行线(构造一集中有两对角线及上下两底和的Δ和一平行四边形。如图18)。
⑤连小底一端与另一腰中点并与大腰的延长线相交(构造两全等Δ及一与梯形等高等积的Δ。如图19)。
⑥过一腰的中点作另一腰的平行线(构造两全等Δ及与梯形等积的平行四边形。如图20)。
⑦过小底的中点分别作两腰的平行线(构造一集中有两腰及上下两底差的Δ和两个平行四边形。如图21)。
(三)圆:
①有弦:连过弦端点的半径,连垂直于弦的直径或弦心距(构造直角Δ,便于运用垂径定理、勾股定理、锐角三角函数解题);或作过弦一端点的切线及相关的圆心角、圆周角(便于运用弦切角定理。如图22)。
②有直径及垂直直径的弦或半弦,连结弦与直径的端点(构造三个相似的直角Δ,便于运用直角Δ的性质及射影定理。如图23)。
③有圆内接四边形:连对角线(构造较多相等的圆周角。如图24);或延长四边形的某一边(构造与内对角相等的外角。如图25)。
④圆外有切线:连过切点的半径或直径(构造垂直关系);或作过切点的弦及相关的圆心角、圆周角(便于运用弦切角定理。如图26)。
⑤圆外有两条相交切线:连过切点的半径,并作切线交点与圆心的连线(构造两全等的直角三角形);或作过交点和加以的割线(便于运用切线割线定理);或连结两切点(构造一等腰Δ、三对全等的直角Δ、被切线交点与圆心的连线垂直平分的弦,便于运用等腰Δ、直角Δ、全等Δ以及射影定理。如图27)。
⑥有相交弦或相交于圆外的割线\切线:连结不同弦的端点或不同割线在圆上的交点(构造相似Δ,便于运用比例线段及Δ外角定理。如图28、29、30)。
⑦两圆相交:作连心线、公共弦,甚至两圆心到公共弦两端点的连线(构造两
等腰Δ、补全一筝形,便于运用连心线垂直平分公共弦的定理。如图31)。
⑧两圆外切:作连心线及内、外公切线、连切点、连半径(构造一集中有两条弦及外公切线长
的直角Δ、一集中有两圆半径、半径之和及外公切线长的直角梯形。如图32)。
⑨两圆内切:作连心线及外公切线(便于运用连心线与公切线的垂直关系。如图33)。
⑩两圆外离:作连心线及个公切线或内公切线,并过小圆圆心作公切线的平行线(构造一集中连心线长、公切线长、两圆半径差或和的直角Δ。如图34、35)。
❷ 空间解析几何什么时候学难度如何
大学也是选学的……
1、空间解析几何课程简介
本课程是大学数学系的主要基础课程之一。主要讲述解析几何的基本内容和基本方法包括:向量代数,空间直线和平面,常见曲面,坐标变换,二次曲线方程的化简等。通过学习这门课程,学生可以掌握用代数的方法研究空间几何的一些问题,而坐标法、向量法正是贯穿全书的基本方法。
2、选课建议
数学专业的同学必选该课程。该课程要求同学拥有良好的中学数学基础,建议在一年级选学。
3、教学大纲
一、课程内容
第一章 矢量与坐标
1.1矢量的概念
1.2矢量的加法
1.3数量乘矢量
1.4矢量的线性关系与矢量的分解
1.5标架与坐标
1.6矢量在轴上的射影
1.7两矢量的数性积
1.8两矢量的失性积
1.9三矢量的混合积
*1.10三矢量的双重矢性积
[说明]:本章系统地介绍了矢量代数的基础知识,它实质上是一个使空间几何结构代数化的过程。为了更好地叙述矢量的向量积与混合积,我们需要补充行列式的一些基本知识。
第二章 轨迹与方程
2.1平面曲线的方程
2.2曲面的方程
2.3母线平行于坐标轴的柱面方程
2.4空间曲线的方程
[说明]:本章先介绍品面曲线平面曲线的方程,后快速过渡到曲面与空间曲线方程的研究,这样不仅使学生对平面轨迹的问题作了复习与提高,而且使得一些看来较为复杂的空间轨迹问题也就迎刃而解了。
第三章 平面与空间直线
3.1平面的方程
3.2平面与点的位置关系
3.3两平面的相关位置
3.4空间直线的方程
3.5直线与平面的相关位置
3.6空间两直线的相关位置
3.7空间直线与点的相关位置
3.8平面束
[说明]:本章用代数的方法定量地研究了空间最简单而又最基本的图形,即平面与空间直线,建立了它们的各种形式的方程,导出了它们之间位置关系的解析表达式,以及距离、交角等计算公式。
第四章 柱面、锥面、旋转曲面与二次曲面
4.1柱面
4.2锥面
4.3旋转曲面
4.4椭球面
4.5双曲面
4.6抛物面
4.7单叶双曲面与双曲抛物面的直母线
[说明]:本章抓住几何特征很明显的柱面、锥面、旋转曲面去建立它的方程,又对于比较简单的二次方程,用“截痕法”去研究图形的性质。
第五章 二次曲线的一般理论
5.1二次曲线与直线的相关位置
5.2二次曲线的渐近方向、中心、渐近线
5.3二次曲线的切线
5.4二次曲线的直径
5.5二次曲线的主直径与主方向
5.6二次曲线方程的化简与分类
5.7应用不变量化简二次曲线的方程
[说明]:本章从研究直线与一般二次曲线的相交问题入手,展开了一般二次曲线的几何理论的研究,如讨论了一般二次曲线的渐近方向、中心、渐近线、切线、直径等,也讨论了一般二次曲线方程的不同的化简与分类。
二 、课程说明
(一) 课程的地位和任务
本课程是大学数学系的主要基础课程之一,学好这门课为后续课程以及进一步学习数学和专业知识奠定必要的数学知识、方法和思维基础。
(二) 课程的基本要求
