1. 大数据包括一些什么
大数据技术包括数据收集、数据存取、基础架构、数据处理、统计分析、数据挖掘、模型预测、结果呈现1、数据收集:在大数据的生命周期中,数据采集处于第一个环节。根据MapRece产生数据的应用系统分类,大数据的采集主要有4种来源:管理信息系统、Web信息系统、物理信息系统、科学实验系统。2、数据存取:大数据的存去采用不同的技术路线,大致可以分为3类。第1类主要面对的是大规模的结构化数据。第2类主要面对的是半结构化和非结构化数据。第3类面对的是结构化和非结构化混合的大数据,3、基础架构:云存储、分布式文件存储等。4、数据处理:对于采集到的不同的数据集,可能存在不同的结构和模式,如文件、XML 树、关系表等,表现为数据的异构性。对多个异构的数据集,需要做进一步集成处理或整合处理,将来自不同数据集的数据收集、整理、清洗、转换后,生成到一个新的数据集,为后续查询和分析处理提供统一的数据视图。5、统计分析:假设检验、显着性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。6、数据挖掘:目前,还需要改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。7、模型预测:预测模型、机器学习、建模仿真。8、结果呈现:云计算、标签云、关系图等。
2. 大数据存在的安全问题有哪些
一、分布式系统
大数据解决方案将数据和操作分布在许多系统中,以实现更快的处理和分析。这种分布式系统可以平衡负载,避免单点故障。但是这样的系统容易受到安全威胁,黑客只要攻击一个点就可以渗透整个网络。
二.数据存取
大数据系统需要访问控制来限制对敏感数据的访问,否则,任何用户都可以访问机密数据,有些用户可能会出于恶意使用。此外,网络犯罪分子可以入侵与大数据系统相连的系统,窃取敏感数据。因此,使用大数据的公司需要检查和验证每个用户的身份。
三.数据不正确
网络犯罪分子可以通过操纵存储的数据来影响大数据系统的准确性。因此,网络犯罪分子可以创建虚假数据,并将这些数据提供给大数据系统。比如医疗机构可以利用大数据系统研究患者的病历,而黑客可以修改这些数据,产生不正确的诊断结果。
四.侵犯隐私
大数据系统通常包含机密数据,这是很多人非常关心的问题。这样的大数据隐私威胁已经被全世界的专家讨论过了。此外,网络犯罪分子经常攻击大数据系统以破坏敏感数据。这种数据泄露已经成为头条新闻,导致数百万人的敏感数据被盗。
五、云安全性不足
大数据系统收集的数据通常存储在云中,这可能是一个潜在的安全威胁。网络犯罪分子破坏了许多知名公司的云数据。如果存储的数据没有加密,并且没有适当的数据安全性,就会出现这些问题。
关于大数据存在的安全问题有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
3. (1)什么是安全大数据
安全数据的大数据化主要体现在以下三个方面:
一、数据量越来越大:网络已经从千兆迈向了万兆,网络安全设备要分析的数据包数据量急剧上升。此外,随着APT等新型威胁的兴起,全包捕获技术逐步应用,海量数据处理问题也日益凸显。
二、速度越来越快:对于网络设备而言,包处理和转发的速度需要更快;对于安管平台、事件分析平台而言,数据源的事件发送速率(EPS,EventperSecond,事件数每秒)越来越快。
三、种类越来越多:除了数据包、日志、资产数据,安全要素信息还加入了漏洞信息、配置信息、身份与访问信息、用户行为信息、应用信息、业务信息、外部情报信息等。
我们需要大数据安全分析
安全数据的大数据化,以及传统安全分析所面临的挑战和发展趋势,都指向了同一个技术——大数据分析。正如Gartner在2011年明确指出,“信息安全正在变成一个大数据分析问题”。
于是,业界出现了将大数据分析技术应用于信息安全的技术——大数据安全分析(BigDataSecurityAnalysis,简称BDSA),也有人称做针对安全的大数据分析(BigDataAnalysisforSecurity)。
借助大数据安全分析技术,能够更好地解决天量安全要素信息的采集、存储的问题,借助基于大数据分析技术的机器学习,能够更加智能地洞悉信息与网络安全的态势,更加主动、弹性地去应对新型复杂的威胁和未知多变的风险。
4. 奇虎360的大数据平台安全保障体系框架不包括哪一项
