‘壹’ 如何构建用户画像
我们用教育行业来说一下这个问题,
2017年4月初,62个在教育行业产品获投资,这一消息,使得教育行业产品再次被热议。事实上,教育行业早已是一片红海,有调查显示,近6成的互联网学习者位于三四线城市,而一款好的教育产品,会让用户对学习这件事情上瘾,不断对后续的课程进行消费。总的来说教育行业仍旧有突出重围的希望。
在教育产品竞争如此激烈的今天,如何争夺到更多的用户,似乎是困扰着众多教育产品的问题。本文以在线教育产品为例,说说如何构建用户画像,并为下一步获客制定运营计划。
什么是用户画像
用户画像是指,建立在一系列真实数据之上的目标用户模型。根据用户的目标、行为和观点的差异,将他们区分为不同的类型,然后每种类型中抽取出典型特征,赋予名字、照片、一些人口统计学要素、场景等描述,形成了一个人物原型。
为什么要构建用户画像
构建用户画像,就是帮产品找到用户真实的述求点,能够帮产品的功能设计提供依据。对运营人员来说,最基本的一点就是了解用户。通过对用户信息的采集,分析,抽离,生成最终的用户画像。构建用户画像后,就可以制订更精准的运营方案了。
在线教育产品,如何构建用户画像
1.用户画像分析逻辑
在构建用户画像之前,先来看看用户画像构建、分析的一个逻辑。
根据用户画像,如何在精细化运营上发力
对运营来说,构建完用户画像,但是没有将用户画像应用到运营推广中,就等于做了个无用功。在线教育产品在构建完用户画像之后,应该重点考虑如何利用用户画像,辅助课程开发和产品运营,做到精细化运营。
做精细化运营的一个基本思路就是理清楚一个逻辑:在什么时间把什么内容发给什么类型的用户。
1.根据搜索数据的个性化运营
用户浏览了某一个课程,可以根据用户标签,推荐相同类型的课程。
更多内容,可网络一下“在线教育app:构建用户画像并制定运营计划怎么做”。
‘贰’ 网络营销与策划的用户画像实操怎么做
网络营销与策划的用户画像实操如下:
第一步:建模,获取原始数据得到用户行为信息,数据预处理,分析用户行为,通过模型进行预测,完善用户画像,预测用户的操作行为;
第二步:思考多维度刻画用户画像:自然属性、兴趣属性、地理位置信息、IP、隐含属性。
第三步:标签,用户需求和用户场景不断更新,所以标签体系在不断的完善。
第四步:映射用户画像。
第五步:评估用户画像;第六步:数据可视化。
‘叁’ 构建用户画像的主要步骤包括哪些及每个部分主要完成的工作是什么
用户画像又称用户角色(Persona),作为一种勾画目标用户、联系用户诉求与设计方向的有效工具,用户画像在各领域得到了广泛的应用。我们在实际操作的过程中往往会以最为浅显和贴近生活的话语将用户的属性、行为与期待联结起来。作为实际用户的虚拟代表,用户画像所形成的用户角色并不是脱离产品和市场之外所构建出来的,形成的用户角色需要有代表性能代表产品的主要受众和目标群体。
一般的,用户画像在产品没有上线、市场前景较为模糊、产品需求还需探索的阶段,定性化的用户画像能有效地节省时间、资源,在较短的时间通过桌面研究、访谈等定性化的方法来获得用户画像是一种比较可行和最优的方式。而事实上,用户画像是一种能将定性与定量方法很好结合在一起的载体,通过定量化的前期调研能获得一个对于用户群较为精准的认识,在后期的用户角色的建立中能很好地对用户优先顺序进行排序,将核心的、规模较大的用户着重突出出来。定性化的方法虽然无法对不同单位的特征作数量上的比较和统计分析,但能对观察资料进行归纳、分类、比较,进而对某个或某类现象的性质和特征作出概括,在角色建构的过程中定性化的方式能获得大量用户的生活情境、使用场景、用户心智等资料,进而形成活生生的用户类型。基于后台数据的支持和挖掘,可以用户画像选择将定量化和定性化方法相结合来创建用户画像。
