1. CNN之Lenet5
LeNet诞生于 1994 年,是最早的卷积神经网络之一,并且推动了深度学习领域的发展。
LeNet-5是Yann LeCun等人在多次研究后提出的最终卷积神经网络结构,主要用于手写数字识别
LeNet5的网络结构如下所示:
LeNet-5包含七层,不包括输入,每一层都包含可训练参数(权重),当时使用的输入数据是32*32像素的图像。下面逐层介绍LeNet-5的结构,并且,卷积层将用Cx表示,子采样层则被标记为Sx,全连接层被标记为Fx,其中x是层索引。
该层使用了6个卷积核,每个卷积核的大小为5×5,这样就得到了6个feature map(特征图)。
每个卷积核(5×5)与原始的输入图像(32×32)进行卷积,这样得到的feature map(特征图)大小为(32-5+1)×(32-5+1)= 28×28
卷积核与输入图像按卷积核大小逐个区域进行匹配计算,匹配后原始输入图像的尺寸将变小,因为边缘部分卷积核无法越出界,只能匹配一次,匹配计算后的尺寸变为Cr×Cc=(Ir-Kr+1)×(Ic-Kc+1),其中Cr、Cc,Ir、Ic,Kr、Kc分别表示卷积后结果图像、输入图像、卷积核的行列大小。
由于参数(权值)共享的原因,对于同个卷积核每个神经元均使用相同的参数,因此,参数个数为(5×5+1)×6= 156,其中5×5为卷积核参数,1为偏置参数
卷积后的图像大小为28×28,因此每个特征图有28×28个神经元,每个卷积核参数为(5×5+1)×6,因此,该层的连接数为(5×5+1)×6×28×28=122304
这一层主要是做池化或者特征映射(特征降维),池化单元为2×2,因此,6个特征图的大小经池化后即变为14×14。池化单元之间没有重叠,在池化区域内进行聚合统计后得到新的特征值,因此经2×2池化后,每两行两列重新算出一个特征值出来,相当于图像大小减半,因此卷积后的28×28图像经2×2池化后就变为14×14。
这一层的计算过程是:2×2 单元里的值相加,然后再乘以训练参数w,再加上一个偏置参数b(每一个特征图共享相同的w和b),然后取sigmoid值(S函数:0-1区间),作为对应的该单元的值。卷积操作与池化的示意图如下:
S2层由于每个特征图都共享相同的w和b这两个参数,因此需要2×6=12个参数
下采样之后的图像大小为14×14,因此S2层的每个特征图有14×14个神经元,每个池化单元连接数为2×2+1(1为偏置量),因此,该层的连接数为(2×2+1)×14×14×6 = 5880
C3层有16个卷积核,卷积模板大小为5×5。
与C1层的分析类似,C3层的特征图大小为(14-5+1)×(14-5+1)= 10×10
需要注意的是,C3与S2并不是全连接而是部分连接,有些是C3连接到S2三层、有些四层、甚至达到6层,通过这种方式提取更多特征,连接的规则如下表所示:
例如第一列表示C3层的第0个特征图(feature map)只跟S2层的第0、1和2这三个feature maps相连接,计算过程为:用3个卷积模板分别与S2层的3个feature maps进行卷积,然后将卷积的结果相加求和,再加上一个偏置,再取sigmoid得出卷积后对应的feature map了。其它列也是类似(有些是3个卷积模板,有些是4个,有些是6个)。因此,C3层的参数数目为(5×5×3+1)×6 +(5×5×4+1)×9 +5×5×6+1 = 1516
卷积后的特征图大小为10×10,参数数量为1516,因此连接数为1516×10×10= 151600
与S2的分析类似,池化单元大小为2×2,因此,该层与C3一样共有16个特征图,每个特征图的大小为5×5。
与S2的计算类似,所需要参数个数为16×2 = 32
连接数为(2×2+1)×5×5×16 = 2000
该层有120个卷积核,每个卷积核的大小仍为5×5,因此有120个特征图。由于S4层的大小为5×5,而该层的卷积核大小也是5×5,因此特征图大小为(5-5+1)×(5-5+1)= 1×1。这样该层就刚好变成了全连接,这只是巧合,如果原始输入的图像比较大,则该层就不是全连接了。
与前面的分析类似,本层的参数数目为120×(5×5×16+1) = 48120
由于该层的特征图大小刚好为1×1,因此连接数为48120×1×1=48120
F6层有84个单元,之所以选这个数字的原因是来自于输出层的设计,对应于一个7×12的比特图,如下图所示,-1表示白色,1表示黑色,这样每个符号的比特图的黑白色就对应于一个编码。
该层有84个特征图,特征图大小与C5一样都是1×1,与C5层全连接。
由于是全连接,参数数量为(120+1)×84=10164。跟经典神经网络一样,F6层计算输入向量和权重向量之间的点积,再加上一个偏置,然后将其传递给sigmoid函数得出结果。
由于是全连接,连接数与参数数量一样,也是10164。
Output层也是全连接层,共有10个节点,分别代表数字0到9。如果第i个节点的值为0,则表示网络识别的结果是数字i。
该层采用径向基函数(RBF)的网络连接方式,假设x是上一层的输入,y是RBF的输出,则RBF输出的计算方式是:
上式中的Wij的值由i的比特图编码确定,i从0到9,j取值从0到7×12-1。RBF输出的值越接近于0,表示当前网络输入的识别结果与字符i越接近。
由于是全连接,参数个数为84×10=840
由于是全连接,连接数与参数个数一样,也是840
from skimage import io,transform
import os
import glob
import numpy as np
import tensorflow as tf
#将所有的图片重新设置尺寸为32*32
w = 32
h = 32
c = 1
#mnist数据集中训练数据和测试数据保存地址
train_path = "E:/data/datasets/mnist/train/"
test_path = "E:/data/datasets/mnist/test/"
#读取图片及其标签函数
'''os.listdir()返回指定的文件夹包含的文件或文件夹的名字,存放于一个列表中;os.path.isdir()判断某一路径是否为目录
enumerate()将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,数据下标和相应数据'''
def read_image(path):
label_dir = [path+x for x in os.listdir(path) if os.path.isdir(path+x)]
images = []
labels = []
for index,folder in enumerate(label_dir):
for img in glob.glob(folder+'/*.png'):
print("reading the image:%s"%img)
image = io.imread(img)
image = transform.resize(image,(w,h,c))
images.append(image)
labels.append(index)
return np.asarray(images,dtype=np.float32),np.asarray(labels,dtype=np.int32)
#读取训练数据及测试数据
train_data,train_label = read_image(train_path)
test_data,test_label = read_image(test_path)
