导航:首页 > 网络安全 > 神经网络损失如何写出来

神经网络损失如何写出来

发布时间:2022-07-25 12:07:50

1. 这个神经网络预测的程序怎么写啊哪位高人给回答一下

P=[]; %%网络输入
T=[]; %%网络输出
net=newff(minmax(P),[5,1],{‘tansig’,‘logsig’},‘trainlm’); %%神经网络
net.trainParam.epochs=2000; %%训练步数
net.trainParam.goal=0.001; %%目标误差
net.trainParam.show=25; %%显示步长
net=train(net,P,T);
还有 你可以用GUI做的...这样就不用编程了

2. matlab bp神经网络怎么写

从原理上来说,神经网络是可以预测未来的点的。
实际上,经过训练之后,神经网络就拟合了输入和输出数据之间的函数关系。只要训练的足够好,那么这个拟合的关系就会足够准确,从而能够预测在其他的输入情况下,会有什么样的输出。
如果要预测t=[6 7]两点的R值,先以t=[1 2 3 4 5]作为输入,R=[12 13 14 14 15]作为输出,训练网络。训练完成之后,用t=[2 3 4 5 6]作为输入,这样会得到一个输出。不出意外的话,输出的数组应该是[13 14 14 15 X],这里的X就是预测t=6时的R值。然后以t=[3 4 5 6 7]作为输入,同理得到t=7时候的R值。
根据我的神经网络预测,t=6时,R=15,t=7时,R=15。我不知道这个结果是否正确,因为神经网络通常需要大量的数据来训练,而这里给的数据似乎太少,可能不足以拟合出正确的函数。

3. 在神经网络使用elu激活函数时怎么使用交叉熵作为损失函数

P、T矩阵均为一列为一个样本,因此P、T的列数必须相等,否则报错。你参考下别人的程序,我建议使用newff函数,不要弄得这么复杂。还有P、T的生成不需要那么复杂,只需要:P(i,:)=YY(i:i+2);附上newff函数的格式为:net=newff(PR,[S1S2SN],{TF1TF2TFN},BTF,BLF,PF),函数newff建立一个可训练的前馈网络。输入参数说明:PR:Rx2的矩阵以定义R个输入向量的最小值和最大值;Si:第i层神经元个数;TFi:第i层的传递函数,默认函数为tansig函数;BTF:训练函数,默认函数为trainlm函数;BLF:权值/阀值学习函数,默认函数为learngdm函数;PF:性能函数,默认函数为mse函数。

4. 卷及神经网络中loss怎么计算

这个问题比较泛,因为网络的损失函数是由自己设计的,如果不特殊说明一般是有均方误差和交叉熵两种损失函数的。其中均方误差当然就是指的输出与标签的差的平方和的平均,计算方式如下:

5. 神经网络的具体算法

神经网络和粗集理论是智能信息处理的两种重要的方法,其任务是从大量观察和实验数据中获取知识、表达知识和推理决策规则。粗集理论是基于不可分辩性思想和知识简化方法,从数据中推理逻辑规则,适合于数据简化、数据相关性查找、发现数据模式、从数据中提取规则等。神经网络是利用非线性映射的思想和并行处理方法,用神经网络本身的结构表达输入与输出关联知识的隐函数编码,具有较强的并行处理、逼近和分类能力。在处理不准确、不完整的知识方面,粗集理论和神经网络都显示出较强的适应能力,然而两者处理信息的方法是不同的,粗集方法模拟人类的抽象逻辑思维,神经网络方法模拟形象直觉思维,具有很强的互补性。
首先,通过粗集理论方法减少信息表达的属性数量,去掉冗余信息,使训练集简化,减少神经网络系统的复杂性和训练时间;其次利用神经网络优良的并行处理、逼近和分类能力来处理风险预警这类非线性问题,具有较强的容错能力;再次,粗集理论在简化知识的同时,很容易推理出决策规则,因而可以作为后续使用中的信息识别规则,将粗集得到的结果与神经网络得到的结果相比较,以便相互验证;最后,粗集理论的方法和结果简单易懂,而且以规则的形式给出,通过与神经网络结合,使神经网络也具有一定的解释能力。因此,粗集理论与神经网络融合方法具有许多优点,非常适合处理诸如企业战略风险预警这类非结构化、非线性的复杂问题。

