导航:首页 > 网络安全 > 密码再网络空间中身份识别

密码再网络空间中身份识别

发布时间:2022-01-05 22:50:54

Ⅰ 通信网络是如何识别手机用户的身份的

通信人来答题!

首先,我们要先解决,通信网络是如何区分不同手机的?

毕竟,在同一个区域里面,使用手机的人那么多,通信系统是怎么区分你的手机以及你周围小伙伴的手机呢?

在固话时代,非常容易,看清接线箱上插口是哪个就好了,直接把对应的电话线送到电话交接箱就行,但是现在已经进入无线时代了,我们需要找到这个无形的空中接口!

我们可以想象这样一个场景,一个屋子里面有很多人想要发言,我们该如何区分究竟是谁在说话呢?有一种策略就是每个人轮流说,分时段安排的明明白白,这种策略我们叫做时分多址TDMA;要不,我们就男女老少不同的组合一起说,因为大家的音色不同,也就是频率不同,这样也很容易就找到特定的人,这种策略我们叫频分多址FDMA;要不我们就用不同的语言说话,这种策略叫做码分多址CDMA

在移动通信网络中,在每次服务之前,都要确认用户的身份,通信的身份证就是用户识别号,每个用户的识别号是惟一的,在GSM系统中称为IMSI,CDMA系统中称为ESN,号码存储在手机的SIM卡和核心网络中,一旦你想用手机获取到运营商进行服务,运营商就可以用过这个唯一的号码得到你的信息。

但总有些人想,那我伪造一个号码不就相当于戴上了一个面具嘛?你还有什么招尽管使出来吧!

招来了,鉴别体制!

系统会采用用户识别号+密码的组合来识别用户是不是合法的,光有身份证(用户识别号)说明不了什么,你得和指纹(密码)一起来确认才行!

另外,由于国家规定现在手机号码需要与身份证进行绑定,所以运营商就可以知道你的真实身份啦,想要识别手机用户的身份,不要太简单~

Ⅱ 网证ctid与web电子身份证照有什么区别

摘要 “电子身份凭证”是与居民实体身份证对应的电子凭证。我公司签发的“电子身份凭证”,专业术语为“居民身份网络可信凭证”,简称“网证”或“CTID网证”,俗称“电子身份凭证”,即对于我公司目前全国推广的“电子身份认证”业务来说,这几个名称可视为同一含义。