网络安全策略。大数据平台安全保障体系框包括网络安全策略、网络安全管理、网络安全技术和网络安全运作,奇虎360主营360杀毒为代表的免费网络安全平台和在线广告、游戏、互联网和增值业务创收。奇虎360是由周鸿祎于2005年9月创立对网络安全策略使用率较低,所以在奇虎360的大数据平台安全保障体系框架不包括网络安全策略这一项。
5. 什么是大数据大数据面临哪些安全与隐私问题
什么叫做大数据大数据这个问题你问的太好了,大数据就是指的是通过一个人日常生活中在网络上使用的数据,然后给他记录下来,这个就叫做大数据。而大数据面临的安全和隐私问题,也是有大数据的运营商们进行保护的,对大数据的防护是非常的认真,这对大数据来讲是十分安全的。
6. 大数据都体现在哪些方面
在过去几年,大数据的建设主要集中在物联网、云计算、移动互联网等基础领域,一些大数据起步较早、积累较深的行业领域,开始基于大数据的基础建设,开启了行业数据应用与价值挖掘之路。
从数据的抽取、清洗等预处理,到数据存储及管理,再到数据分析挖掘,以及最终的可视化呈现。行业用户开始把注意力转向大数据真正的价值点——发现规律,提升决策效率与能力。这一年,他们在收集数据上花费的时间很少,而在实际分析数据并回答各种问题上的时间则越来越多。
目前进入大数据应用相对较成熟的领域主要在公安、交通、电力、园区管理、网络安全、航天等。大数据价值被挖掘,帮助各行业从业务管理、事前预警、事中指挥调度、事后分析研判等多个方面提升智能化决策能力。
公安领域的大数据应用,可以实现从警综、警力、警情、人口、卡口/车辆、重点场所、摄像头管理等全方位进行公安日常监测与协调管理;实现突发事件下的可视化接处警、警情查询监控、辖区定位、应急指挥调度管理,满足公安行业平急结合的应用需求。从而全面提升公安机关智能化决策能力,提升警务资源利用和服务价值,为预防打击违法犯罪、维护社会稳定提供有力支持。
交通领域的大数据应用,可以实现从公交车辆、司乘人员、运行线路、站点场站管理、乘客统计等多个维度进行日常路网运行监测与协调管理;支持突发事件下的值班接警、信息处理发布、应急指挥调度管理,发挥交通资源最大效益。
电力领域的大数据应用,可以实现用户分布、节点负荷、电网拓扑、电能质量、窃电嫌疑、安全防御、能源消耗等智能电网多个环节进行日常运行监测与协调管理;满足常态下电网信息的实时监测监管、应急态下协同处置指挥调度的需要。全面提高电力行业管理的及时性和准确性,更好地实现电网安全、可靠、经济、高效运行。
园区管理的大数据应用,可以实现从园区建设规划、管网运行、能耗监测、园区交通、安防管理、园区资源管理等多个维度进行日常运行监测与协调管理;从而全面加强园区创新、服务和管理能力,促进园区产业升级、提升园区企业竞争力。
网络安全的大数据应用,能够实现对网络中的安全设备、网络设备、应用系统、操作系统等整体环境进行安全状态监测,帮助用户快速掌握网络状况,识别网络异常、入侵,把握网络安全事件发展趋势,全方位感知网络安全态势。
航天是大数据应用最早也最成熟,取得成果最多的领域,航天要对尺度远比地球大无数倍的广阔空间进行探索,其总量更多,要求更高。因此,航天大数据不仅具有一般大数据的特点,更要求高可靠性和高价值。能够实现对航天测发、测控设备控制;航天指挥作战体系模拟推演、作战评估;航天作战指挥显示控制航天器数据分析、状态监控。
供参考。
7. 大数据环境下的网络安全分析
大数据环境下的网络安全分析
“大数据”一词常被误解。事实上,使用频率太高反而使它几乎没有什么意义了。大数据确实存储并处理大量的数据集合,但其特性体现远不止于此。
在着手解决大数据问题时,将其看作是一种观念而不是特定的规模或技术非常有益。就其最简单的表现来说,大数据现象由三个大趋势的交集所推动:包含宝贵信息的大量数据、廉价的计算资源、几乎免费的分析工具。
大数据架构和平台算是新事物,而且还在以一种非凡的速度不断发展着。商业和开源的开发团队几乎每月都在发布其平台的新功能。当今的大数据集群将会与将来我们看到的数据集群有极大不同。适应这种新困难的安全工具也将发生变化。在采用大数据的生命周期中,业界仍处于早期阶段,但公司越早开始应对大数据的安全问题,任务就越容易。如果安全成为大数据集群发展过程中的一种重要需求,集群就不容易被黑客破坏。此外,公司也能够避免把不成熟的安全功能放在关键的生产环境中。