关于输入的问题--输入模块。
这一阶段包括初始指标体系确定,根据所确定的指标体系而形成的数据采集系统及数据预处理。企业战略风险的初始评价指标如下:
企业外部因素:政治环境(法律法规及其稳定性),经济环境(社会总体收入水平,物价水平,经济增长率),产业结构(进入产业障碍,竞争对手数量及集中程度),市场环境(市场大小)。
企业内部因素:企业盈利能力(销售利润率,企业利润增长率),产品竞争能力(产品销售率,市场占有率),技术开发能力(技术开发费比率,企业专业技术人才比重),资金筹措能力(融资率),企业职工凝聚力(企业员工流动率),管理人才资源,信息资源;战略本身的风险因素(战略目标,战略重点,战略措施,战略方针)。
本文所建立的预警指标系统是针对普遍意义上的企业,当该指标系统运用于实际企业时,需要对具体指标进行适当的增加或减少。因为各个企业有其具体的战略目标、经营活动等特性。
计算处理模块。这一模块主要包括粗集处理部分和神经网络处理部分。
粗集处理阶段。根据粗集的简化规则及决策规则对数据进行约简,构造神经网络的初始结构,便于神经网络的训练。
企业战略风险分析需要解决的问题是在保证对战略风险状态评价一致的情况下,选择最少的特征集,以便减少属性维数、降低计算工作量和减少不确定因素的影响,粗集理论中的属性约简算法可以很好地解决这个问题。

然后是输出模块~
该模块是对将发生的战略风险问题发出警报。
按照战略风险大小强弱程度的不同,可将其分为三个层次。第一层次是轻微战略风险,是损失较小、后果不甚明显,对企业的战略管理活动不构成重要影响的各类风险。这类风险一般情况下无碍大局,仅对企业形成局部和微小的伤害。第二层次是一般战略风险,是损失适中、后果明显但不构成致命性威胁的各类风险。这类风险的直接后果使企业遭受一定损失,并对其战略管理的某些方面带来较大的不利影响或留有一定后遗症。第三层次是致命性战略风险,指损失较大,后果严重的风险。这类风险的直接后果往往会威胁企业的生存,导致重大损失,使之一时不能恢复或遭受破产。在实际操作中,每个企业应根据具体的状况,将这三个层次以具体的数值表现出来。

下面回答你的问题:

总的来说,神经网络输入的是初始指标体系;输出的是风险。

你所说的风险应该说属于输出范畴,具体等级分为三级:无警、轻警、重警,并用绿、黄、红三种颜色灯号表示。其中绿灯区表示企业综合指标所反映的实际运行值与目标值基本一致,运行良好;黄灯区表示企业综合指标所反映的实际运行值与目标值偏离较大,要引起企业的警惕。若采取一定的措施可转为绿灯区,若不重视可在短期内转为红灯区;红灯区则表示这种偏离超过企业接受的可能,并给企业带来整体性的重大损失。例如:销售利润率极低、资产负债率过高,资源配置不合理、缺乏发展后劲等,必须找出原因,继而采取有效措施,使企业的战略管理活动始终处于“安全”的状态。

希望以上答案能够帮到你,祝你好运~

6. 神经网络激活函数与损失函数的作用

softmax输出了各种结果的可能性

7. 神经网络中的梯度与损失值区别

层数比较多的神经网络模型在训练的时候会出现梯度消失(gradient vanishing problem)和梯度爆炸(gradient exploding problem)问题

