导航:首页 > 网络安全 > 如何训练神经网络

如何训练神经网络

发布时间:2022-01-06 23:06:06

㈠ 请问如何并行化训练神经网络模型

各个框架都有自己的方法实现并行计算。
我常用的是pytorch,可通过以下方法实现并行计算(单机多卡):
new_net = nn.DataParallel(net, device_ids=[0, 1])
output = new_net(input)
通过device_ids参数可以指定在哪些GPU上进行优化

㈡ 如何把训练好的神经网络保存下来

训练好网络后加上一句 save My-net net; 就可以啦。其中 My-net 是自己给网络命的名字。需要加载网络时采用 load My-net net;

㈢ 如何用matlab训练BP神经网络

net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)

newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes,
PR - Rx2 matrix of min and max values for R input elements.
Si - Size of ith layer, for Nl layers.
TFi - Transfer function of ith layer, default = 'tansig'.
BTF - Backprop network training function, default = 'trainlm'.
BLF - Backprop weight/bias learning function, default = 'learngdm'.
PF - Performance function, default = 'mse'.
然后train一下就可以了,具体其他参数查阅相关文档,一般有前四个参数就够了。
看一个简单的例子:
有两个向量或者矩阵,pn和tn:
net=newff(minmax(pn),[3,1],{'tansig','purelin'},'trainlm');
net.trainParam.epochs=1000;
net.trainParam.goal =1e-5;
net=train(net,pn,tn);
照葫芦画瓢就行,具体参数意义就不说了,自己查阅matlab帮助。

㈣ 如何训练一个简单的分类卷积神经网络

卷积神经网络有以下几种应用可供研究:
1、基于卷积网络的形状识别
物体的形状是人的视觉系统分析和识别物体的基础,几何形状是物体的本质特征的表现,并具有平移、缩放和旋转不变等特点,所以在模式识别领域,对于形状的分析和识别具有十分重要的意义,而二维图像作为三维图像的特例以及组成部分,因此二维图像的识别是三维图像识别的基础。
2、基于卷积网络的人脸检测
卷积神经网络与传统的人脸检测方法不同,它是通过直接作用于输入样本,用样本来训练网络并最终实现检测任务的。它是非参数型的人脸检测方法,可以省去传统方法中建模、参数估计以及参数检验、重建模型等的一系列复杂过程。本文针对图像中任意大小、位置、姿势、方向、肤色、面部表情和光照条件的人脸。
3、文字识别系统
在经典的模式识别中,一般是事先提取特征。提取诸多特征后,要对这些特征进行相关性分析,找到最能代表字符的特征,去掉对分类无关和自相关的特征。然而,这些特征的提取太过依赖人的经验和主观意识,提取到的特征的不同对分类性能影响很大,甚至提取的特征的顺序也会影响最后的分类性能。同时,图像预处理的好坏也会影响到提取的特征。

㈤ 如何训练深度神经网络

deeplearinig就是神经网络的一类,就是解决的训练问题的深层神经网络,所以你这问题“深度学习会代替神经网络‘就不对,BP么,BP有自己的优势,也是很成熟的算法,做手写识别等等效果已经商用化了,不会被轻易替代。deeplearning远比BP要复杂,用来解决的问题也不是一个层面,所以也没有替代的必要。Deeplearning所涉及的问题大多数BP都没法解决的。

度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构,通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。深度学习的概念由Hinton等人于2006年提出,基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。
系统地论述了神经网络的基本原理、方法、技术和应用,主要内容包括:神经信息处理的基本原理、感知器、反向传播网络、自组织网络、递归网络、径向基函数网络、核函数方法、神经网络集成、模糊神经网络、概率神经网络、脉冲耦合神经网络、神经场理论、神经元集群以及神经计算机。每章末附有习题,书末附有详细的参考文献。神经网络是通过对人脑或生物神经网络的抽象和建模,研究非程序的、适应性的、大脑风格的信息处理的本质和能力。它以脑科学和认知神经科学的研究成果为基础,拓展智能信息处理的方法,为解决复杂问题和智能控制提供有效的途径,是智能科学和计算智能的重要部分。

㈥ 如何提高神经网络的外推能力

人工神经网络以其智能性见长,那么神经网络能真的学到一个映射的本质吗?也就是说,对一个映射给出一定的必要的训练样本训练后,网络能否对样本以外的样本给出较为准确的预测。泛化能力也就是神经网络用于对未知数据预测的能力。神经网络对训练样本区间范围内的样本有较好的泛化能力,而对于训练样本确定的范围外的样本不能认为有泛化能力。常规的几种增强泛化能力的方法,罗列如下:

1、较多的输入样本可以提高泛化能力;
但不是太多,过多的样本导致过度拟合,泛化能力不佳;样本包括至少一次的转折点数据。

2、隐含层神经元数量的选择,不影响性能的前提下,尽量选择小一点的神经元数量。隐含层节点太多,造成泛化能力下降,造火箭也只要几十个到几百个神经元,拟合几百几千个数据何必要那么多神经元?

3、误差小,则泛化能力好;误差太小,则会过度拟合,泛化能力反而不佳。

4、学习率的选择,特别是权值学习率,对网络性能有很大影响,太小则收敛速度很慢,且容易陷入局部极小化;太大则,收敛速度快,但易出现摆动,误差难以缩小;一般权值学习率比要求误差稍微稍大一点点;另外可以使用变动的学习率,在误差大的时候增大学习率,等误差小了再减小学习率,这样可以收敛更快,学习效果更好,不易陷入局部极小化。

5、训练时可以采用随时终止法,即是误差达到要求即终止训练,以免过度拟合;可以调整局部权值,使局部未收敛的加快收敛。

㈦ 能不能训练一个神经网络,让它去训练神经网络

你用的是matlab的神经网络工具箱吧。那是因为权值和阈值每次都是随机初始化的,所以结果就会不一样,
你可以把随机种子固定,即在代码前面加上setdemorandstream(pi); 这样每次训练出来的结果都是一样的了。

看来楼主是刚开始学习神经网络的,推荐一些资料给楼主:
神经网络之家 (专讲神经网络的网站,有视频下载)

matlab中文论坛的神经网络专区
数学中国的神经网络专区

较好的书:
MATLAB神经网络原理与实例精解

阅读全文

与如何训练神经网络相关的资料

热点内容
手机上的网络信号差 浏览:712
苹果提示助手没网络 浏览:961
家里的网络不好路由器可以增强吗 浏览:280
酒店网络佣金如何记账 浏览:422
无线网网络受限怎么办 浏览:543
怎么设置呼叫转移网络异常 浏览:967
编制双代号网络哪个软件好 浏览:559
迅雷网络的无线桥接怎么用 浏览:860
网络盒一天用多少电源 浏览:288
怎么知道网络设置 浏览:893
动车移动网络卡 浏览:962
手机网络显示啥表示真5g 浏览:890
考研计算机网络各部分占比 浏览:907
三星无法连接4g网络 浏览:169
欧拉好猫无线网络 浏览:25
网络安全需求量大吗 浏览:207
校园网络信号满了 浏览:840
网络诞生的原因有哪些 浏览:952
副卡正常打电话没有网络信号 浏览:62
无线网络的组成部件及作用 浏览:205

友情链接