1. 什么是人工神经网络
人工神经网络就是,人工智能模拟人体内的神经系统的工作原理和工作结构进行模拟的一套人工系统网络快速有效的传递信息
2. 人工神经网络导论的内容简介
本书较系统地介绍了人工神经网络的基本理论和方法,全书共10章,可分为四大部分:第一部分包括第一章至第二章,叙述了学习人工神经网络应该具备的基础知识,内容有大脑神经系统的构成、脑神经细胞工作概况、人工神经网络的构思、动力系统稳定性以及混沌;第二部分包括第三章至第五章,论述了人工神经网络的三要素,即人工神经元模型、人工神经元的联接方式、人工神经网络的训练与学习;第三部分包括第六章至第九章,着重讨论了四大类网络,即前馈网络、动态网络、竞争网络及模糊网络,第一大类中包含若干具体网络模型;第四部分为第十章,讨论了统计学习理论,支撑向量机作为其特例。
本书在强调基础理论和系统性的同时,着重反映人工神经网络研究领域的最新研究成果,适合作为高等院校自动控制、电子技术、信息技术、计算机、系统工程等专业的研究生教材,亦可供有关科技人员参考。
3. 人工神经网络原理的介绍
《人工神经网络原理》介绍了人工神经网络的基本理论,系统地阐述了六种典型的人工神经网络模型,即早期的感知机神经网络、自适应线性元件神经网络、误差反向传播神经网络、Hopfield神经网络、B0ltzmann机和自适应共振理论神经网络,以及它们的网络结构、学习算法、工作原理及应用实例,为读者深入了解和研究人工神经网络奠定了基础。
4. 关于<人工神经网络>如何入门讲一些基础课程
人工神经网络是模仿人脑神经网络的算法。输入相应特征后,经过网络的层层计算,得出输出。再按照相应的算法进行权值,阈值等参数的更新。比较常用的神经网络模型有BP(误差反馈)网络。一般网络也就是三层。你可以先看看BP网络的,应该就能解决你在分类识别方面的问题。
5. 人工神经网络是怎么学习的呢
1、神经网络的结构(例如2输入3隐节点1输出)建好后,一般就要求神经网络里的权值和阈值。现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法、牛顿法、列文伯格-马跨特法、狗腿法等等)。 2、这些算法会先初始化一个解,在这个解的基础上,确定一个搜索方向和一个移动步长(各种法算确定方向和步长的方法不同,也就使各种算法适用于解决不同的问题),使初始解根据这个方向和步长移动后,能使目标函数的输出(在神经网络中就是预测误差)下降。 3、然后将它更新为新的解,再继续寻找下一步的移动方向的步长,这样不断的迭代下去,目标函数(神经网络中的预测误差)也不断下降,最终就能找到一个解,使得目标函数(预测误差)比较小。 4、而在寻解过程中,步长太大,就会搜索得不仔细,可能跨过了优秀的解,而步长太小,又会使寻解过程进行得太慢。因此,步长设置适当非常重要。 5、学习率对原步长(在梯度下降法中就是梯度的长度)作调整,如果学习率lr = 0.1,那么梯度下降法中每次调整的步长就是0.1*梯度, 6、而在matlab神经网络工具箱里的lr,代表的是初始学习率。因为matlab工具箱为了在寻解不同阶段更智能的选择合适的步长,使用的是可变学习率,它会根据上一次解的调整对目标函数带来的效果来对学习率作调整,再根据学习率决定步长。
6. 人工神经网络是哪个流派的基础
“纯意念控制”人工神经康复机器人系统2014年6月14日在天津大学和天津市人民医院共同举办的发表会上,由双方共同研制的人工神经康复机器人“神工一号”正式亮相。
中文名
“纯意念控制”人工神经康复机器人系统
发布时间
2014年6月14日
快速
导航
产品特色发展历史
功能配置
“纯意念控制”人工神经康复机器人系统在复合想象动作信息解析与处理、异步脑——机接口训练与识别、皮层——肌肉活动同步耦合优化、中风后抑郁脑电非线性特征提取与筛查等关键技术上取得了重大突破。
“纯意念控制”人工神经康复机器人系统包括无创脑电传感模块、想象动作特征检测模块、运动意图识别模块、指令编码接口模块、刺激信息调理模块、刺激电流输出模块6部分。
产品特色
“纯意念控制”人工神经康复机器人系统最新研究成果将让不少中风、瘫痪人士燃起重新独立生活的希望。现已拥有包括23项授权国家发明专利、1项软件着作权在内的自主知识产权集群,是全球首台适用于全肢体中风康复的“纯意念控制”人工神经机器人系统。[1]
脑控机械外骨骼是利用被动机械牵引,非肌肉主动收缩激活。而“神工一号”则利用神经肌肉电刺激,模拟神经冲动的电刺激引起肌肉产生主动收缩,带动骨骼和关节产生自主动作,与人体自主运动原理一致。