计算机网络安全开题报告

1. 背景和意义
随着计算机的发展,人们越来越意识到网络的重要性,通过网络,分散在各处的计算机被网络联系在一起。做为网络的组成部分,把众多的计算机联系在一起,组成一个局域网,在这个局域网中,可以在它们之间共享程序、文档等各种资源;还可以通过网络使多台计算机共享同一硬件,如打印机、调制解调器等;同时我们也可以通过网络使用计算机发送和接收传真,方便快捷而且经济。
21世纪全世界的计算机都将通过Internet联到一起,信息安全的内涵也就发生了根本的变化。它不仅从一般性的防卫变成了一种非常普通的防范,而且还从一种专门的领域变成了无处不在。当人类步入21世纪这一信息社会、网络社会的时候,我国将建立起一套完整的网络安全体系,特别是从政策上和法律上建立起有中国自己特色的网络安全体系。
一个国家的信息安全体系实际上包括国家的法规和政策,以及技术与市场的发展平台。我国在构建信息防卫系统时,应着力发展自己独特的安全产品,我国要想真正解决网络安全问题,最终的办法就是通过发展民族的安全产业,带动我国网络安全技术的整体提高。
网络安全产品有以下几大特点:第一,网络安全来源于安全策略与技术的多样化,如果采用一种统一的技术和策略也就不安全了;第二,网络的安全机制与技术要不断地变化;第三,随着网络在社会个方面的延伸,进入网络的手段也越来越多,因此,网络安全技术是一个十分复杂的系统工程。为此建立有中国特色的网络安全体系,需要国家政策和法规的支持及集团联合研究开发。安全与反安全就像矛盾的两个方面,总是不断地向上攀升,所以安全产业将来也是一个随着新技术发展而不断发展的产业。
信息安全是国家发展所面临的一个重要问题。对于这个问题,我们还没有从系统的规划上去考虑它,从技术上、产业上、政策上来发展它。政府不仅应该看见信息安全的发展是我国高科技产业的一部分,而且应该看到,发展安全产业的政策是信息安全保障系统的一个重要组成部分,甚至应该看到它对我国未来电子化、信息化的发展将起到非常重要的作用。第二章网络安全现状
2.网络安全面临的挑战
网络安全可能面临的挑战
垃圾邮件数量将变本加厉。
根据电子邮件安全服务提供商Message Labs公司最近的一份报告,预计2003年全球垃圾邮件数量的增长率将超过正常电子邮件的增长率,而且就每封垃圾邮件的平均容量来说,也将比正常的电子邮件要大得多。这无疑将会加大成功狙击垃圾邮件的工作量和难度。目前还没有安装任何反垃圾邮件软件的企业公司恐怕得早做未雨绸缪的工作,否则就得让自己的员工们在今后每天不停地在键盘上按动“删除键”了。另外,反垃圾邮件软件也得不停升级,因为目前垃圾邮件传播者已经在实行“打一枪换一个地方”的游击战术了。
即时通讯工具照样难逃垃圾信息之劫。
即时通讯工具以前是不大受垃圾信息所干扰的,但现在情况已经发生了很大的变化。垃圾邮件传播者会通过种种手段清理搜集到大量的网络地址,然后再给正处于即时通讯状态的用户们发去信息,诱导他们去访问一些非法收费网站。更令人头疼的是,目前一些推销合法产品的厂家也在使用这种让人厌烦的手段来让网民们上钩。目前市面上还没有任何一种反即时通讯干扰信息的软件,这对软件公司来说无疑也是一个商机。
内置防护软件型硬件左右为难。
现在人们对网络安全问题受重视的程度也比以前大为提高。这种意识提高的表现之一就是许多硬件设备在出厂前就内置了防护型的软件。这种做法虽然前几年就已经出现,预计在今后的几年中将会成为一种潮流。但这种具有自护功能的硬件产品却正遭遇着一种尴尬,即在有人欢迎这种产品的同时,也有人反对这样的产品。往好处讲,这种硬件产品更容易安装,整体价格也相对低廉一些。但它也有自身的弊端:如果企业用户需要更为专业化的软件服务时,这种产品就不会有很大的弹性区间。
企业用户网络安全维护范围的重新界定。
目前各大企业公司的员工们在家里通过宽带接入而登录自己公司的网络系统已经是一件很寻常的事情了。这种工作新方式的出现同样也为网络安全带来了新问题,即企业用户网络安全维护范围需要重新界定。因为他们都是远程登录者,并没有纳入传统的企业网络安全维护的“势力范围”之内。另外,由于来自网络的攻击越来越严重,许多企业用户不得不将自己网络系统内的每一台PC机都装上防火墙、反侵入系统以及反病毒软件等一系列的网络安全软件。这同样也改变了以往企业用户网络安全维护范围的概念。
个人的信用资料。
个人信用资料在公众的日常生活中占据着重要的地位。以前的网络犯罪者只是通过网络窃取个人用户的信用卡账号,但随着网上窃取个人信用资料的手段的提高,预计2003年这种犯罪现象将会发展到全面窃取美国公众的个人信用资料的程度。如网络犯罪者可以对你的银行存款账号、社会保险账号以及你最近的行踪都能做到一览无余。如果不能有效地遏制这种犯罪趋势,无疑将会给美国公众的日常人生活带来极大的负面影响。
3.病毒现状
互联网的日渐普及使得我们的日常生活不断网络化,但与此同时网络病毒也在继续肆虐威胁泛滥。在过去的六个月内,互联网安全饱受威胁,黑客蠕虫入侵问题越来越严重,已成泛滥成灾的趋势。
2003年8月,冲击波蠕虫在视窗暴露安全漏洞短短26天之后喷涌而出,8天内导致全球电脑用户损失高达20亿美元之多,无论是企业系统或家庭电脑用户无一幸免。
据最新出炉的赛门铁克互联网安全威胁报告书(Symantec Internet Security Threat Report)显示,在2003年上半年,有超过994种新的Win32病毒和蠕虫被发现,这比2002年同时期的445种多出一倍有余。而目前Win32病毒的总数大约是4千个。在2001年的同期,只有308种新Win32病毒被发现。
这份报告是赛门铁克在今年1月1日至6月31日之间,针对全球性的网络安全现状,提出的最为完整全面的威胁趋势分析。受访者来自世界各地500名安全保护管理服务用户,以及2万个DeepSight威胁管理系统侦察器所探测的数据。
赛门铁克高级区域董事罗尔威尔申在记者通气会上表示,微软虽然拥有庞大的用户市占率,但是它的漏洞也非常的多,成为病毒目标是意料中事。