#打乱训练数据及测试数据 np.arange()返回一个有终点和起点的固定步长的排列,
train_image_num = len(train_data)
train_image_index = np.arange(train_image_num) ##起始点0,结束点train_image_num,步长1,返回类型array,一维
np.random.shuffle(train_image_index)
train_data = train_data[train_image_index]
train_label = train_label[train_image_index]
test_image_num = len(test_data)
test_image_index = np.arange(test_image_num)
np.random.shuffle(test_image_index)
test_data = test_data[test_image_index]
test_label = test_label[test_image_index]
#搭建CNN 此函数可以理解为形参,用于定义过程,在执行的时候再赋具体的值,形参名X,y_
x = tf.placeholder(tf.float32,[None,w,h,c],name='x')
y_ = tf.placeholder(tf.int32,[None],name='y_')
def inference(input_tensor,train,regularizer):
#第一层:卷积层,过滤器的尺寸为5×5,深度为6,不使用全0补充,步长为1。
#尺寸变化:32×32×1->28×28×6
'''参数的初始化:tf.truncated_normal_initializer()或者简写为tf.TruncatedNormal()、tf.RandomNormal() 去掉_initializer,大写首字母即可
生成截断正态分布的随机数,这个初始化方法好像在tf中用得比较多mean=0.0, stddev=1.0 正态分布
http://www.mamicode.com/info-detail-1835147.html'''
with tf.variable_scope('layer1-conv1'):
conv1_weights = tf.get_variable('weight',[5,5,c,6],initializer=tf.truncated_normal_initializer(stddev=0.1))
conv1_biases = tf.get_variable('bias',[6],initializer=tf.constant_initializer(0.0))
conv1 = tf.nn.conv2d(input_tensor,conv1_weights,strides=[1,1,1,1],padding='VALID')
relu1 = tf.nn.relu(tf.nn.bias_add(conv1,conv1_biases))
#第二层:池化层,过滤器的尺寸为2×2,使用全0补充,步长为2。
#尺寸变化:28×28×6->14×14×6
with tf.name_scope('layer2-pool1'):
pool1 = tf.nn.max_pool(relu1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
#第三层:卷积层,过滤器的尺寸为5×5,深度为16,不使用全0补充,步长为1。
#尺寸变化:14×14×6->10×10×16
with tf.variable_scope('layer3-conv2'):
conv2_weights = tf.get_variable('weight',[5,5,6,16],initializer=tf.truncated_normal_initializer(stddev=0.1))
conv2_biases = tf.get_variable('bias',[16],initializer=tf.constant_initializer(0.0))
conv2 = tf.nn.conv2d(pool1,conv2_weights,strides=[1,1,1,1],padding='VALID')
relu2 = tf.nn.relu(tf.nn.bias_add(conv2,conv2_biases))
#第四层:池化层,过滤器的尺寸为2×2,使用全0补充,步长为2。
#尺寸变化:10×10×6->5×5×16
with tf.variable_scope('layer4-pool2'):
pool2 = tf.nn.max_pool(relu2,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
#将第四层池化层的输出转化为第五层全连接层的输入格式。第四层的输出为5×5×16的矩阵,然而第五层全连接层需要的输入格式
#为向量,所以我们需要把代表每张图片的尺寸为5×5×16的矩阵拉直成一个长度为5×5×16的向量。
#举例说,每次训练64张图片,那么第四层池化层的输出的size为(64,5,5,16),拉直为向量,nodes=5×5×16=400,尺寸size变为(64,400)
pool_shape = pool2.get_shape().as_list()
nodes = pool_shape[1]*pool_shape[2]*pool_shape[3]
reshaped = tf.reshape(pool2,[-1,nodes])
#第五层:全连接层,nodes=5×5×16=400,400->120的全连接
#尺寸变化:比如一组训练样本为64,那么尺寸变化为64×400->64×120
#训练时,引入dropout,dropout在训练时会随机将部分节点的输出改为0,dropout可以避免过拟合问题。
#这和模型越简单越不容易过拟合思想一致,和正则化限制权重的大小,使得模型不能任意拟合训练数据中的随机噪声,以此达到避免过拟合思想一致。
#本文最后训练时没有采用dropout,dropout项传入参数设置成了False,因为训练和测试写在了一起没有分离,不过大家可以尝试。
'''tf.matmul()这个函数是专门矩阵或者tensor乘法,而不是矩阵元素对应元素相乘
tf.multiply()两个矩阵中对应元素各自相乘
tf.nn.dropout(x, keep_prob):TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层,
x:指输入;keep_prob: 设置神经元被选中的概率,使输入tensor中某些元素变为0,其它没变0的元素变为原来的1/keep_prob大小,可以想象下,比如某些元素弃用
在初始化时keep_prob是一个占位符,keep_prob = tf.placeholder(tf.float32).
tensorflow在run时设置keep_prob具体的值,例如keep_prob: 0.5,train的时候才是dropout起作用的时候
keep_prob: A scalar Tensor with the same type as x. The probability that each element is kept.'''