体验者需要把装有电极的脑电探测器戴在头部,并在患病肢体的肌肉上安装电极,借助“神工一号”的连接,就可以用“意念”来“控制”自己本来无法行动的肢体了。[2]
发展历史
“纯意念控制”人工神经康复机器人系统技术历时10年,是国家“863计划“、“十二五”国家科技支撑计划和国家优秀青年科学基金重点支持项目。
人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。
最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。
中文名
人工神经网络
外文名
artificial neural network
别称
ANN
应用学科
人工智能
适用领域范围
模式分类
精品荐读
“蠢萌”的神经网络
作者:牛油果进化论
快速
导航
基本特征发展历史网络模型学习类型分析方法特点优点研究方向发展趋势应用分析
神经元
如图所示
a1~an为输入向量的各个分量
w1~wn为神经元各个突触的权值
b为偏置
f为传递函数,通常为非线性函数。以下默认为hardlim()
t为神经元输出
数学表示 t=f(WA'+b)
W为权向量
A为输入向量,A'为A向量的转置
b为偏置
f为传递函数
可见,一个神经元的功能是求得输入向量与权向量的内积后,经一个非线性传递函数得到一个标量结果。
单个神经元的作用:把一个n维向量空间用一个超平面分割成两部分(称之为判断边界),给定一个输入向量,神经元可以判断出这个向量位于超平面的哪一边。
该超平面的方程: Wp+b=0
W权向量
b偏置
p超平面上的向量
基本特征
人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。人工神经网络具有四个基本特征:
(1)非线性 非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。
人工神经网络
(2)非局限性 一个神经网络通常由多个神经元广泛连接而成。一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。
(3)非常定性 人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程。
(4)非凸性 一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。
人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。人工神经网络是一种非程序化、适应性、大脑风格的信息处理 ,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。它是涉及神经科学、思维科学、人工智能、计算机科学等多个领域的交叉学科。
人工神经网络
人工神经网络是并行分布式系统,采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结构化信息方面的缺陷,具有自适应、自组织和实时学习的特点。[1]
发展历史
1943年,心理学家W.S.McCulloch和数理逻辑学家W.Pitts建立了神经网络和数学模型,称为MP模型。他们通过MP模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。1949年,心理学家提出了突触联系强度可变的设想。60年代,人工神经网络得到了进一步发展,更完善的神经网络模型被提出,其中包括感知器和自适应线性元件等。M.Minsky等仔细分析了以感知器为代表的神经网络系统的功能及局限后,于1969年出版了《Perceptron》一书,指出感知器不能解决高阶谓词问题。他们的论点极大地影响了神经网络的研究,加之当时串行计算机和人工智能所取得的成就,掩盖了发展新型计算机和人工智能新途径的必要性和迫切性,使人工神经网络的研究处于低潮。在此期间,一些人工神经网络的研究者仍然致力于这一研究,提出了适应谐振理论(ART网)、自组织映射、认知机网络,同时进行了神经网络数学理论的研究。以上研究为神经网络的研究和发展奠定了基础。1982年,美国加州工学院物理学家J.J.Hopfield提出了Hopfield神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。 