如今,有很多特别重视不同数据类型(例如,地理位置数据)的大数据管理系统。这些系统使用多种不同的查询模式、不同的数据存储模式、不同的任务管理和协调、不同的资源管理工具。虽然大数据常被描述为“反关系型”的,但这个概念还无法抓住大数据的本质。为了避免性能问题,大数据确实抛弃了许多关系型数据库的核心功能,却也没犯什么错误:有些大数据环境提供关系型结构、业务连续性和结构化查询处理。
由于传统的定义无法抓住大数据的本质,我们不妨根据组成大数据环境的关键要素思考一下大数据。这些关键要素使用了许多分布式的数据存储和管理节点。这些要素存储多个数据副本,在多个节点之间将数据变成“碎片”。这意味着在单一节点发生故障时,数据查询将会转向处理资源可用的数据。正是这种能够彼此协作的分布式数据节点集群,可以解决数据管理和数据查询问题,才使得大数据如此不同。
节点的松散联系带来了许多性能优势,但也带来了独特的安全挑战。大数据数据库并不使用集中化的“围墙花园”模式(与“完全开放”的互联网相对而言,它指的是一个控制用户对网页内容或相关服务进行访问的环境),内部的数据库并不隐藏自己而使其它应用程序无法访问。在这儿没有“内部的”概念,而大数据并不依赖数据访问的集中点。大数据将其架构暴露给使用它的应用程序,而客户端在操作过程中与许多不同的节点进行通信。
规模、实时性和分布式处理:大数据的本质特征(使大数据解决超过以前数据管理系统的数据管理和处理需求,例如,在容量、实时性、分布式架构和并行处理等方面)使得保障这些系统的安全更为困难。大数据集群具有开放性和自我组织性,并可以使用户与多个数据节点同时通信。验证哪些数据节点和哪些客户应当访问信息是很困难的。别忘了,大数据的本质属性意味着新节点自动连接到集群中,共享数据和查询结果,解决客户任务。
嵌入式安全:在涉及大数据的疯狂竞赛中,大部分的开发资源都用于改善大数据的可升级、易用性和分析功能上。只有很少的功能用于增加安全功能。但是,你希望得到嵌入到大数据平台中的安全功能。你希望开发人员在设计和部署阶段能够支持所需要的功能。你希望安全功能就像大数据集群一样可升级、高性能、自组织。问题是,开源系统或多数商业系统一般都不包括安全产品。而且许多安全产品无法嵌入到Hadoop或其它的非关系型数据库中。多数系统提供最少的安全功能,但不足以包括所有的常见威胁。在很大程度上,你需要自己构建安全策略。
应用程序:面向大数据集群的大多数应用都是Web应用。它们利用基于Web的技术和无状态的基于REST的API。虽然全面讨论大数据安全的这个问题超出了本文的范围,但基于Web的应用程序和API给这些大数据集群带来了一种最重大的威胁。在遭受攻击或破坏后,它们可以提供对大数据集群中所存储数据的无限制访问。应用程序安全、用户访问管理及授权控制非常重要,与重点保障大数据集群安全的安全措施一样都不可或缺。
数据安全:存储在大数据集群中的数据基本上都保存在文件中。每一个客户端应用都可以维持其自己的包含数据的设计,但这种数据是存储在大量节点上的。存储在集群中的数据易于遭受正常文件容易感染的所有威胁,因而需要对这些文件进行保护,避免遭受非法的查看和复制。
8. 网络信息安全和大数据安全一样吗
不一样的,大数据主要是数据的整理和统计。
网络信息安全一般指的是Web安全,也就是网页安全,这方面考察的更多的是工具的熟练使用。这是两个完全不一样的方向哦。
9. 大数据有前途,还是网络安全有前途
这是两个非常有前途的职业方向,用比较形象的语言来描述,这两个职业,一个是矛,另一个是盾。就象我们在看一场篮球比赛,一支球队的进攻非常重要,但防守也同样不容忽视。在未来的网络环境下,大数据相当于是一把锋利的矛,而网络安全则是一部坚实的盾。
大数据行业,利用网络资源,通过分析数据,为我们的生活、生产、经营等活动提供更加有效的支撑。对社会各项正向需求产生正向的影响。可以把它理解为是人类解放生产力过程中,能够开疆拓土的进攻型武器。
网络安全,就很明显了,是我们在网络生活中的保护神。网络安全的主要作用就是防守,守住我们的个人信息,个人隐私,保护我们的重要数据与敏感数据。网络安全为大数据提供保驾护航。我们把网络安全理解为人类解放生产力的过程中,那个保护人类自身安全的一部无形的巨盾。
不管是用矛还是用盾,只要学艺精,在科学技术迅猛发展的网络朝代,都是前途无量的行业。