他指出,开放源码如Linux等之所以没有受到太多病毒蠕虫的袭击,完全是因为使用者太少,以致于病毒制造者根本没有把它不放在眼里。他举例说,劫匪当然知道要把目标锁定在拥有大量现金的银行,所以他相信随着使用Linux平台的用户数量的增加,慢慢地将会有针对Linux的病毒和蠕虫出现。
不过,他不同意开放源码社群的合作精神将能有效地对抗任何威胁的袭击。他说,只要是将源码暴露在外,就有可能找出其安全漏洞,而且世上不是全是好人,不怀好意的人多的是。
即时通讯病毒4倍增长
赛门铁克互联网安全威胁报告书指出,在2003年上半年使用诸如ICQ之类即时通讯软件(Instant Messaging,IM)和对等联网(P2P)来传播的病毒和蠕虫比2002年增加了400%,在50大病毒和蠕虫排行榜中,使用IM和P2P来传播的恶意代码共有19个。据了解,IM和P2P是网络安全保护措施不足导致但这并不是主因,主因在于它们的流行广度和使用者的无知。
该报告显示,该公司在今年上半年发现了1千432个安全漏洞,比去年同时期的1千276个安全漏洞,增加了12%。其中80%是可以被人遥控的,因此严重型的袭击可以通过网络来进行,所以赛门铁克将这类可遥控的漏洞列为中度至高度的严重危险。另外,今年上半年的新中度严重漏洞增加了21%、高度严重漏洞则增加了6%,但是低度严重漏洞则减少了11%。
至于整数错误的漏洞也有增加的趋势,今年的19例比起去年同期的3例,增加了16例。微软的互联网浏览器漏洞在今年上半年也有12个,而微软的互联网资讯服务器的漏洞也是非常的多,赛门铁克相信它将是更多袭击的目标;以前袭击它的有尼姆达(Nimda)和红色代码(Code Red)。
该报告显示了64%的袭击是针对软件新的安全漏洞(少过1年的发现期),显示了病毒制造者对漏洞的反应越来越快了。以Blaster冲击波为例,就是在Windows安全漏洞被发现短短26天后出现的。
知名病毒和蠕虫的威胁速度和频率也增加了不少,今年上半年的知名威胁比去年同期增加了20%,有60%的恶意代码(Malicious Code)是知名病毒。今年1月在短短数小时内造成全球性的瘫痪的Slammer蠕虫,正是针对2002年7月所发现的安全漏洞。另外,针对机密信息的袭击也比去年上半年增加了50%,Bugbear.B就是一个专锁定银行的蠕虫。
黑客病毒特征
赛门铁克互联网安全威胁报告书中也显现了有趣的数据,比如周末的袭击有比较少的趋向,这与去年同期的情况一样。
虽然如此,周末两天加上来也有大约20%,这可能是袭击者会认为周末没人上班,会比较疏于防备而有机可乘。赛门铁克表示这意味着网络安全保护监视并不能因为周末休息而有所放松。
该报告书也比较了蠕虫类和非蠕虫类袭击在周末的不同趋势,非蠕虫类袭击在周末会有下降的趋势,而蠕虫类袭击还是保持平时的水平。蠕虫虽然不管那是星期几,但是有很多因素也能影响它传播的率,比如周末少人开机,确对蠕虫的传播带来一些影响。
该报告书也得出了在互联网中病毒袭击发生的高峰时间,是格林威治时间下午1点至晚上10点之间。虽然如此,各国之间的时差关系,各国遭到袭击的高峰时间也会有少许不同。比如说,华盛顿袭击高峰时间是早上8时和下午5时,而日本则是早上10时和晚上7时。
知名病毒和蠕虫的威胁速度和频率也增加了不少,今年上半年的知名威胁比去年同期增加了20%,有60%的恶意代码(Malicious Code)是知名病毒。今年1月在短短数小时内造成全球性的瘫痪的Slammer蠕虫,正是针对2002年7月所发现的安全漏洞。另外,针对机密信息的袭击也比去年上半年增加了50%,Bugbear.B就是一个专锁定银行的蠕虫。管理漏洞---如两台服务器同一用户/密码,则入侵了A服务器,B服务器也不能幸免;软件漏洞---如Sun系统上常用的Netscape EnterPrise Server服务,只需输入一个路径,就可以看到Web目录下的所有文件清单;又如很多程序只要接受到一些异常或者超长的数据和参数,就会导致缓冲区溢出;结构漏洞---比如在某个重要网段由于交换机、集线器设置不合理,造成黑客可以监听网络通信流的数据;又如防火墙等安全产品部署不合理,有关安全机制不能发挥作用,麻痹技术管理人员而酿成黑客入侵事故;信任漏洞---比如本系统过分信任某个外来合作伙伴的机器,一旦这台合作伙伴的机器被黑客入侵,则本系统的安全受严重威胁;
综上所述,一个黑客要成功入侵系统,必须分析各种和这个目标系统相关的技术因素、管理因素和人员因素。
因此得出以下结论:
a、世界上没有绝对安全的系统;b、网络上的威胁和攻击都是人为的,系统防守和攻击的较量无非是人的较量;c、特定的系统具备一定安全条件,在特定环境下,在特定人员的维护下是易守难攻的;d、网络系统内部软硬件是随着应用的需要不断发展变化的;网络系统外部的威胁、新的攻击模式层出不穷,新的漏洞不断出现,攻击手段的花样翻新,网络系统的外部安全条件也是随着时间的推移而不断动态变化的。
一言以蔽之,网络安全是相对的,是相对人而言的,是相对系统和应用而言的,是相对时间而言的。 4,安全防御体系
3.1.2
现代信息系统都是以网络支撑,相互联接,要使信息系统免受黑客、病毒的攻击,关键要建立起安全防御体系,从信息的保密性(保证信息不泄漏给未经授权的人),拓展到信息的完整性(防止信息被未经授权的篡改,保证真实的信息从真实的信源无失真地到达真实的信宿)、信息的可用性(保证信息及信息系统确实为授权使用者所用,防止由于计算机病毒或其它人为因素造成的系统拒绝服务,或为敌手可用)、信息的可控性(对信息及信息系统实施安全监控管理)、信息的不可否认性(保证信息行为人不能否认自己的行为)等。
安全防御体系是一个系统工程,它包括技术、管理和立法等诸多方面。为了方便,我们把它简化为用三维框架表示的结构。其构成要素是安全特性、系统单元及开放互连参考模型结构层次。
安全特性维描述了计算机信息系统的安全服务和安全机制,包括身份鉴别、访问控制、数据保密、数据完整、防止否认、审计管理、可用性和可靠性。采取不同的安全政策或处于不同安全保护等级的计算机信息系统可有不同的安全特性要求。系统单元维包括计算机信息系统各组成部分,还包括使用和管理信息系统的物理和行政环境。开放系统互连参考模型结构层次维描述了等级计算机信息系统的层次结构。