1984年,他又提出了连续时间Hopfield神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究,1985年,又有学者提出了波耳兹曼模型,在学习中采用统计热力学模拟退火技术,保证整个系统趋于全局稳定点。1986年进行认知微观结构地研究,提出了并行分布处理的理论。1986年,Rumelhart, Hinton, Williams发展了BP算法。Rumelhart和McClelland出版了《Parallel distribution processing: explorations in the microstructures of cognition》。迄今,BP算法已被用于解决大量实际问题。1988年,Linsker对感知机网络提出了新的自组织理论,并在Shanon信息论的基础上形成了最大互信息理论,从而点燃了基于NN的信息应用理论的光芒。1988年,Broomhead和Lowe用径向基函数(Radial basis function, RBF)提出分层网络的设计方法,从而将NN的设计与数值分析和线性适应滤波相挂钩。90年代初,Vapnik等提出了支持向量机(Support vector machines, SVM)和VC(Vapnik-Chervonenkis)维数的概念。人工神经网络的研究受到了各个发达国家的重视,美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变为全球行为。在日本的“真实世界计算(RWC)”项目中,人工智能的研究成了一个重要的组成部分。
人工神经网络
网络模型
人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。根据连接的拓扑结构,神经网络模型可以分为:[1]
人工神经网络
前向网络
网络中各个神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示。这种网络实现信号从输入空间到输出空间的变换,它的信息处理能力来自于简单非线性函数的多次复合。网络结构简单,易于实现。反传网络是一种典型的前向网络。[2]
反馈网络
网络内神经元间有反馈,可以用一个无向的完备图表示。这种神经网络的信息处理是状态的变换,可以用动力学系统理论处理。系统的稳定性与联想记忆功能有密切关系。Hopfield网络、波耳兹曼机均属于这种类型。
学习类型
学习是神经网络研究的一个重要内容,它的适应性是通过学习实现的。根据环境的变化,对权值进行调整,改善系统的行为。由Hebb提出的Hebb学习规则为神经网络的学习算法奠定了基础。Hebb规则认为学习过程最终发生在神经元之间的突触部位,突触的联系强度随着突触前后神经元的活动而变化。在此基础上,人们提出了各种学习规则和算法,以适应不同网络模型的需要。有效的学习算法,使得神经网络能够通过连接权值的调整,构造客观世界的内在表示,形成具有特色的信息处理方法,信息存储和处理体现在网络的连接中。
人工神经网络
分类
根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。在监督学习中,将训练样本的数据加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经多次训练后收敛到一个确定的权值。当样本情况发生变化时,经学习可以修改权值以适应新的环境。使用监督学习的神经网络模型有反传网络、感知器等。非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学习阶段与工作阶段成为一体。此时,学习规律的变化服从连接权值的演变方程。非监督学习最简单的例子是Hebb学习规则。竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。自组织映射、适应谐振理论网络等都是与竞争学习有关的典型模型。
分析方法
研究神经网络的非线性动力学性质,主要采用动力学系统理论、非线性规划理论和统计理论,来分析神经网络的演化过程和吸引子的性质,探索神经网络的协同行为和集体计算功能,了解神经信息处理机制。为了探讨神经网络在整体性和模糊性方面处理信息的可能,混沌理论的概念和方法将会发挥作用。混沌是一个相当难以精确定义的数学概念。一般而言,“混沌”是指由确定性方程描述的动力学系统中表现出的非确定性行为,或称之为确定的随机性。“确定性”是因为它由内在的原因而不是外来的噪声或干扰所产生,而“随机性”是指其不规则的、不能预测的行为,只可能用统计的方法描述。
7. 什么是人工神经网络
一.一些基本常识和原理
[什么叫神经网络?]