用户画像是在创造一系列的“典型”或者“象征性”的用户,但用户画像的一个更高层次的功用在于使用用户画像融合边缘情况的行为或需求。
‘肆’ 如何做“用户画像”
首先讲一下么是用户画像,用户画像是通过用户调研去了解用户,根据他们的社会属性、生活习惯、消费行为等主要信息的数据之后,完美地抽象出一个用户的商业全貌。用户画像的核心工作是为用户打标签,打标签的重要目的之一是为了让人能够理解并且方便计算机处理。
最后是如何构建用户画像,要建立用户画像必须建立在真实数据的基础上,将构建用户画像平台所需的数据分成用户、商品、渠道三类,然后按产品需要,给不同的用户特征贴上合适的标签。标签需要精简易区分少交叉重叠,这样是为了方便数据统计,构建数据集合,后续进行数据挖掘和聚合分析。最终是用户画像的呈现,用户画像的呈现分为两个部分,一部分是显性的呈现,呈现的是用户的给俺个标签特点;另一部分是隐形的,呈现的是需要我们去分析的用户潜在需求。显性的标签就是用现在的特点需求。而这些隐形的标签所代表的需求可以为以后的产品发展起到指引的作用。
‘伍’ 利用大数据技术如何构建用户画像
【导读】目前,我们已经身处大数据时代,大数据的使用不仅普通用户可以享受到技术带来的便利,企业也可以从数据中提取有商业价值的信息,构建出用户画像,从而对用户行为进行分析和预测。虽然用户画像不是什么新鲜的概念,但是大数据技术的出现使得用户画像更加清晰客观,那么利用大数据技术如何构建用户画像?
1、认识用户画像
用户画像简单来讲,就是用户信息标签化。即收集这个用户的各种数据和行为,从而得出这个用户的一些基本信息和典型特征,最后形成一个人物原型。一般用户画像会分析三个信息维度,分别是基本属性、消费购物以及社交圈。其中基本属性就是指用户的一些基本信息,比如年纪、性别、生日、学校、所在地等等。
2、利用大数据构建用户画像的好处
(1)精准营销:当企业和商家掌握了用户的一定信息后,就可以构建出清晰的用户画像,这样一来就可以根据用户的偏好、收入等标签,推荐给他们会感兴趣的商品和服务。
(2)用户统计:通过大数据我们可以对一些数据进行统计,比如我们经常会看到有一些APP的排行榜,甚至是渗透率、日活率这些具体数据都可以清晰统计出来。
(3)数据挖掘:构建智能推荐系统,利用关联规则计算,喜欢红酒的人通常喜欢什么运动品牌,利用聚类算法分析,喜欢红酒的人年龄段分布情况。
(4)进行效果评估:其实相当于市场调研、用户调研,迅速下定位服务群体,提供高水平的服务。比如你是一个买车的想要投放广告,但是不知道哪个渠道投放更好,就可以先尝试一下,看看数据反馈如何。
(5)私人订制:对服务或产品进行私人订制,然而不法商家也会利用用户画像来杀熟。
(6)业务经营分析:业务经营分析以及竞争分析,影响企业的商业决策,甚至发展战略。
3、构建用户画像的流程
(1)数据源端:一般来讲构建用户画像的数据来自于网站交易数据、用户行为数据、网络日志数据。当然也不仅限于这些数据,一些平台上还有个人征信数据。
(2)数据预处理:第一步是清洗,把一些杂乱无序的数据清洗一下,然后归纳为结构化的数据,最后是把信息标准化。我们可以把数据的预处理简单理解为把数据分类在一个表格中,这一步就是奠定数据分析的基石。
关于利用大数据技术如何构建用户画像?就给大家分享到这里了,如果你想成为大数据工程师,那就从现在开始,不断进行自我提升,学会大数据实用技能,保证自己在大数据行业有一定的立足之地,有征服他人之能。
‘陆’ 网站用户画像分析怎么做
首先是寻找目标用户, 拿抖音为例, 抖音刚开始上线以后, 很重要的一点就是要去分析我们的用户是谁, 比如是什么样的年龄 性别 地域 学历等等, 这可以很快帮助产品去发现现在的主流的用户群体是不是产品最开始的定位, 如果完全不一样了, 那就是产品哪里的设计有问题 偏离了方向。