该框架是一个立体空间,突破了以往单一功能考虑问题的旧模式,是站在顶层从整体上进行规划的。它把与安全相关的物理、规章及人员等安全要素都容纳其中,涉及系统保安和人员的行政管理等方面的各种法令、法规、条例和制度等均在其考虑之列。
另外,从信息战出发,消极的防御是不够的,应是攻防并重,在防护基础上检测漏洞、应急反应和迅速恢复生成是十分必要的。
目前,世界各国都在抓紧加强信息安全防御体系。美国在2000年1月到2003年5月实行《信息系统保护国家计划V1.0》,从根本上提高防止信息系统入侵和破坏能力。我国急切需要强化信息安全保障体系,确立我军的信息安全战略和防御体系。这既是时代的需要,也是国家安全战略和军队发展的需要,更是现实斗争的需要,是摆在人们面前刻不容缓的历史任务。 5加密技术
密码理论与技术主要包括两部分,即基于数学的密码理论与技术(包括公钥密码、分组密码、序列密码、认证码、数字签名、Hash函数、身份识别、密钥管理、PKI技术等)和非数学的密码理论与技术(包括信息隐形,量子密码,基于生物特征的识别理论与技术)。
自从1976年公钥密码的思想提出以来,国际上已经提出了许多种公钥密码体制,但比较流行的主要有两类:一类是基于大整数因子分解问题的,其中最典型的代表是RSA;另一类是基于离散对数问题的,比如ElGamal公钥密码和影响比较大的椭圆曲线公钥密码。由于分解大整数的能力日益增强,所以对RSA的安全带来了一定的威胁。目前768比特模长的RSA已不安全。一般建议使用1024比特模长,预计要保证20年的安全就要选择1280比特的模长,增大模长带来了实现上的难度。而基于离散对数问题的公钥密码在目前技术下512比特模长就能够保证其安全性。特别是椭圆曲线上的离散对数的计算要比有限域上的离散对数的计算更困难,目前技术下只需要160比特模长即可,适合于智能卡的实现,因而受到国内外学者的广泛关注。国际上制定了椭圆曲线公钥密码标准IEEEP1363,RSA等一些公司声称他们已开发出了符合该标准的椭圆曲线公钥密码。我国学者也提出了一些公钥密码,另外在公钥密码的快速实现方面也做了一定的工作,比如在RSA的快速实现和椭圆曲线公钥密码的快速实现方面都有所突破。公钥密码的快速实现是当前公钥密码研究中的一个热点,包括算法优化和程序优化。另一个人们所关注的问题是椭圆曲线公钥密码的安全性论证问题。
公钥密码主要用于数字签名和密钥分配。当然,数字签名和密钥分配都有自己的研究体系,形成了各自的理论框架。目前数字签名的研究内容非常丰富,包括普通签名和特殊签名。特殊签名有盲签名,代理签名,群签名,不可否认签名,公平盲签名,门限签名,具有消息恢复功能的签名等,它与具体应用环境密切相关。显然,数字签名的应用涉及到法律问题,美国联邦政府基于有限域上的离散对数问题制定了自己的数字签名标准(DSS),部分州已制定了数字签名法。法国是第一个制定数字签名法的国家,其他国家也正在实施之中。在密钥管理方面,国际上都有一些大的举动,比如1993年美国提出的密钥托管理论和技术、国际标准化组织制定的X.509标准(已经发展到第3版本)以及麻省里工学院开发的Kerboros协议(已经发展到第5版本)等,这些工作影响很大。密钥管理中还有一种很重要的技术就是秘密共享技术,它是一种分割秘密的技术,目的是阻止秘密过于集中,自从1979年Shamir提出这种思想以来,秘密共享理论和技术达到了空前的发展和应用,特别是其应用至今人们仍十分关注。我国学者在这些方面也做了一些跟踪研究,发表了很多论文,按照X.509标准实现了一些CA。但没有听说过哪个部门有制定数字签名法的意向。目前人们关注的是数字签名和密钥分配的具体应用以及潜信道的深入研究。
认证码是一个理论性比较强的研究课题,自80年代后期以来,在其构造和界的估计等方面已经取得了长足的发展,我国学者在这方面的研究工作也非常出色,影响较大。目前这方面的理论相对比较成熟,很难有所突破。另外,认证码的应用非常有限,几乎停留在理论研究上,已不再是密码学中的研究热点。
Hash函数主要用于完整性校验和提高数字签名的有效性,目前已经提出了很多方案,各有千秋。美国已经制定了Hash标准-SHA-1,与其数字签名标准匹配使用。由于技术的原因,美国目前正准备更新其Hash标准,另外,欧洲也正在制定Hash标准,这必然导致Hash函数的研究特别是实用技术的研究将成为热点。
信息交换加密技术分为两类:即对称加密和非对称加密。
1.对称加密技术
在对称加密技术中,对信息的加密和解密都使用相同的钥,也就是说一把钥匙开一把锁。这种加密方法可简化加密处理过程,信息交换双方都不必彼此研究和交换专用的加密算法。如果在交换阶段私有密钥未曾泄露,那么机密性和报文完整性就可以得以保证。对称加密技术也存在一些不足,如果交换一方有N个交换对象,那么他就要维护N个私有密钥,对称加密存在的另一个问题是双方共享一把私有密钥,交换双方的任何信息都是通过这把密钥加密后传送给对方的。如三重DES是DES(数据加密标准)的一种变形,这种方法使用两个独立的56为密钥对信息进行3次加密,从而使有效密钥长度达到112位。
2.非对称加密/公开密钥加密
在非对称加密体系中,密钥被分解为一对(即公开密钥和私有密钥)。这对密钥中任何一把都可以作为公开密钥(加密密钥)通过非保密方式向他人公开,而另一把作为私有密钥(解密密钥)加以保存。公开密钥用于加密,私有密钥用于解密,私有密钥只能有生成密钥的交换方掌握,公开密钥可广泛公布,但它只对应于生成密钥的交换方。非对称加密方式可以使通信双方无须事先交换密钥就可以建立安全通信,广泛应用于身份认证、数字签名等信息交换领域。非对称加密体系一般是建立在某些已知的数学难题之上,是计算机复杂性理论发展的必然结果。最具有代表性是RSA公钥密码体制。
3.RSA算法
RSA算法是Rivest、Shamir和Adleman于1977年提出的第一个完善的公钥密码体制,其安全性是基于分解大整数的困难性。在RSA体制中使用了这样一个基本事实:到目前为止,无法找到一个有效的算法来分解两大素数之积。RSA算法的描述如下:
公开密钥:n=pq(p、q分别为两个互异的大素数,p、q必须保密)