with tf.variable_scope('layer5-fc1'):
fc1_weights = tf.get_variable('weight',[nodes,120],initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None:
tf.add_to_collection('losses',regularizer(fc1_weights))
fc1_biases = tf.get_variable('bias',[120],initializer=tf.constant_initializer(0.1))
fc1 = tf.nn.relu(tf.matmul(reshaped,fc1_weights) + fc1_biases)
if train:
fc1 = tf.nn.dropout(fc1,0.5)
#第六层:全连接层,120->84的全连接
#尺寸变化:比如一组训练样本为64,那么尺寸变化为64×120->64×84
'''tf.add_to_collection:把变量放入一个集合,把很多变量变成一个列表
tf.get_collection:从一个结合中取出全部变量,是一个列表
tf.add_n:把一个列表的东西都依次加起来'''
with tf.variable_scope('layer6-fc2'):
fc2_weights = tf.get_variable('weight',[120,84],initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None:
tf.add_to_collection('losses',regularizer(fc2_weights))
fc2_biases = tf.get_variable('bias',[84],initializer=tf.truncated_normal_initializer(stddev=0.1))
fc2 = tf.nn.relu(tf.matmul(fc1,fc2_weights) + fc2_biases)
if train:
fc2 = tf.nn.dropout(fc2,0.5)
#第七层:全连接层(近似表示),84->10的全连接
#尺寸变化:比如一组训练样本为64,那么尺寸变化为64×84->64×10。最后,64×10的矩阵经过softmax之后就得出了64张图片分类于每种数字的概率,
#即得到最后的分类结果。
with tf.variable_scope('layer7-fc3'):
fc3_weights = tf.get_variable('weight',[84,10],initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None:
tf.add_to_collection('losses',regularizer(fc3_weights))
fc3_biases = tf.get_variable('bias',[10],initializer=tf.truncated_normal_initializer(stddev=0.1))
logit = tf.matmul(fc2,fc3_weights) + fc3_biases
return logit
#正则化,交叉熵,平均交叉熵,损失函数,最小化损失函数,预测和实际equal比较,tf.equal函数会得到True或False,
#accuracy首先将tf.equal比较得到的布尔值转为float型,即True转为1.,False转为0,最后求平均值,即一组样本的正确率。
#比如:一组5个样本,tf.equal比较为[True False True False False],转化为float型为[1. 0 1. 0 0],准确率为2./5=40%。
'''规则化可以帮助防止过度配合,提高模型的适用性。(让模型无法完美匹配所有的训练项。)(使用规则来使用尽量少的变量去拟合数据)
规则化就是说给需要训练的目标函数加上一些规则(限制),让他们不要自我膨胀。
TensorFlow会将L2的正则化损失值除以2使得求导得到的结果更加简洁
如tf.contrib.layers.apply_regularization/l1_regularizer/l2_regularizer/sum_regularizer
https://blog.csdn.net/liushui94/article/details/73481112
sparse_softmax_cross_entropy_with_logits()是将softmax和cross_entropy放在一起计算
https://blog.csdn.net/ZJRN1027/article/details/80199248'''
regularizer = tf.contrib.layers.l2_regularizer(0.001)
y = inference(x,False,regularizer)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y,labels=y_)
cross_entropy_mean = tf.rece_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
train_op = tf.train.AdamOptimizer(0.001).minimize(loss)
correct_prediction = tf.equal(tf.cast(tf.argmax(y,1),tf.int32),y_)
accuracy = tf.rece_mean(tf.cast(correct_prediction,tf.float32))
#每次获取batch_size个样本进行训练或测试
def get_batch(data,label,batch_size):
for start_index in range(0,len(data)-batch_size+1,batch_size):
slice_index = slice(start_index,start_index+batch_size)
yield data[slice_index],label[slice_index]