梯度消失问题和梯度爆炸问题一般会随着网络层数的增加变得越来越明显。

8. 如何训练神经网络

1、先别着急写代码

训练神经网络前,别管代码,先从预处理数据集开始。我们先花几个小时的时间,了解数据的分布并找出其中的规律。

Andrej有一次在整理数据时发现了重复的样本,还有一次发现了图像和标签中的错误。所以先看一眼数据能避免我们走很多弯路。

由于神经网络实际上是数据集的压缩版本,因此您将能够查看网络(错误)预测并了解它们的来源。如果你的网络给你的预测看起来与你在数据中看到的内容不一致,那么就会有所收获。

一旦从数据中发现规律,可以编写一些代码对他们进行搜索、过滤、排序。把数据可视化能帮助我们发现异常值,而异常值总能揭示数据的质量或预处理中的一些错误。

2、设置端到端的训练评估框架

处理完数据集,接下来就能开始训练模型了吗?并不能!下一步是建立一个完整的训练+评估框架。

在这个阶段,我们选择一个简单又不至于搞砸的模型,比如线性分类器、CNN,可视化损失。获得准确度等衡量模型的标准,用模型进行预测。

这个阶段的技巧有:

· 固定随机种子

使用固定的随机种子,来保证运行代码两次都获得相同的结果,消除差异因素。

· 简单化

在此阶段不要有任何幻想,不要扩增数据。扩增数据后面会用到,但是在这里不要使用,现在引入只会导致错误。

· 在评估中添加有效数字

在绘制测试集损失时,对整个测试集进行评估,不要只绘制批次测试损失图像,然后用Tensorboard对它们进行平滑处理。

· 在初始阶段验证损失函数

验证函数是否从正确的损失值开始。例如,如果正确初始化最后一层,则应在softmax初始化时测量-log(1/n_classes)。

· 初始化

正确初始化最后一层的权重。如果回归一些平均值为50的值,则将最终偏差初始化为50。如果有一个比例为1:10的不平衡数据集,请设置对数的偏差,使网络预测概率在初始化时为0.1。正确设置这些可以加速模型的收敛。

· 人类基线

监控除人为可解释和可检查的损失之外的指标。尽可能评估人的准确性并与之进行比较。或者对测试数据进行两次注释,并且对于每个示例,将一个注释视为预测,将第二个注释视为事实。

· 设置一个独立于输入的基线

最简单的方法是将所有输入设置为零,看看模型是否学会从输入中提取任何信息。

· 过拟合一个batch

增加了模型的容量并验证我们可以达到的最低损失。

· 验证减少训练损失

尝试稍微增加数据容量。

9. 神经网络利用哪种算法将损失函数的值降到最低

用的是梯度下降算法,用偏微分找出超平面下降最快的方向,使损失函数快速下降。

10. BP神经网络损失函数居高不下

1、模型结构和特征工程存在问题。
2、权重初始化方案有问题。
3、正则化过度。
4、选择合适的激活函数、损失函数。
5、选择合适的优化器和学习速率。
6、训练时间不足,模型训练遇到瓶颈。

阅读全文

与神经网络损失如何写出来相关的资料

热点内容
悦盒连接无线网络 浏览:165
中国电信改移动网络 浏览:288
如果网线没接好网络会出什么问题 浏览:590
疫情期间网络异常活跃 浏览:844
网络打车平台投诉找哪个部门 浏览:680
抢单软件显示网络异常是咋回事 浏览:786
网络分析仪测量相位校准设置 浏览:255
mp3电脑传歌需要网络吗 浏览:28
不能拉黑的网络电话哪个好 浏览:264
周口下楼无线网络管理中心 浏览:695
网络欺诈金额多少钱才能立案 浏览:746
如何做一张网络虚拟电话卡 浏览:45
如何打开共享网络搜索 浏览:28
如何看待网络的普及和危害 浏览:536
苹果xr玩游戏网络卡顿 浏览:366
邢台淘宝网络运营电话多少 浏览:539
手机的网络经常断开 浏览:574
黑鲨手机wifi网络连接受限 浏览:361
怎么查看同一网络下的其他电脑 浏览:71
网络核相仪公司有哪些 浏览:177

友情链接