Ⅳ 自己在某地发布的资料 别人抄下来 在别的地方发布 违法吗

构成侵权,可以要求相关网站断开链接,否则协商不成可以将侵权人和网站作为共同被告

网络隐私权,是指公民在网络中(包括局域网、广域网、互联网)享有的个人信息、网上个人活动依法受到保护,不被他人非法侵犯、知悉、搜集、复制、公开、传播和利用的一种人格权。它是隐私权在网络空间中的表现形式,伴随着英特网的普及而产生,也随着网络技术的发展而呈现出涉及广、传播快、保护难的特点。具体而言,网络隐私权主要包括以下几个方面:一是网络用户在申请网上开户、个人主页、免费邮箱以及其他服务时,网络服务商要求用户登记的姓名、性别、年龄、婚姻状况、家庭住址、身份证号码、工作单位、住宅电话及手机号码等身份识别信息。二是个人的财产状况和信用资料,包括个人收入、信用卡、电子消费卡、上网卡、上网帐号及密码、网上交易帐号及密码、网上炒股帐号及密码、QQ号及密码、网络游戏帐号及密码等。三是个人的电子邮箱地址。四是个人上网浏览的IP地址、上网活动踪迹及活动内容等信息。

Ⅳ 网络空间安全具体是学什么最先从什么开始学

提到网络安全,一般人们将它看作是信息安全的一个分支,信息安全是更加广义的一个概念:防止对知识、事实、数据或能力非授权使用、误用、篡改或拒绝使用所采取的措施,说白了,信息安全就是保护敏感重要的信息不被非法访问获取,以及用来进一步做非法的事情。网络安全具体表现在多台计算机实现自主互联的环境下的信息安全问题,主要表现为:自主计算机安全、互联的安全(实现互联的设备、通信链路、网络软件、网络协议)以及各种网络应用和服务的安全。这里提到了一些典型的网络安全问题,可以来梳理一下:
1. IP安全:主要的攻击方式有被动攻击的网络窃听,主动攻击的IP欺骗(报文伪造、篡改)和路由攻击(中间人攻击);
2. DNS安全:这个大家应该比较熟悉,修改DNS的映射表,误导用户的访问流量;
3. DoS攻击:单一攻击源发起的拒绝服务攻击,主要是占用网络资源,强迫目标崩溃,现在更为流行的其实是DDoS,多个攻击源发起的分布式拒绝攻击;
网络安全的三个基本属性:机密性、完整性与可用性,其实还可以加上可审性。机密性又叫保密性,主要是指控制信息的流出,即保证信息与信息不被非授权者所获取与使用,主要防范措施是密码技术;完整性是指信息的可靠性,即信息不会被伪造、篡改,主要防范措施是校验与认证技术;可用性是保证系统可以正常使用。网络安全的措施一般按照网络的TCP/IP或者OSI的模型归类到各个层次上进行,例如数据链路层负责建立点到点通信,网络层负责路由寻径,传输层负责建立端到端的通信信道。
最早的安全问题发生在计算机平台,后来逐渐进入网络层次,计算机安全中主要由主体控制客体的访问权限,网络中则包含更加复杂的安全问题。现在网络应用发展如火如荼,电子政务、电子商务、电子理财迅速发展,这些都为应对安全威胁提出了挑战。
密码学在网络安全领域中的应用主要是机密性和身份认证,对称密码体制如DES,非对称密码体制如RSA,一般的做法是RSA保护DES密钥,DES负责信息的实际传输,原因在于DES实现快捷,RSA相比占用更多的计算资源。
二、风险分析
风险分析主要的任务时对需要保护的资产及其受到的潜在威胁进行鉴别。首要的一步是对资产进行确定,包括物理资源(工作站、服务器及各种设备等)、知识资源(数据库、财务信息等)以及时间和信誉资源。第二步需要分析潜在的攻击源,如内部的员工,外部的敌对者等;第三步要针对以上分析指定折中的安全策略,因为安全措施与系统性能往往成反比。风险被定义为漏洞+威胁,漏洞指攻击者能够实现攻击的途径。威胁则指实现攻击的具体行为,对于风险来说,二者缺一不可。
安全策略可以分为许多类型,比如:
1. 信息策略:如识别敏感信息、信息分类、敏感信息标记/存储/传输/销毁;
2. 系统和网络安全策略:用户身份识别与身份鉴别、访问控制、审计、网络连接、加密等;
3. 计算机用户策略:计算机所有权、信息所有权、计算机许可使用权等;
4. Internet使用策略:邮件策略(内部邮件与外部邮件的区分及过滤);
5. 用户管理程序:新员工程序、工作调动的员工程序、离职员工程序;
6. 系统管理程序:软件更新、漏洞扫描、策略检查、登录检查、常规监控等;
7. 事故相应程序:响应、授权、文档、程序的测试;
8. 配置管理程序:系统初始状态、变更的控制程序三、网络信息安全服务
网络信息安全服务根据保护的对象可以分为:机密**、完整**、可用**和可审**。机密**主要利用密码学技术加密文件实现,完整**主要利用验证码/Hash技术,可用**主要灾备来保障。网络环境下的身份鉴别,当然还是依托于密码学,一种可以使用口令技术,另一种则是依托物理形式的鉴别,如身份卡等。其实更为安全的是实施多因子的身份认证,不只使用一种方式。数字签名可以用来保证信息的完整性,比如RSA就可以用于数字签名:
若A向B发送信息m,则先用自己的保密密钥(私钥)对m加密,然后用B的公钥第二次加密,发送个B后,B先用自己的私钥解密一次,再用A的公钥解密即可。
Kerberos使用对称密码算法来实现通过可信第三方密钥分发中心的认证服务,已经成为工业界的事实标准。四、安全体系结构
设计一个安全体系,需要注意以下几个关键的问题:主体与客体、可信计算基(TCB)、安全边界、基准监控器与安全内核、安全域、最小特权、资源隔离与分层、数据隐蔽与抽象等。其实这些内容更是操作系统安全设计的原则。网络体系主要依托于OSI模型建立,提供了5类安全服务:
1. 鉴别:对等实体的身份鉴别、数据原发鉴别;
2. 访问控制;
3. 数据机密性;
4. 数据完整性;
5. 抗否认,这里要注意发送方和接收方均不能否认;
OSI安全体系结构的安全机制:
1. 特定的安全机制:加密机制、数字签名机制、访问控制机制、数据完整性机制、鉴别交换机制、通信业务填充机制、路由选择控制机制与公证机制;
2. 普遍性安全机制:可信功能度、安全标记、事件检测、安全审计与跟踪、安全恢复;

Ⅵ 一般网页中的用户名和登录密码在传输过程中是通过什么加密的

对于打开了某个论坛,输入了用户名和密码,其实如果网站设计者重视安全问题的话一般会对输入的用户名和密码进行加密,加密后的用户名和密码用一连串的字符表示,所以即使别人窃取了你的用户名和密码和密码,他们如果不知道怎么解密,他们只能得到一连串的字符,所以这也是一道防线。
接下来就是网络安全方面的问题:
数据加密(Data Encryption)技术

所谓加密(Encryption)是指将一个信息(或称明文--plaintext) 经过加密钥匙(Encrypt ionkey)及加密函数转换,变成无意义的密文( ciphertext),而接收方则将此密文经过解密函数、解密钥匙(Decryti on key)还原成明文。加密技术是网络安全技术的基石。

数据加密技术要求只有在指定的用户或网络下,才能解除密码而获得原来的数据,这就需要给数据发送方和接受方以一些特殊的信息用于加解密,这就是所谓的密钥。其密钥的值是从大量的随机数中选取的。按加密算法分为专用密钥和公开密钥两种。

专用密钥,又称为对称密钥或单密钥,加密时使用同一个密钥,即同一个算法。如DES和MIT的Kerberos算法。单密钥是最简单方式,通信双方必须交换彼此密钥,当需给对方发信息时,用自己的加密密钥进行加密,而在接收方收到数据后,用对方所给的密钥进行解密。这种方式在与多方通信时因为需要保存很多密钥而变得很复杂,而且密钥本身的安全就是一个问题。

DES是一种数据分组的加密算法,它将数据分成长度为6 4位的数据块,其中8位用作奇偶校验,剩余的56位作为密码的长度。第一步将原文进行置换,得到6 4位的杂乱无章的数据组;第二步将其分成均等两段 ;第三步用加密函数进行变换,并在给定的密钥参数条件下,进行多次迭代而得到加密密文。

公开密钥,又称非对称密钥,加密时使用不同的密钥,即不同的算法,有一把公用的加密密钥,有多把解密密钥,如RSA算法。

在计算机网络中,加密可分为"通信加密"(即传输过程中的数据加密)和"文件加密"(即存储数据加密)。通信加密又有节点加密、链路加密和端--端加密3种。

①节点加密,从时间坐标来讲,它在信息被传入实际通信连接点 (Physical communication link)之前进行;从OSI 7层参考模型的坐标 (逻辑空间)来讲,它在第一层、第二层之间进行; 从实施对象来讲,是对相邻两节点之间传输的数据进行加密,不过它仅对报文加密,而不对报头加密,以便于传输路由的选择。

②链路加密(Link Encryption),它在数据链路层进行,是对相邻节点之间的链路上所传输的数据进行加密,不仅对数据加密还对报头加密。

③端--端加密(End-to-End Encryption),它在第六层或第七层进行 ,是为用户之间传送数据而提供的连续的保护。在始发节点上实施加密,在中介节点以密文形式传输,最后到达目的节点时才进行解密,这对防止拷贝网络软件和软件泄漏也很有效。

在OSI参考模型中,除会话层不能实施加密外,其他各层都可以实施一定的加密措施。但通常是在最高层上加密,即应用层上的每个应用都被密码编码进行修改,因此能对每个应用起到保密的作用,从而保护在应用层上的投资。假如在下面某一层上实施加密,如TCP层上,就只能对这层起到保护作用。