#创建Session会话
with tf.Session() as sess:
#初始化所有变量(权值,偏置等)
sess.run(tf.global_variables_initializer())
#将所有样本训练10次,每次训练中以64个为一组训练完所有样本。
#train_num可以设置大一些。
train_num = 10
batch_size = 64
for i in range(train_num):
train_loss,train_acc,batch_num = 0, 0, 0
for train_data_batch,train_label_batch in get_batch(train_data,train_label,batch_size):
_,err,acc = sess.run([train_op,loss,accuracy],feed_dict={x:train_data_batch,y_:train_label_batch})
train_loss+=err;train_acc+=acc;batch_num+=1
print("train loss:",train_loss/batch_num)
print("train acc:",train_acc/batch_num)
test_loss,test_acc,batch_num = 0, 0, 0
for test_data_batch,test_label_batch in get_batch(test_data,test_label,batch_size):
err,acc = sess.run([loss,accuracy],feed_dict={x:test_data_batch,y_:test_label_batch})
test_loss+=err;test_acc+=acc;batch_num+=1
print("test loss:",test_loss/batch_num)
print("test acc:",test_acc/batch_num)
2. 深度学习之卷积神经网络经典模型
LeNet-5模型 在CNN的应用中,文字识别系统所用的LeNet-5模型是非常经典的模型。LeNet-5模型是1998年,Yann LeCun教授提出的,它是第一个成功大规模应用在手写数字识别问题的卷积神经网络,在MNIST数据集中的正确率可以高达99.2%。
下面详细介绍一下LeNet-5模型工作的原理。
LeNet-5模型一共有7层,每层包含众多参数,也就是卷积神经网络中的参数。虽然层数只有7层,这在如今庞大的神经网络中可是说是非常少的了,但是包含了卷积层,池化层,全连接层,可谓麻雀虽小五脏俱全了。为了方便,我们把卷积层称为C层,下采样层叫做下采样层。
首先,输入层输入原始图像,原始图像被处理成32×32个像素点的值。然后,后面的隐层计在卷积和子抽样之间交替进行。C1层是卷积层,包含了六个特征图。每个映射也就是28x28个神经元。卷积核可以是5x5的十字形,这28×28个神经元共享卷积核权值参数,通过卷积运算,原始信号特征增强,同时也降低了噪声,当卷积核不同时,提取到图像中的特征不同;C2层是一个池化层,池化层的功能在上文已经介绍过了,它将局部像素值平均化来实现子抽样。
池化层包含了六个特征映射,每个映射的像素值为14x14,这样的池化层非常重要,可以在一定程度上保证网络的特征被提取,同时运算量也大大降低,减少了网络结构过拟合的风险。因为卷积层与池化层是交替出现的,所以隐藏层的第三层又是一个卷积层,第二个卷积层由16个特征映射构成,每个特征映射用于加权和计算的卷积核为10x10的。第四个隐藏层,也就是第二个池化层同样包含16个特征映射,每个特征映射中所用的卷积核是5x5的。第五个隐藏层是用5x5的卷积核进行运算,包含了120个神经元,也是这个网络中卷积运算的最后一层。
之后的第六层便是全连接层,包含了84个特征图。全连接层中对输入进行点积之后加入偏置,然后经过一个激活函数传输给输出层的神经元。最后一层,也就是第七层,为了得到输出向量,设置了十个神经元来进行分类,相当于输出一个包含十个元素的一维数组,向量中的十个元素即0到9。
AlexNet模型
AlexNet简介
2012年Imagenet图像识别大赛中,Alext提出的alexnet网络模型一鸣惊人,引爆了神经网络的应用热潮,并且赢得了2012届图像识别大赛的冠军,这也使得卷积神经网络真正意义上成为图像处理上的核心算法。上文介绍的LeNet-5出现在上个世纪,虽然是经典,但是迫于种种复杂的现实场景限制,只能在一些领域应用。不过,随着SVM等手工设计的特征的飞速发展,LeNet-5并没有形成很大的应用状况。随着ReLU与dropout的提出,以及GPU带来算力突破和互联网时代大数据的爆发,卷积神经网络带来历史的突破,AlexNet的提出让深度学习走上人工智能的最前端。
图像预处理
AlexNet的训练数据采用ImageNet的子集中的ILSVRC2010数据集,包含了1000类,共1.2百万的训练图像,50000张验证集,150000张测试集。在进行网络训练之前我们要对数据集图片进行预处理。首先我们要将不同分辨率的图片全部变成256x256规格的图像,变换方法是将图片的短边缩放到 256像素值,然后截取长边的中间位置的256个像素值,得到256x256大小的图像。除了对图片大小进行预处理,还需要对图片减均值,一般图像均是由RGB三原色构成,均值按RGB三分量分别求得,由此可以更加突出图片的特征,更方便后面的计算。
此外,对了保证训练的效果,我们仍需对训练数据进行更为严苛的处理。在256x256大小的图像中,截取227x227大小的图像,在此之后对图片取镜像,这样就使得原始数据增加了(256-224)x(256-224)x2= 2048倍。最后对RGB空间做PCA,然后对主成分做(0,0.1)的高斯扰动,结果使错误率下降1%。对测试数据而言,抽取以图像4个角落的大小为224224的图像,中心的224224大小的图像以及它们的镜像翻转图像,这样便可以获得10张图像,我们便可以利用softmax进行预测,对所有预测取平均作为最终的分类结果。
ReLU激活函数
