⑴ 深度学习能应用在哪些领域
深度学习的快速发展,不仅使机器学习得到许多实际的应用,还拓展了整个AI(人工智能的)的范围。 它将任务进行拆解,使得各种类型的机器辅助变成可能,具体分为以下几类应用:
1、无人驾驶汽车:深度学习在无人驾驶领域主要用于图像处理,可以用于感知周围环境、 识别可行驶区域检测、以及识别行驶路径识别。
2、图片识别及分类:识别出图片中的对象,并建立关键词,对图片进行分类。
3、机器翻译:基于深度学习理论,借助海量计算机模拟的神经元,在海量的互联网资源的依托下,来模仿人脑理解语言,形成更加符合语法规范、容易理解的译文。
4、目标识别:即不仅可以识别出是什么物体,还可以预测物体的位置,位置一般用边框标记。
5、情感识别:通过深度学习,帮助计算机识别新闻、微博、博客、论坛等文本内容中所包含情感态度,从而及时发现产品的正负口碑。
6、艺术创作:通过深度学习,让计算机学会根据不同的作曲家风格进行音乐编曲或者基于各流派画家进行绘画创作。
⑵ 日本防卫省研发人工智能用深度学习防御网络攻击
据日本《产经新闻》1月7日报道称,日本防卫省于6日宣布:为强化对网络攻击的应对能力,已经确定要将人工智能(AI)引入日本自卫队信息通信网络的防御系统中。预计将于明年开始为期两年的调查研究,于2020年着手进行软件开发,2022年实际运用,并且也开始考虑在日本政府全体的网络防御系统中应用AI。
目前,军方人员介入网络安全战场早已成为常态,美国着名的网络安全公司Cybereason其创办人正是来自以色列国防部下属精英网络部队8200部队。值得注意的是,2015年该公司接受了来自日本软银的为数1亿美元的融资,不知《产经新闻》提到的“以色列技术”是否来自该公司呢?
⑶ 深度学习的应用领域有哪些
下面来列举几个广泛应用深度学习的领域。
一、语音识别
深度学习的发展使语音识别有了很大幅度的效果提升,类似于在计算机视觉中处理图像数据一样,深度学习中将声音转化为特征向量,然后对这些数字信息进行处理输入到网络中进行训练,得到一个可以进行语音识别的模型。
二、自然语言处理
深度学习由于其非线性的复杂结构,将低维稠密且连续的向量表示为不同粒度的语言单元,例如词、短语、句子和文章,让计算机可以理解通过网络模型参与编织的语言,进而使得人类和计算机进行沟通。此外深度学习领域中研究人员使用循环、卷积、递归等神经网络模型对不同的语言单元向量进行组合,获得更大语言单元的表示。
三、文字识别
众所周知,深度学习可以用来识别照片中的文字。一旦识别了,文字就会被转成文本,并且被翻译,然后图片就会根据翻译的文本重新创建。这就是我们通常所说的即时视觉翻译。
四、自动机器翻译
我们都知道,谷歌支持100种语言的即时翻译,速度之快宛如魔法。谷歌翻译的背后,就是机器学习。在过去的几年时间里,谷歌已经完全将深度学习嵌入进了谷歌翻译中。事实上,这些对语言翻译知之甚少的深度学习研究人员正提出相对简单的机器学习解决方案,来打败世界上最好的专家语言翻译系统。文本翻译可以在没有序列预处理的情况下进行,它允许算法学习文字与指向语言之间的关系。
五、自动驾驶汽车
谷歌利用深度学习算法使自动驾驶汽车领域达到了一个全新的水平。现在谷歌已经不再使用老的手动编码算法,而是编写程序系统,使其可以通过不同传感器提供的数据来自行学习。对于大多数感知型任务和多数低端控制型任务,深度学习现在是最好的方法。
如果你对深度学习感兴趣,想成为人工智能领域的高级人才。就抓紧时间学起来。
中公教育与中科院自动化研究所专家联合推出深度学习课程广受好评!真实企业级项目实操,项目循序渐进,以实操贯穿理论,避免纸上谈兵,涵盖行业75%技术要点,落地领域广泛。
⑷ 深度学习与网络安全有没有很好的结合点
网络安全在近年来有所加强,例如对用户信息的双重保护、增加权限设置等,有关网络安全的法律也在进一步制定实施。但是人们可能忽略了,大数据也许才是这一问题的终极解决方案。
事实上,大数据对于维护网络安全的作用早已露出端倪。今天的反垃圾机制(antispam)已经十分完善。尽管50%的原始都是垃圾,但是真正到达用户邮箱的寥寥无几。而在5-10年前,邮箱里大部分都是垃圾信息。
⑸ 深度学习可以应用到什么领域
其实咱们的实际生活中已经有很多应用深度学习技术的案例了。
比如电商行业,在浏览淘宝时,页面中有很多都是符合你的爱好并且最近有意向购买的商品,这种个性化推荐中就涉及到深度学习技术,还有就是在购物界面能和你进行对话,解决疑问的淘宝智能机器人,也涉及深度学习技术。
比如交通领域,通过深度学习技术能监测到车辆停车、逆行等行为,甚至精确识别车辆的车牌号、颜色、车型、车辆里的人物等来辅助交通执法,甚至在发生交通事故和交通拥堵时进行报警等。
比如金融行业,银行通过深度学习技术能对数以百万的消费者数据(年龄,职业,婚姻状况等)、金融借款和保险情况(是否有违约记录,还款时间,车辆事故记录等)进行分析进而判断出是否能进行贷款服务。
比如家居行业,智能家居的应用也用到了深度学习技术,比如智能冰箱通过图像识别等技术记录食材种类和用户日常饮食数据,进而分析用户的饮食习惯,并根据多维度给出最全面的健康膳食建议。
比如制造行业,机器视觉已经长期应用在工业自动化系统中,如仪表板智能集成测试、金属板表面自动控伤、汽车车身检测、纸币印刷质量检测、金相分析、流水线生产检测等等,机器视觉自动化设备可以代替人工不知疲倦的进行重复性的工作,且在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,机器视觉可替代人工视觉。
还有教育行业、医疗行业等,深度学习技术已经渗透到各个行业和领域。
⑹ 深度学习是什么求科普。
深度学习是一类机器学习方法,可实例化为深度学习器,所对应的设计、训练和使用方法集合称为深度学习。
深度学习器由若干处理层组成,每层包含至少一个处理单元,每层输出为数据的一种表征,且表征层次随处理层次增加而提高。
深度的定义是相对的。针对某具体场景和学习任务,若学习器的处理单元总数和层数分别为M和N,学习器所保留的信息量或任务性能超过任意层数小于N且单元总数为M的学习器,则该学习器为严格的或狭义的深度学习器,其对应的设计、训练和使用方法集合为严格的或狭义的深度学习。
广义的深度学习器及对应的深度学习方法可依据经验和局部最优化设计,不进行上述严格的遍历比较。
我们最近和中科院专家联合推出了AI深度学习课程,感兴趣的可以了解一下。