值得注意的是,能否切实有效地发挥加密机制的作用,关键的问题在于密钥的管理,包括密钥的生存、分发、安装、保管、使用以及作废全过程。

(1)数字签名

公开密钥的加密机制虽提供了良好的保密性,但难以鉴别发送者, 即任何得到公开密钥的人都可以生成和发送报文。数字签名机制提供了一种鉴别方法,以解决伪造、抵赖、冒充和篡改等问题。

数字签名一般采用不对称加密技术(如RSA),通过对整个明文进行某种变换,得到一个值,作为核实签名。接收者使用发送者的公开密钥对签名进行解密运算,如其结果为明文,则签名有效,证明对方的身份是真实的。当然,签名也可以采用多种方式,例如,将签名附在明文之后。数字签名普遍用于银行、电子贸易等。

数字签名不同于手写签字:数字签名随文本的变化而变化,手写签字反映某个人个性特征, 是不变的;数字签名与文本信息是不可分割的,而手写签字是附加在文本之后的,与文本信息是分离的。

(2)Kerberos系统

Kerberos系统是美国麻省理工学院为Athena工程而设计的,为分布式计算环境提供一种对用户双方进行验证的认证方法。

它的安全机制在于首先对发出请求的用户进行身份验证,确认其是否是合法的用户;如是合法的用户,再审核该用户是否有权对他所请求的服务或主机进行访问。从加密算法上来讲,其验证是建立在对称加密的基础上的。

Kerberos系统在分布式计算环境中得到了广泛的应用(如在Notes 中),这是因为它具有如下的特点:

①安全性高,Kerberos系统对用户的口令进行加密后作为用户的私钥,从而避免了用户的口令在网络上显示传输,使得窃听者难以在网络上取得相应的口令信息;

②透明性高,用户在使用过程中,仅在登录时要求输入口令,与平常的操作完全一样,Ker beros的存在对于合法用户来说是透明的;

③可扩展性好,Kerberos为每一个服务提供认证,确保应用的安全。

Kerberos系统和看电影的过程有些相似,不同的是只有事先在Ker beros系统中登录的客户才可以申请服务,并且Kerberos要求申请到入场券的客户就是到TGS(入场券分配服务器)去要求得到最终服务的客户。
Kerberos的认证协议过程如图二所示。

Kerberos有其优点,同时也有其缺点,主要如下:

①、Kerberos服务器与用户共享的秘密是用户的口令字,服务器在回应时不验证用户的真实性,假设只有合法用户拥有口令字。如攻击者记录申请回答报文,就易形成代码本攻击。

②、Kerberos服务器与用户共享的秘密是用户的口令字,服务器在回应时不验证用户的真实性,假设只有合法用户拥有口令字。如攻击者记录申请回答报文,就易形成代码本攻击。

③、AS和TGS是集中式管理,容易形成瓶颈,系统的性能和安全也严重依赖于AS和TGS的性能和安全。在AS和TGS前应该有访问控制,以增强AS和TGS的安全。

④、随用户数增加,密钥管理较复杂。Kerberos拥有每个用户的口令字的散列值,AS与TGS 负责户间通信密钥的分配。当N个用户想同时通信时,仍需要N*(N-1)/2个密钥

( 3 )、PGP算法

PGP(Pretty Good Privacy)是作者hil Zimmermann提出的方案, 从80年代中期开始编写的。公开密钥和分组密钥在同一个系统中,公开密钥采用RSA加密算法,实施对密钥的管理;分组密钥采用了IDEA算法,实施对信息的加密。

PGP应用程序的第一个特点是它的速度快,效率高;另一个显着特点就是它的可移植性出色,它可以在多种操作平台上运行。PGP主要具有加密文件、发送和接收加密的E-mail、数字签名等。

(4)、PEM算法

保密增强邮件(Private Enhanced Mail,PEM),是美国RSA实验室基于RSA和DES算法而开发的产品,其目的是为了增强个人的隐私功能, 目前在Internet网上得到了广泛的应用,专为E-mail用户提供如下两类安全服务:

对所有报文都提供诸如:验证、完整性、防抵 赖等安全服务功能; 提供可选的安全服务功能,如保密性等。

PEM对报文的处理经过如下过程:

第一步,作规范化处理:为了使PEM与MTA(报文传输代理)兼容,按S MTP协议对报文进行规范化处理;

第二步,MIC(Message Integrity Code)计算;

第三步,把处理过的报文转化为适于SMTP系统传输的格式。

身份验证技术

身份识别(Identification)是指定用户向系统出示自己的身份证明过程。身份认证(Authertication)是系统查核用户的身份证明的过程。人们常把这两项工作统称为身份验证(或身份鉴别),是判明和确认通信双方真实身份的两个重要环节。

Web网上采用的安全技术

在Web网上实现网络安全一般有SHTTP/HTTP和SSL两种方式。

(一)、SHTTP/HTTP

SHTTP/HTTP可以采用多种方式对信息进行封装。封装的内容包括加密、签名和基于MAC 的认证。并且一个消息可以被反复封装加密。此外,SHTTP还定义了包头信息来进行密钥传输、认证传输和相似的管理功能。SHTTP可以支持多种加密协议,还为程序员提供了灵活的编程环境。

SHTTP并不依赖于特定的密钥证明系统,它目前支持RSA、带内和带外以及Kerberos密钥交换。

(二)、SSL(安全套层) 安全套接层是一种利用公开密钥技术的工业标准。SSL广泛应用于Intranet和Internet 网,其产品包括由Netscape、Microsoft、IBM 、Open Market等公司提供的支持SSL的客户机和服务器,以及诸如Apa che-SSL等产品。

SSL提供三种基本的安全服务,它们都使用公开密钥技术。

①信息私密,通过使用公开密钥和对称密钥技术以达到信息私密。SSL客户机和SSL服务器之间的所有业务使用在SSL握手过程中建立的密钥和算法进行加密。这样就防止了某些用户通过使用IP packet sniffer工具非法窃听。尽管packet sniffer仍能捕捉到通信的内容, 但却无法破译。 ②信息完整性,确保SSL业务全部达到目的。如果Internet成为可行的电子商业平台,应确保服务器和客户机之间的信息内容免受破坏。SSL利用机密共享和hash函数组提供信息完整性服务。③相互认证,是客户机和服务器相互识别的过程。它们的识别号用公开密钥编码,并在SSL握手时交换各自的识别号。为了验证证明持有者是其合法用户(而不是冒名用户),SSL要求证明持有者在握手时对交换数据进行数字式标识。证明持有者对包括证明的所有信息数据进行标识以说明自己是证明的合法拥有者。这样就防止了其他用户冒名使用证明。证明本身并不提供认证,只有证明和密钥一起才起作用。 ④SSL的安全性服务对终端用户来讲做到尽可能透明。一般情况下,用户只需单击桌面上的一个按钮或联接就可以与SSL的主机相连。与标准的HTTP连接申请不同,一台支持SSL的典型网络主机接受SSL连接的默认端口是443而不是80。