之前我们提到常用的非线性的激活函数是sigmoid,它能够把输入的连续实值全部确定在0和1之间。但是这带来一个问题,当一个负数的绝对值很大时,那么输出就是0;如果是绝对值非常大的正数,输出就是1。这就会出现饱和的现象,饱和现象中神经元的梯度会变得特别小,这样必然会使得网络的学习更加困难。此外,sigmoid的output的值并不是0为均值,因为这会导致上一层输出的非0均值信号会直接输入到后一层的神经元上。所以AlexNet模型提出了ReLU函数,公式:f(x)=max(0,x)f(x)=max(0,x)。
用ReLU代替了Sigmoid,发现使用 ReLU 得到的SGD的收敛速度会比 sigmoid快很多,这成了AlexNet模型的优势之一。
Dropout
AlexNet模型提出了一个有效的模型组合方式,相比于单模型,只需要多花费一倍的时间,这种方式就做Dropout。在整个神经网络中,随机选取一半的神经元将它们的输出变成0。这种方式使得网络关闭了部分神经元,减少了过拟合现象。同时训练的迭代次数也得以增加。当时一个GTX580 GPU只有3GB内存,这使得大规模的运算成为不可能。但是,随着硬件水平的发展,当时的GPU已经可以实现并行计算了,并行计算之后两块GPU可以互相通信传输数据,这样的方式充分利用了GPU资源,所以模型设计利用两个GPU并行运算,大大提高了运算效率。
模型分析
AlexNet模型共有8层结构,其中前5层为卷积层,其中前两个卷积层和第五个卷积层有池化层,其他卷积层没有。后面3层为全连接层,神经元约有六十五万个,所需要训练的参数约六千万个。
图片预处理过后,进过第一个卷积层C1之后,原始的图像也就变成了55x55的像素大小,此时一共有96个通道。模型分为上下两块是为了方便GPU运算,48作为通道数目更加适合GPU的并行运算。上图的模型里把48层直接变成了一个面,这使得模型看上去更像一个立方体,大小为55x55x48。在后面的第二个卷积层C2中,卷积核的尺寸为5x5x48,由此再次进行卷积运算。在C1,C2卷积层的卷积运算之后,都会有一个池化层,使得提取特征之后的特征图像素值大大减小,方便了运算,也使得特征更加明显。而第三层的卷积层C3又是更加特殊了。第三层卷积层做了通道的合并,将之前两个通道的数据再次合并起来,这是一种串接操作。第三层后,由于串接,通道数变成256。全卷积的卷积核尺寸也就变成了13×13×25613×13×256。一个有4096个这样尺寸的卷积核分别对输入图像做4096次的全卷积操作,最后的结果就是一个列向量,一共有4096个数。这也就是最后的输出,但是AlexNet最终是要分1000个类,所以通过第八层,也就是全连接的第三层,由此得到1000个类输出。
Alexnet网络中各个层发挥了不同的作用,ReLU,多个CPU是为了提高训练速度,重叠pool池化是为了提高精度,且不容易产生过拟合,局部归一化响应是为了提高精度,而数据增益与dropout是为了减少过拟合。
VGG net
在ILSVRC-2014中,牛津大学的视觉几何组提出的VGGNet模型在定位任务第一名和分类任务第一名[[i]]。如今在计算机视觉领域,卷积神经网络的良好效果深得广大开发者的喜欢,并且上文提到的AlexNet模型拥有更好的效果,所以广大从业者学习者试图将其改进以获得更好地效果。而后来很多人经过验证认为,AlexNet模型中所谓的局部归一化响应浪费了计算资源,但是对性能却没有很大的提升。VGG的实质是AlexNet结构的增强版,它侧重强调卷积神经网络设计中的深度。将卷积层的深度提升到了19层,并且在当年的ImageNet大赛中的定位问题中获得了第一名的好成绩。整个网络向人们证明了我们是可以用很小的卷积核取得很好地效果,前提是我们要把网络的层数加深,这也论证了我们要想提高整个神经网络的模型效果,一个较为有效的方法便是将它的深度加深,虽然计算量会大大提高,但是整个复杂度也上升了,更能解决复杂的问题。虽然VGG网络已经诞生好几年了,但是很多其他网络上效果并不是很好地情况下,VGG有时候还能够发挥它的优势,让人有意想不到的收获。
与AlexNet网络非常类似,VGG共有五个卷积层,并且每个卷积层之后都有一个池化层。当时在ImageNet大赛中,作者分别尝试了六种网络结构。这六种结构大致相同,只是层数不同,少则11层,多达19层。网络结构的输入是大小为224*224的RGB图像,最终将分类结果输出。当然,在输入网络时,图片要进行预处理。
VGG网络相比AlexNet网络,在网络的深度以及宽度上做了一定的拓展,具体的卷积运算还是与AlexNet网络类似。我们主要说明一下VGG网络所做的改进。第一点,由于很多研究者发现归一化层的效果并不是很好,而且占用了大量的计算资源,所以在VGG网络中作者取消了归一化层;第二点,VGG网络用了更小的3x3的卷积核,而两个连续的3x3的卷积核相当于5x5的感受野,由此类推,三个3x3的连续的卷积核也就相当于7x7的感受野。这样的变化使得参数量更小,节省了计算资源,将资源留给后面的更深层次的网络。第三点是VGG网络中的池化层特征池化核改为了2x2,而在AlexNet网络中池化核为3x3。这三点改进无疑是使得整个参数运算量下降,这样我们在有限的计算平台上能够获得更多的资源留给更深层的网络。由于层数较多,卷积核比较小,这样使得整个网络的特征提取效果很好。其实由于VGG的层数较多,所以计算量还是相当大的,卷积层比较多成了它最显着的特点。另外,VGG网络的拓展性能比较突出,结构比较简洁,所以它的迁移性能比较好,迁移到其他数据集的时候泛化性能好。到现在为止,VGG网络还经常被用来提出特征。所以当现在很多较新的模型效果不好时,使用VGG可能会解决这些问题。
GoogleNet
谷歌于2014年Imagenet挑战赛(ILSVRC14)凭借GoogleNet再次斩获第一名。这个通过增加了神经网络的深度和宽度获得了更好地效果,在此过程中保证了计算资源的不变。这个网络论证了加大深度,宽度以及训练数据的增加是现有深度学习获得更好效果的主要方式。但是增加尺寸可能会带来过拟合的问题,因为深度与宽度的加深必然会带来过量的参数。此外,增加网络尺寸也带来了对计算资源侵占过多的缺点。为了保证计算资源充分利用的前提下去提高整个模型的性能,作者使用了Inception模型,这个模型在下图中有展示,可以看出这个有点像金字塔的模型在宽度上使用并联的不同大小的卷积核,增加了卷积核的输出宽度。因为使用了较大尺度的卷积核增加了参数。使用了1*1的卷积核就是为了使得参数的数量最少。
Inception模块