1、掌握向量代数的基本知识,包括向量的线性运算与向量的内积、外积、混合积的计算,以及在几何上的应用。2. 掌握空间的平面与直线的各种形式的方程,以及点、线、面三者之间的各种度量关系。
2、掌握空间特殊二次曲面(如柱面、锥面、旋转曲面)的方程。
3、掌握二次曲线方程的几何特征与二次曲线方程的不同化简方法与分类。
(三)课程内容的重点、深广度
本课程的基本思想是用代数的方法研究几何。重点要求在前两章的基础掌握下,利用向量、坐标两大工具,去讨论空间平面与直线,去建立特殊二次曲面的方程,去掌握二次曲线的一般理论。本课程论证严谨,叙述深入浅出,条理清楚,具有较好的广度与深度。
(四)与其它课程的联系与分工
先修课:平面解析几何
(五)对学生能力培养的要求和方法
学生除了参加闭卷考试外,关键是掌握一种解析分析方法,另外,培养学生对空间图形的直观想象能力。
http://math.dhu.e.cn/weblearning/math/jxjh/kcxx/kcxx.htm
这网站是专门的空间解析几何的教程网,希望对你有帮助
一般大学公共基础课只有高数和线性代数,略微涉及到一点空间解析,主体部分在数理系中教学。
❸ ArcGIS网络分析怎样批量添加交汇点标记工具
1、在ArcGIS中打开线要素。
2、在ArcToolBox里选择添加交汇点。
3、在弹出的面板中进行操作,选择需要交汇要素图层,然后选择增密方法,距离、角度、偏移量,这里我选择的是距离,然后输入距离,选择交汇距离单位进行标记。这样ArcGIS网络分析的交汇点就添加完成了。
❹ arcgis网络数据集最短路径是需要编程实现的么
最短路径分析属于ArcGIS的
网络
分析范畴。而ArcGIS的网络分析分为两类,分别是基于几何网络和网络数据集的网络分析。它们都可以实现最短路径功能。下面先介绍基于几何网络的最短路径分析的实现。以后会陆续介绍基于网络数据集的最短路径分析以及这两种方法的区别。
几何网络是一种特殊的特征要素类,由一系列不同类别的点要素和线要素(可以度量并能图形表达)组成的,可在FeatureDataset下面创建,可进行图形与属性的编辑。包括流向分析和追踪分析两大功能。主要接口是ITraceFlowSolver。我们先在一幅地图上做出一个几何网络才能进行最短路径分析。下面是主要的一些步骤(ArcMap帮助中琐碎的说明有三四十项,被我省略很多):
1、打开ArcCatalog,连接到包含地图的文件夹。
2、在空白处,右键新建一个“Personal GeoDatabase”。
3、在生成的Personal GeoDatabase上右键新建一个feature dataset。
4、双击Personal GeoDatabase进去,找到刚才new出的feature dataset,右键Import导入Feature Class(Single),选择要建立几何网络的图层或者shape文件。
5、然后再右键新建一个Geometric Network,选择从已存在的图元中建立几何网络。
6、打开ArcMap,把刚才建立的“Personal GeoDatabase Feature Class”添加到地图中,这样几何网络就建立好了。
❺ 如何实现网络数据集的网络分析
网络分析是arcgis提供的重要的空间分析的功能,利用它可以模拟现实世界的网络问题。例如多个地点的最短路径问题。
在arcgis中,将地理网络模型分为两种:几何网络模型和网络数据集模型。由于本片文章研究的是网络数据集模型,所以暂时不说几何网络模型。
在网络数据集模型中,可以随意改变资源流动的方向,速度,终点等等。如驾驶员选择行车路线等等模拟交通网络。利用地理数据库中的要素类数据集或者shp文件来建立网络数据集,利用“网络分析”工具可以进行网络数据集的分析。
接下来介绍,如何通过网络数据集进行一个最短路径分析的例子。
一、网络数据集的创建
1.首先打开MXD地图。
2.激活你的拓展模块
点击菜单栏 自定义-拓展模块,然后把network给勾上
3.在右侧目录中,找到road_network,选择新建网络数据集
4.接下来会提示你,输入新的数据集的名称,以及添加的要素,点击下一步就好。
第三步是添加转弯要素,选用默认的就可以。第四步选择网络的连通性,可以进行连通性策略的选择。第五步是高程建模,点击下一步即可。其余就可以点下一步。
简单的说,如果你不需要特别的修改的话,可以一路点击下一步过来,arcgis会进行的自动的网络数据集的建立的。
5.最后就完成了网络数据集的建立。
二、最短路径分析
我们已经完成了是网络数据集的构建,接下来就可以进行最短路径的分析。
首先调出network analyst工具栏
点击新建路径,创建一个路径的图层
点击创建网络位置工具,在图上标出你想要的点
选择好之后就可以点击求解
完成最短路径的计算!
❻ 请问ArcGIS Engine中如何建立几何网络
ArcGIS Engine不是做开发的吗?
你想用编程来实现?
上面说的确实是用ArcGIS Desktop 做的,这是两个不同的软件
Engine我没用过,如果错误,欢迎指正