当客户机连接该端口时,首先初始化握手协议,以建立一个SSL对话时段。握手结束后,将对通信加密,并检查信息完整性,直到这个对话时段结束为止。每个SSL对话时段只发生一次握手。相比之下,HTTP 的每一次连接都要执行一次握手,导致通信效率降低。一次SSL握手将发生以下事件:

1.客户机和服务器交换X.509证明以便双方相互确认。这个过程中可以交换全部的证明链,也可以选择只交换一些底层的证明。证明的验证包括:检验有效日期和验证证明的签名权限。

2.客户机随机地产生一组密钥,它们用于信息加密和MAC计算。这些密钥要先通过服务器的公开密钥加密再送往服务器。总共有四个密钥分别用于服务器到客户机以及客户机到服务器的通信。

3.信息加密算法(用于加密)和hash函数(用于确保信息完整性)是综合在一起使用的。Netscape的SSL实现方案是:客户机提供自己支持的所有算法清单,服务器选择它认为最有效的密码。服务器管理者可以使用或禁止某些特定的密码。

Ⅶ 密码学在信息隐藏技术中有哪些应用

密码学在信息隐藏技术中应用体现在:

1 版权保护
随着通信技术的迅猛发展,信息安全问题也变得十分突出,数字作品(如电脑美术、扫描图像、数字音乐、视频、三维动画)的版权保护成了当前的热点。由于数字作品的拷贝、修改非常容易,而且可以做到与原作完全相同,所以原创者不得不采用一些严重损害作品质量的办法来增加版权标志,但这种明显可见的标志很容易被篡改。数字水印的出现,就是利用数据隐藏原理使版权标志不可见或不可听,既不损害原作品,又达到了版权保护的目的。换句话说,数字水印技术是将与多媒体内容相关或不相关的一些标示信息直接嵌入到多媒体内容当中,但不影响原内容的使用价值,也不容易被人觉察或注意到。通过这些隐藏在多媒体内容中的信息,人们可以确认内容的创建者、购买者和查看信息是否真实完整。数字音频水印技术是信息隐藏技术的重要研究方向。
把要保密的信息,通过特殊的算法嵌入音频中,而不影响正常的收听效果(即具有听觉上的透明性),让人无法察觉和破坏此类信息。当要使用的时候再通过同样的方法在计算机上提取出来。通过这些隐藏在音频内容中的信息,可以判别对象是否受到保护,监视被保护数据的传播,鉴别真伪,解决版权纠纷并为法庭提供认证证据。目前的数字音频水印技术有追踪非法复制的功能,却不能做到防止盗版。从技术上来讲,当买一个音响作品时,在开票的过程中就要输入你的基本信息,甚至收款方可以拍摄购买人照片,把这些信息嵌入歌曲中。当然,这涉及到隐私问题,因此这些信息只有在发生盗版、保护版权时使用,其他情况不能使用。这和电信公司需要客户资料是一个道理。如果市场出现了盗版,司法机关买一个,提取出里面的水印,就知道谁是散布源头了。如果这个在法律上能实现的话,人们在购买音响作品时就要多一道手续,就像去医院要挂号,去电信开电话要填单子一样。而要人们认同这种手续、共同打击盗版或许还需要一段时日。

2 数字签名
数字签名是在公钥加密系统的基础上建立起来的,数字签名的产生涉及的运算方式是为人们所知的散列函数功能,也称“哈希函数功能”(Hash Function)。哈希函数功能其实是一种数学计算过程。这一计算过程建立在一种以“哈希函数值”或“哈希函数结果”形式创建信息的数字表达式或压缩形式(通常被称作“信息摘要”或“信息标识”)的计算方法之上。在安全的哈希函数功能(有时被称作单向哈希函数功能)情形下,要想从已知的哈希函数结果中推导出原信息来,实际上是不可能的。因而,哈希函数功能可以使软件在更少且可预见的数据量上运作生成数字签名,却保持与原信息内容之间的高度相关,且有效保证信息在经数字签署后并未做任何修改。
所谓数字签名,就是只有信息的发送者才能产生的,别人无法伪造的一段数字串,它同时也是对发送者发送的信息的真实性的一个证明。签署一个文件或其他任何信息时,签名者首先须准确界定要签署内容的范围。然后,签名者软件中的哈希函数功能将计算出被签署信息惟一的哈希函数结果值(为实用目的)。最后使用签名者的私人密码将哈希函数结果值转化为数字签名。得到的数字签名对于被签署的信息和用以创建数字签名的私人密码而言都是独一无二的。
一个数字签名(对一个信息的哈希函数结果的数字签署)被附在信息之后,并随同信息一起被储存和传送。然而,只要能够保持与相应信息之间的可靠联系,它也可以作为单独的数据单位被存储和传送。因为数字签名对它所签署的信息而言是独一无二的。

3 数字指纹
数字指纹技术是近几年发展起来的新型数字产品版权保护技术。数字指纹是指利用数字作品中普遍存在的冗余数据与随机性,向被分发的每一份数据拷贝中引入一定的误差,使得该拷贝是唯一的,从而可以在发现非法再分发拷贝时,根据该拷贝中的误差跟踪到不诚实原始购买者的一种数字作品版权保护技术。
一般情况下,引入的误差是指与用户和某次购买过程有关的信息。当发行商发现被非法分发的授权信息时,可以根据该信息对非法分发的用户进行跟踪。数字指纹系统可以分为算法和协议两部分,其中,算法包括指纹的编码、解码、嵌入、提取和数据的分发策略等,而协议部分则规定了各实体之间如何进行交互以实现具有各种特点的数据分发和跟踪体制。