上图表格为网络分析图,第一行为卷积层,输入为224×224×3 ,卷积核为7x7,步长为2,padding为3,输出的维度为112×112×64,这里面的7x7卷积使用了 7×1 然后 1×7 的方式,这样便有(7+7)×64×3=2,688个参数。第二行为池化层,卷积核为3×33×3,滑动步长为2,padding为 1 ,输出维度:56×56×64,计算方式:1/2×(112+2×1?3+1)=56。第三行,第四行与第一行,第二行类似。第 5 行 Inception mole中分为4条支线,输入均为上层产生的 28×28×192 结果:第 1 部分,1×1 卷积层,输出大小为28×28×64;第 2 部分,先1×1卷积层,输出大小为28×28×96,作为输入进行3×3卷积层,输出大小为28×28×128;第 3部分,先1×1卷积层,输出大小为28×28×32,作为输入进行3×3卷积层,输出大小为28×28×32;而第3 部分3×3的池化层,输出大小为输出大小为28×28×32。第5行的Inception mole会对上面是个结果的输出结果并联,由此增加网络宽度。
ResNet
2015年ImageNet大赛中,MSRA何凯明团队的ResialNetworks力压群雄,在ImageNet的诸多领域的比赛中上均获得了第一名的好成绩,而且这篇关于ResNet的论文Deep Resial Learning for Image Recognition也获得了CVPR2016的最佳论文,实至而名归。
上文介绍了的VGG以及GoogleNet都是增加了卷积神经网络的深度来获得更好效果,也让人们明白了网络的深度与广度决定了训练的效果。但是,与此同时,宽度与深度加深的同时,效果实际会慢慢变差。也就是说模型的层次加深,错误率提高了。模型的深度加深,以一定的错误率来换取学习能力的增强。但是深层的神经网络模型牺牲了大量的计算资源,学习能力提高的同时不应当产生比浅层神经网络更高的错误率。这个现象的产生主要是因为随着神经网络的层数增加,梯度消失的现象就越来越明显。所以为了解决这个问题,作者提出了一个深度残差网络的结构Resial:
上图就是残差网络的基本结构,可以看出其实是增加了一个恒等映射,将原本的变换函数H(x)转换成了F(x)+x。示意图中可以很明显看出来整个网络的变化,这样网络不再是简单的堆叠结构,这样的话便很好地解决了由于网络层数增加而带来的梯度原来越不明显的问题。所以这时候网络可以做得很深,到目前为止,网络的层数都可以上千层,而能够保证很好地效果。并且,这样的简单叠加并没有给网络增加额外的参数跟计算量,同时也提高了网络训练的效果与效率。
在比赛中,为了证明自己观点是正确的,作者控制变量地设计几个实验。首先作者构建了两个plain网络,这两个网络分别为18层跟34层,随后作者又设计了两个残差网络,层数也是分别为18层和34层。然后对这四个模型进行控制变量的实验观察数据量的变化。下图便是实验结果。实验中,在plain网络上观测到明显的退化现象。实验结果也表明,在残差网络上,34层的效果明显要好于18层的效果,足以证明残差网络随着层数增加性能也是增加的。不仅如此,残差网络的在更深层的结构上收敛性能也有明显的提升,整个实验大为成功。
除此之外,作者还做了关于shortcut方式的实验,如果残差网络模块的输入输出维度不一致,我们如果要使维度统一,必须要对维数较少的进行増维。而增维的最好效果是用0来填充。不过实验数据显示三者差距很小,所以线性投影并不是特别需要。使用0来填充维度同时也保证了模型的复杂度控制在比较低的情况下。
随着实验的深入,作者又提出了更深的残差模块。这种模型减少了各个层的参数量,将资源留给更深层数的模型,在保证复杂度很低的情况下,模型也没有出现梯度消失很明显的情况,因此目前模型最高可达1202层,错误率仍然控制得很低。但是层数如此之多也带来了过拟合的现象,不过诸多研究者仍在改进之中,毕竟此时的ResNet已经相对于其他模型在性能上遥遥领先了。
残差网络的精髓便是shortcut。从一个角度来看,也可以解读为多种路径组合的一个网络。如下图:
ResNet可以做到很深,但是从上图中可以体会到,当网络很深,也就是层数很多时,数据传输的路径其实相对比较固定。我们似乎也可以将其理解为一个多人投票系统,大多数梯度都分布在论文中所谓的effective path上。
DenseNet
在Resnet模型之后,有人试图对ResNet模型进行改进,由此便诞生了ResNeXt模型。
这是对上面介绍的ResNet模型结合了GoogleNet中的inception模块思想,相比于Resnet来说更加有效。随后,诞生了DenseNet模型,它直接将所有的模块连接起来,整个模型更加简单粗暴。稠密相连成了它的主要特点。
我们将DenseNet与ResNet相比较:
从上图中可以看出,相比于ResNet,DenseNet参数量明显减少很多,效果也更加优越,只是DenseNet需要消耗更多的内存。
总结
上面介绍了卷积神经网络发展史上比较着名的一些模型,这些模型非常经典,也各有优势。在算力不断增强的现在,各种新的网络训练的效率以及效果也在逐渐提高。从收敛速度上看,VGG>Inception>DenseNet>ResNet,从泛化能力来看,Inception>DenseNet=ResNet>VGG,从运算量看来,Inception<DenseNet< ResNet<VGG,从内存开销来看,Inception<ResNet< DenseNet<VGG。在本次研究中,我们对各个模型均进行了分析,但从效果来看,ResNet效果是最好的,优于Inception,优于VGG,所以我们第四章实验中主要采用谷歌的Inception模型,也就是GoogleNet。
3. 请问卷积神经网络的概念谁最早在学术界提出的
福岛邦彦。
2021年4月29日,福岛邦彦(Kunihiko Fukushima)获得 2021 年鲍尔科学成就奖。他为深度学习做出了杰出贡献,其最有影响力的工作当属“Neocognitron”卷积神经网络架构。
其实,熟悉这位Jürgen Schmidhuber人都知道,他此前一直对自己在深度学习领域的早期原创性成果未能得到业界广泛承认而耿耿于怀。
严格意义上讲,LeCun是第一个使用误差反向传播训练卷积神经网络(CNN)架构的人,但他并不是第一个发明这个结构的人。而福岛博士引入的Neocognitron,是第一个使用卷积和下采样的神经网络,也是卷积神经网络的雏形。
