导航:首页 > 网络问题 > 神经网络输入量怎么设置

神经网络输入量怎么设置

发布时间:2024-12-29 10:38:33

A. 神经网络对输入变量个数有没有要求,六十个可以吗

可以,但是网络规模太大,很臃肿,需要调整的参数过多,影响收敛速度。

关于隐层节点数:在BP 网络中,隐层节点数的选择非常重要,它不仅对建立的神经网络模型的性能影响很大,而且是训练时出现“过拟合”的直接原因,但是目前理论上还没有一种科学的和普遍的确定方法。 目前多数文献中提出的确定隐层节点数的计算公式都是针对训练样本任意多的情况,而且多数是针对最不利的情况,一般工程实践中很难满足,不宜采用。事实上,各种计算公式得到的隐层节点数有时相差几倍甚至上百倍。为尽可能避免训练时出现“过拟合”现象,保证足够高的网络性能和泛化能力,确定隐层节点数的最基本原则是:在满足精度要求的前提下取尽可能紧凑的结构,即取尽可能少的隐层节点数。研究表明,隐层节点数不仅与输入/输出层的节点数有关,更与需解决的问题的复杂程度和转换函数的型式以及样本数据的特性等因素有关。
在确定隐层节点数时必须满足下列条件:
(1)隐层节点数必须小于N-1(其中N为训练样本数),否则,网络模型的系统误差与训练样本的特性无关而趋于零,即建立的网络模型没有泛化能力,也没有任何实用价值。同理可推得:输入层的节点数(变量数)必须小于N-1。
(2) 训练样本数必须多于网络模型的连接权数,一般为2~10倍,否则,样本必须分成几部分并采用“轮流训练”的方法才可能得到可靠的神经网络模型。
总之,若隐层节点数太少,网络可能根本不能训练或网络性能很差;若隐层节点数太多,虽然可使网络的系统误差减小,但一方面使网络训练时间延长,另一方面,训练容易陷入局部极小点而得不到最优点,也是训练时出现“过拟合”的内在原因。因此,合理隐层节点数应在综合考虑网络结构复杂程度和误差大小的情况下用节点删除法和扩张法确定。

B. BP神经网络输入层和训练次数怎样选择

输入层就是看你研究的结果影响因子的数目,而训练次数是程序自己计算的,因为你要设定误差目标,模型误差到达你设定的目标误差时训练结束,这时的训练次数就是最终训练次数。

阅读全文

与神经网络输入量怎么设置相关的资料

热点内容
两个网络实现共享 浏览:434
网络技术报考哪个方向好 浏览:435
东营网络教育报名哪里有 浏览:869
多多云手机无网络 浏览:605
嗯无线网络密码是多少 浏览:531
访问移动网络设置 浏览:330
苏州网络品牌哪个好 浏览:678
小米路由器4c网络老是断网 浏览:780
华为网络连接密码共享 浏览:337
所有的无线网络都可以用吗 浏览:9
什么是良好的网络社交 浏览:682
十堰网络营销策划方案 浏览:535
关于手机网络安全 浏览:623
网络安全知识宣传单 浏览:381
网络信号好的号段 浏览:563
网络公司哪些是美国参股 浏览:995
王者传奇手游盛和网络苹果版 浏览:839
电脑弹不出网络认证的界面 浏览:85
大学网络电子版教材哪里找 浏览:531
惠普139w怎样连接无线网络 浏览:910

友情链接