等上线一段时间, 我们就可以对用户进行不同活跃的等级的划分, 比如同样都是玩抖音, 有天天玩的 也有偶尔玩的, 有一次可以刷很久的, 也有刷刷就走了的用户, 频次, 时长成了用户这时候最大的特征差异, 那么不同频次, 不同时长的用户他们的 年龄, 性别, 地域有什么差异, 这些都是特征的进一步洞察。
再过一段时间, 有用户留存有用户流失, 需要去分析留存和流失的用户在行为特征上的差异是否有什么特别不一样的。
‘柒’ 如何构建用户画像实现品牌营销
用户画像,又称人群画像,是根据客户人口统计学信息,社交关系,偏好习惯和消费行为等信息而抽象出来的标签化画像。
构建客户画像的核心工作即是给客户贴“标签”(犹如娱乐圈中明星的立人设)
标签由两部分组成:
1、根据客户的行为数据直接得到的
比如:用户在网站或者APP上主动填写的数据,严格一些平台会要求客户上传身份证、学生证、驾驶证等,这样的数据准确性较高。
2、通过一系列算法或规则挖掘得到
比如:一个用户最近开始购买母婴类商品,奶粉尿布等,那么可以根据客户购买的频次和数量,结合客户的年龄、性别推断是否为新妈妈/爸爸。
用户画像其实就是希望通过某些手段对用户做甄别,把他们分成彼此相同或不同的人群或个体,进而区别化提供服务进行观察分析。
用户画像的价值
1、精准营销
精准营销是用户画像或者标签最直接和有价值的应用。这部分也是广告部门最注重的工作内容。当我们给各个用户打上各种“标签”之后,广告主(店铺、商家)就可以通过标签圈定他们想要的客户,进行精准的广告投放。
2、助力产品
一个产品想要得到广泛的应用,受众分析必不可少。产品经理需要懂用户,所以用户画像能帮助产品经理透过客户行为表象看到客户深层的动机和心理。
3、行业报告
通过对客户画像的分析可以了解行业动态,比如90后人群的消费偏好趋势分析、高端客户青睐品牌分析、不同地域品类消费差异分析等等。
讲了这么多“干货”大家是不是有点蒙圈了呢...下面我们看个简单的案例来帮助大家更好地理解。
场景案例
现有一份200多用户对十部电影的豆瓣评分数据,我们根据这些数据来刻画几组用户画像。
十部电影分别如下:
动作类:谍影重重5、湄公河行动、血战钢锯岭、伦敦沦陷;
青春爱情类:北京遇上西雅图、七月与安生、六弄咖啡馆;
动画类:疯狂动物城、功夫熊猫3、大鱼海棠。
下面就开始进行用户细分及刻画:
1、用户细分
可以看出一些大城市的人们在忙碌的工作之余都喜欢用看电影来放松心情,娱乐一下,电影方工作人员是不是可以在大城市多排一些片场,来促进票房增长。
从上面简单的案例我们就可以看出用户画像使产品的服务对象更加聚焦,更加专注,能更好的满足客户的需求,实现精准营销,并提升公司的经营效益。
‘捌’ 如何建立用户画像
用户画像
完美地抽象出一个用户的信息全貌,可以看作企业应用大数据的根基。
构建方法
数据源分析
还原用户信息,因此数据来源于:所有用户相关的数据。
静态信息
包括人口属性、商业属性等方面。
动态
用户不断变化的行为习惯。
图解
‘玖’ 用户画像是什么怎样建立用户画像
用户画像是一种勾画目标用户、联系用户诉求与设计方向的有效工具。企业通过对海量数据信息进行分析,将数据抽象成标签,再利用这些标签将用户形象具体化就是用户画像的建立过程。
个推近期上线了全新的【用户运营】服务。个推·用户运营支持APP自有数据与个推海量数据融合,能够有效完善APP数据标签体系,涵盖用户基本属性、兴趣偏好、媒体偏好、线下活动场景等丰富维度,让APP用户画像更加全面立体;同时提供标签管理平台,支持APP开发者和运营者自助创建、自主维护、高效管理标签,还为开发者打造了丰富的行业标签模板库,涵盖餐饮、快消、美妆、母婴等多个行业,运营人员可按需灵活调用,分析
0 门槛,让用户画像洞察更加高效便捷。个推·用户运营SDK限时免费中,您可注册/登录个推开发者中心免费开通。
用户洞察