福岛邦彦(Kunihiko Fukushima)设计的具有学习能力的人工多层神经网络,可以模仿大脑的视觉网络,这种“洞察力”成为现代人工智能技术的基础。福岛博士的工作带来了一系列实际应用,从自动驾驶汽车到面部识别,从癌症检测到洪水预测,还会有越来越多的应用。
4. 卷积神经网络
关于花书中卷积网络的笔记记录于 https://www.jianshu.com/p/5a3c90ea0807 。
卷积神经网络(Convolutional Neural Network,CNN或ConvNet)是一种具有 局部连接、权重共享 等特性的深层前馈神经网络。卷积神经网络是受生物学上感受野的机制而提出。 感受野(Receptive Field) 主要是指听觉、视觉等神经系统中一些神经元的特性,即 神经元只接受其所支配的刺激区域内的信号 。
卷积神经网络最早是主要用来处理图像信息。如果用全连接前馈网络来处理图像时,会存在以下两个问题:
目前的卷积神经网络一般是由卷积层、汇聚层和全连接层交叉堆叠而成的前馈神经网络,使用反向传播算法进行训练。 卷积神经网络有三个结构上的特性:局部连接,权重共享以及汇聚 。这些特性使卷积神经网络具有一定程度上的平移、缩放和旋转不变性。
卷积(Convolution)是分析数学中一种重要的运算。在信号处理或图像处理中,经常使用一维或二维卷积。
一维卷积经常用在信号处理中,用于计算信号的延迟累积。假设一个信号发生器每个时刻t 产生一个信号 ,其信息的衰减率为 ,即在 个时间步长后,信息为原来的 倍。假设 ,那么在时刻t收到的信号 为当前时刻产生的信息和以前时刻延迟信息的叠加:
我们把 称为 滤波器(Filter)或卷积核(Convolution Kernel) 。假设滤波器长度为 ,它和一个信号序列 的卷积为:
信号序列 和滤波器 的卷积定义为:
一般情况下滤波器的长度 远小于信号序列长度 ,下图给出一个一维卷积示例,滤波器为 :
二维卷积经常用在图像处理中。因为图像为一个两维结构,所以需要将一维卷积进行扩展。给定一个图像 和滤波器 ,其卷积为:
下图给出一个二维卷积示例:
注意这里的卷积运算并不是在图像中框定卷积核大小的方框并将各像素值与卷积核各个元素相乘并加和,而是先把卷积核旋转180度,再做上述运算。
在图像处理中,卷积经常作为特征提取的有效方法。一幅图像在经过卷积操作后得到结果称为 特征映射(Feature Map) 。
最上面的滤波器是常用的高斯滤波器,可以用来对图像进行 平滑去噪 ;中间和最下面的过滤器可以用来 提取边缘特征 。
在机器学习和图像处理领域,卷积的主要功能是在一个图像(或某种特征)上滑动一个卷积核(即滤波器),通过卷积操作得到一组新的特征。在计算卷积的过程中,需要进行卷积核翻转(即上文提到的旋转180度)。 在具体实现上,一般会以互相关操作来代替卷积,从而会减少一些不必要的操作或开销。
互相关(Cross-Correlation)是一个衡量两个序列相关性的函数,通常是用滑动窗口的点积计算来实现 。给定一个图像 和卷积核 ,它们的互相关为:
互相关和卷积的区别仅在于卷积核是否进行翻转。因此互相关也可以称为不翻转卷积 。当卷积核是可学习的参数时,卷积和互相关是等价的。因此,为了实现上(或描述上)的方便起见,我们用互相关来代替卷积。事实上,很多深度学习工具中卷积操作其实都是互相关操作。
在卷积的标准定义基础上,还可以引入滤波器的 滑动步长 和 零填充 来增加卷积多样性,更灵活地进行特征抽取。
滤波器的步长(Stride)是指滤波器在滑动时的时间间隔。
零填充(Zero Padding)是在输入向量两端进行补零。
假设卷积层的输入神经元个数为 ,卷积大小为 ,步长为 ,神经元两端各填补 个零,那么该卷积层的神经元数量为 。
一般常用的卷积有以下三类:
因为卷积网络的训练也是基于反向传播算法,因此我们重点关注卷积的导数性质:
假设 。
, , 。函数 为一个标量函数。
则由 有:
可以看出, 关于 的偏导数为 和 的卷积 :
同理得到:
当 或 时, ,即相当于对 进行 的零填充。从而 关于 的偏导数为 和 的宽卷积 。
用互相关的“卷积”表示,即为(注意 宽卷积运算具有交换性性质 ):
在全连接前馈神经网络中,如果第 层有 个神经元,第 层有 个神经元,连接边有 个,也就是权重矩阵有 个参数。当 和 都很大时,权重矩阵的参数非常多,训练的效率会非常低。
如果采用卷积来代替全连接,第 层的净输入 为第 层活性值 和滤波器 的卷积,即:
根据卷积的定义,卷积层有两个很重要的性质:
由于局部连接和权重共享,卷积层的参数只有一个m维的权重 和1维的偏置 ,共 个参数。参数个数和神经元的数量无关。此外,第 层的神经元个数不是任意选择的,而是满足 。
卷积层的作用是提取一个局部区域的特征,不同的卷积核相当于不同的特征提取器。
特征映射(Feature Map)为一幅图像(或其它特征映射)在经过卷积提取到的特征,每个特征映射可以作为一类抽取的图像特征。 为了提高卷积网络的表示能力,可以在每一层使用多个不同的特征映射,以更好地表示图像的特征。
在输入层,特征映射就是图像本身。如果是灰度图像,就是有一个特征映射,深度 ;如果是彩色图像,分别有RGB三个颜色通道的特征映射,深度 。
不失一般性,假设一个卷积层的结构如下:
为了计算输出特征映射 ,用卷积核 分别对输入特征映射 进行卷积,然后将卷积结果相加,并加上一个标量偏置 得到卷积层的净输入 再经过非线性激活函数后得到输出特征映射 。
在输入为 ,输出为 的卷积层中,每个输出特征映射都需要 个滤波器以及一个偏置。假设每个滤波器的大小为 ,那么共需要 个参数。
汇聚层(Pooling Layer)也叫子采样层(Subsampling Layer),其作用是进行特征选择,降低特征数量,并从而减少参数数量。
常用的汇聚函数有两种:
其中 为区域 内每个神经元的激活值。
可以看出,汇聚层不但可以有效地减少神经元的数量,还可以使得网络对一些小的局部形态改变保持不变性,并拥有更大的感受野。
典型的汇聚层是将每个特征映射划分为 大小的不重叠区域,然后使用最大汇聚的方式进行下采样。汇聚层也可以看做是一个特殊的卷积层,卷积核大小为 ,步长为 ,卷积核为 函数或 函数。过大的采样区域会急剧减少神经元的数量,会造成过多的信息损失。
一个典型的卷积网络是由卷积层、汇聚层、全连接层交叉堆叠而成。