人的思维有逻辑性和直观性两种不同的基本方式。逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
[人工神经网络的工作原理]
人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。
所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。
如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。
=================================================
关于一个神经网络模拟程序的下载
人工神经网络实验系统(BP网络) V1.0 Beta 作者:沈琦
http://emuch.net/html/200506/de24132.html
作者关于此程序的说明:
从输出结果可以看到,前3条"学习"指令,使"输出"神经元收敛到了值 0.515974。而后3条"学习"指令,其收敛到了值0.520051。再看看处理4和11的指令结果 P *Out1: 0.520051看到了吗? "大脑"识别出了4和11是属于第二类的!怎么样?很神奇吧?再打show指令看看吧!"神经网络"已经形成了!你可以自己任意的设"模式"让这个"大脑"学习分辩哦!只要样本数据量充分(可含有误差的样本),如果能够在out数据上收敛地话,那它就能分辨地很准哦!有时不是绝对精确,因为它具有"模糊处理"的特性.看Process输出的值接近哪个Learning的值就是"大脑"作出的"模糊性"判别!
=================================================
人工神经网络论坛
http://www.youngfan.com/forum/index.php
http://www.youngfan.com/nn/index.html(旧版,枫舞推荐)
国际神经网络学会(INNS)(英文)
http://www.inns.org/
欧洲神经网络学会(ENNS)(英文)
http://www.snn.kun.nl/enns/
亚太神经网络学会(APNNA)(英文)
http://www.cse.cuhk.e.hk/~apnna
日本神经网络学会(JNNS)(日文)
http://www.jnns.org
国际电气工程师协会神经网络分会
http://www.ieee-nns.org/
研学论坛神经网络
http://bbs.matwav.com/post/page?bid=8&sty=1&age=0
人工智能研究者俱乐部
http://www.souwu.com/
2nsoft人工神经网络中文站
http://211.156.161.210:8888/2nsoft/index.jsp
=================================================
推荐部分书籍:
人工神经网络技术入门讲稿(PDF)
http://www.youngfan.com/nn/ann.pdf
神经网络FAQ(英文)
http://www.youngfan.com/nn/FAQ/FAQ.html
数字神经网络系统(电子图书)
http://www.youngfan.com/nn/nnbook/director.htm
神经网络导论(英文)
http://www.shef.ac.uk/psychology/gurney/notes/contents.html
===============================================
一份很有参考价值的讲座
<前向网络的敏感性研究>
http://www.youngfan.com/nn/mgx.ppt
是Powerpoint文件,比较大,如果网速不够最好用鼠标右键下载另存.
8. 人工神经网络基础的人工神经网络基础
作者: 丁士圻,郭丽华主编
出 版 社: 哈尔滨工程大学出版社
出版时间: 2008-3-1
字数: 248000
版次: 1
页数: 208
开本: 16开
印次: 1
纸张: 胶版纸
I S B N : 9787811332063
包装: 平装
所属分类: 图书 >> 计算机/网络 >> 人工智能
定价:¥24.00
9. 想要学习人工神经网络,需要什么样的基础知识
人工神经网络理论网络网盘下载:
链接:
简介:本书是人工神经网络理论的入门书籍。全书共分十章。第一章主要阐述人工神经网络理论的产生及发展历史、理论特点和研究方向;第二章至第九章介绍人工神经网络理论中比较成熟且常用的几种主要网络结构、算法和应用途径;第十章用较多篇幅介绍了人工神经网络理论在各个领域的应用实例。
10. 人工神经网络的基础数学模型来自哪里
“纯意念控制”人工神经康复机器人系统2014年6月14日在天津大学和天津市人民医院共同举办的发表会上,由双方共同研制的人工神经康复机器人“神工一号”正式亮相。
人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。
基本特征:
(1)非线性非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。
(2)非局限性 一个神经网络通常由多个神经元广泛连接而成。一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。
(3)非常定性 人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程。