4 广播监视
韩国广播公司技术研究所(KBS TRI)开发的水印系统在进行MPEG-2压缩之前将版权信息嵌入未被压缩的视频流中,并检测被接收的没有原视频的视频中的水印。使用一个安全键产生水印和水印嵌入位置。每个像素的嵌入的水印的强度是由看不见的人类的视觉系统决定的。KBS公司的水印技术符合不可视性、鲁棒性和安全性的要求。广播内容中的水印识别原广播机构,并能检测非法拷贝和未经授权的再利用内容。
对标清视频来说,嵌入视频中作为水印的信息是64比特版权标识符;对高清视频来说是128比特版权标识符。版权标识符的水印比特是由用于水印系统安全性的安全键产生的。在为了数字电视传输而进行MPEG-2压缩之前,将水印嵌入视频序列的空间域中。因此,水印必须经得住MPEG-2压缩。水印的不可觉察性是由水印强度决定的。对于不可觉察性来说,希望水印强度尽可能低,而对鲁棒性来说,则希望水印强度尽可能高。因此,水印系统的设计总是牵涉到不可觉察性和鲁棒性之间的折衷方案。故根据人类的视觉系统,水印强度设计得在每个像素上是不同的。水印在传输后的MPEG-2流中进行检测。检测算法需要30帧以上的视频。非法使用者可能对含有水印的数字内容进行各式各样的攻击。因此,KBS公司的水印系统设计得满足鲁棒性的要求。
随着IT和数字技术的进步,数字电视内容版权保护在数字电视的广播环境中日益重要。水印技术被认为是对地面数字电视最可行的解决方案。

5 安全通信
数字水印技术还可以应用于信息的安全通信。秘密通信在情报、军事等领域有着重要的用途系统必须保证通信双方可以正常通信而且通信内容不会被敌方窃取。传统上,秘密通信主要通过密码技术来实现。所以为了国家安全各个国家都不遗余力地发展各自的密码技术以确保秘密通信的安全。随着网络技术的发展普通用户也希望自己在网上的通信不会被第三方窃听,于是密码技术从军方的黑匣子中走了出来被越来越多的应用于网络中。但即使精心设计的密码算法仍然有可能被敌方破解 ,更严重的是我方很难觉察到密码被破解,继续使用该密码发送情报将是极其危险的。另一方面如果敌方探测到信道上有密文在传送,即使短时间内无法破解也会故意破坏我方的通信信道阻止我方通信。如果是我方情报人员在国外收集资料,用密码传送文件很容易暴露身份。所以秘密通信除了必须满足保密性这个基本要求之外还应该极为隐蔽不易被察觉。
随着互联网的发展,身处世界各地都可以方便地通过互联网发送电子邮件和各种文件 ,互联网又极为开放和不安全。如果我方能够将秘密信息隐蔽在一些普通文件比如图片,MP3,WAV中。可以将信息隐藏的载体看作通信信道,将待隐藏信息看作需要传递的信号,而信息的嵌入和提取分别看作通信中的调制和解调过程。
由于很难觉察到数字水印信息在多媒体数据中的存在,某些重要信息在传输的过程中就可以隐藏在普通的多媒体数据中,从而避开第三方的窃听和监控。通过普通的互联网传输那么敌方将很难发现秘密信息的存在,因而也不会主动破坏通信信道,从而保证了通信安全。

Ⅷ 您的密码还用于保护对icloud储存数据的访问。若要完成密码更改,请在接入互联网时在设置中输入新密

你改了锁屏密码?好像是改了之后icould认不出来了,你换回以前锁屏,再点完成密码更改。曾经因为升级到iOS 10后降回iOS 9出现这个问题,很烦人,除非你输对了,不然隔几分钟就跳出来给你看,我是改回原锁屏密码,iCould认出后,才消失这个提示。不怕麻烦的话,挨个试你曾经的锁屏,重启手机,看iCould还是提示吗。

Ⅸ 网络身份证的试点情况

2014年9月份厦门企业、市民可以使用一张小小的“U盘”访问厦门的公共服务应用,这张“U盘”就是经过三方数字认证的密钥,也就是在网络上具有法律意义的身份证。
截止到2014年10月30日,已经发放700万张网络身份证eID,计划今年发行2000万张。 2011年,在美国总统奥巴马的推动下,作为国家网络安全战略重要组成部分,美国商务部将启动网络身份证战略。2011年1月7日,美国商务部部长骆家辉在斯坦福大学经济政策研究院表示,美政府将通过推出网络身份证,构建一个网络生态系统。
奥巴马提出的网络身份证国家战略,也称“网络空间可信身份标识国家战略”(NSTIC)。自互联网问世以来,由于网络空间存在的虚拟性和自由性,它在提供极度自由性的同时,也使得网络诚信存在巨大漏洞。在网络空间,全球一直没有可靠、公认和通用的身份识别技术。由于没有真实可靠的身份认证,互联网本身应有的巨大社会和经济价值难以全部得到发挥,黑客入侵和网络欺诈屡见不鲜。 据悉,德国也在国内建立试点。
据德国内政部介绍,数字化身份证也像传统身份证一样印有持有者的照片、姓名、出生年月等个人信息,不同的是前者内嵌一个无线射频识别芯片,存有持有者的个人身份信息及一张电子照片。持有者还可自愿在芯片中存入两个指纹以及自己的电子签名。
据介绍,这种数字化身份证可间隔一定距离无线传送个人信息,以帮助持有者更便捷地通过海关等。持有者利用电脑和读卡器还可享受需要身份认证的各种网上服务,而服务提供商则需得到政府认证后才可提供有关服务,且只有在消费者输入密码后才能调阅所需信息。在配备相应设备后,消费者可不用在网上输入信用卡卡号、密码等敏感信息就能确认网上交易。身份证芯片中如存有电子签名还可用来在线签署购买合同或递交各种申请。 在欧盟的“欧洲数字议程”中,明确“加强信任、安全和保护充值卡人资料,建立强大的身份验证”。目前欧盟的10个国家开始了网络身份认证。

阅读全文

与密码再网络空间中身份识别相关的资料

热点内容
自家wifi怎么成了隐藏的网络 浏览:790
走到哪都有网络的wifi助手 浏览:15
有哪些人因为网络说错话坐牢的 浏览:43
移动网络帐号或密码被外人知道 浏览:370
新网络营销课堂讨论答案 浏览:253
如何在智慧生活中找到网络密码 浏览:254
中国信通院网络安全法的适用 浏览:717
库乐队为什么连不了网络 浏览:172
共享单车供应链网络设计 浏览:855
怎样加上手机网络信号 浏览:580
惠普怎样连接无线网络 浏览:181
网络新闻报道中歧视用语有哪些 浏览:896
车检在线申请网络拥堵是什么情况 浏览:802
如何提高网络使用率 浏览:841
基于5G无线网络协同设计技术 浏览:800
联通大王卡只有信号没有网络 浏览:451
社团市场营销好还是网络营销好 浏览:588
万能钥匙搜不到共享网络 浏览:475
网络红人一年能挣多少钱 浏览:199
苹果有4g没网络怎么办 浏览:3

友情链接