目前常用卷积网络结构如图所示,一个卷积块为连续 个卷积层和 个汇聚层( 通常设置为 , 为 或 )。一个卷积网络中可以堆叠 个连续的卷积块,然后在后面接着 个全连接层( 的取值区间比较大,比如 或者更大; 一般为 )。
目前,整个网络结构 趋向于使用更小的卷积核(比如 和 )以及更深的结构(比如层数大于50) 。此外,由于卷积的操作性越来越灵活(比如不同的步长),汇聚层的作用变得也越来越小,因此目前比较流行的卷积网络中, 汇聚层的比例也逐渐降低,趋向于全卷积网络 。
在全连接前馈神经网络中,梯度主要通过每一层的误差项 进行反向传播,并进一步计算每层参数的梯度。在卷积神经网络中,主要有两种不同功能的神经层:卷积层和汇聚层。而参数为卷积核以及偏置,因此 只需要计算卷积层中参数的梯度。
不失一般性,第 层为卷积层,第 层的输入特征映射为 ,通过卷积计算得到第 层的特征映射净输入 ,第 层的第 个特征映射净输入
由 得:
同理可得,损失函数关于第 层的第 个偏置 的偏导数为:
在卷积网络中,每层参数的梯度依赖其所在层的误差项 。
卷积层和汇聚层中,误差项的计算有所不同,因此我们分别计算其误差项。
第 层的第 个特征映射的误差项 的具体推导过程如下:
其中 为第 层使用的激活函数导数, 为上采样函数(upsampling),与汇聚层中使用的下采样操作刚好相反。如果下采样是最大汇聚(max pooling),误差项 中每个值会直接传递到上一层对应区域中的最大值所对应的神经元,该区域中其它神经元的误差项的都设为0。如果下采样是平均汇聚(meanpooling),误差项 中每个值会被平均分配到上一层对应区域中的所有神经元上。
第 层的第 个特征映射的误差项 的具体推导过程如下:
其中 为宽卷积。
LeNet-5虽然提出的时间比较早,但是是一个非常成功的神经网络模型。基于LeNet-5 的手写数字识别系统在90年代被美国很多银行使用,用来识别支票上面的手写数字。LeNet-5 的网络结构如图:
不计输入层,LeNet-5共有7层,每一层的结构为:
AlexNet是第一个现代深度卷积网络模型,其首次使用了很多现代深度卷积网络的一些技术方法,比如采用了ReLU作为非线性激活函数,使用Dropout防止过拟合,使用数据增强来提高模型准确率等。AlexNet 赢得了2012 年ImageNet 图像分类竞赛的冠军。
AlexNet的结构如图,包括5个卷积层、3个全连接层和1个softmax层。因为网络规模超出了当时的单个GPU的内存限制,AlexNet 将网络拆为两半,分别放在两个GPU上,GPU间只在某些层(比如第3层)进行通讯。
AlexNet的具体结构如下:
在卷积网络中,如何设置卷积层的卷积核大小是一个十分关键的问题。 在Inception网络中,一个卷积层包含多个不同大小的卷积操作,称为Inception模块。Inception网络是由有多个inception模块和少量的汇聚层堆叠而成 。
v1版本的Inception模块,采用了4组平行的特征抽取方式,分别为1×1、3× 3、5×5的卷积和3×3的最大汇聚。同时,为了提高计算效率,减少参数数量,Inception模块在进行3×3、5×5的卷积之前、3×3的最大汇聚之后,进行一次1×1的卷积来减少特征映射的深度。如果输入特征映射之间存在冗余信息, 1×1的卷积相当于先进行一次特征抽取 。
5. LeNet神经网络
LeNet神经网络由深度学习三巨头之一的Yan LeCun提出,他同时也是卷积神经网络 (CNN,Convolutional Neural Networks)之父。LeNet主要用来进行手写字符的识别与分类,并在美国的银行中投入了使用。LeNet的实现确立了CNN的结构,现在神经网络中的许多内容在LeNet的网络结构中都能看到,例如卷积层,Pooling层,ReLU层。虽然LeNet早在20世纪90年代就已经提出了,但由于当时缺乏大规模的训练数据,计算机硬件的性能也较低,因此LeNet神经网络在处理复杂问题时效果并不理想。虽然LeNet网络结构比较简单,但是刚好适合神经网络的入门学习。
LeNet的神经网络结构图如下:
LeNet网络的执行流程图如下:
接下来我们来具体的一层层的分析LeNet的网络结构。首先要了解图像(输入数据)的表示。在LeNet网络中,输入图像是手写字符,图像的表示形式为二维数据矩阵,如下念老图所示:
LeNet网络除去输入输出层总共有六层网络。第一层是卷积层(C1层),卷积核的大小为 5*5 ,卷积核数量为 6 个,输入图像的大小为 32*32 ,因此输入数据在进行第一层卷积之后,输出结果为大小为 28*28 ,数量为 6 个的feature map。卷积操作如下面两幅图所示:
卷积操作的过程可描述为:卷积核在图像上滑动,滑动步长为1(即每次移动一格,水平方向从左到右,到最右边之后再从最左边开始,向下移动一格,重复从左到右滑动),当卷积核与图像的一个局部块重合时进行卷积运行,卷积计算方式为图像块对应位置的数与卷积核对应位置的数相乘,然后将所有相乘结果相加即为feature map的值, 相乘累加之后的结果位于卷积核中心点的位置 ,因此如果是 3*3 的卷积核,feature map比原图像在水平和垂直方向上分别减少两行(上下各一行)和两列(左右各一列),因此上面图像原图为 5*5 ,卷积核为 3*3 ,卷积结果大小为 3*3 ,即 (5-2)*(5-2) ,如果卷积核为 5*5 ,则卷积结果大小为 (5-4)*(5-4) 。上图中的卷积核为:
由于神经网络层与层的结构是通过连接来实现的,因此输入层与第一个卷积层的连接数量应为 (32-2-2)*(32-2-2)*(5*5+1)*6= 28*28*156 =122304 。
卷积的作用主要是:通过卷积运算,可以使原信号特征增强,并且降低噪音。在图像上卷积之后主要是减少图像噪声,提取图像的特征。例如sobel算子就是一种卷积运算,主要是提友喊取图像的边缘特征。卷积网络能很好地适应图像的平移不变性:例如稍稍移动一幅猫的图像,它仍然是一幅猫的图像。卷积操作保留了图像块之间的空间信息,进行卷积操作的图像块之间的相对位置关系没有改变。图像在不同卷积仔告升核上进行卷积之后的效果图如下:
图像在LeNet网络上进行第一层卷积之后,结果为大小为 28*28 ,数量为 6 个的feature map。LeNet网络的第二层为pooling层(S2层),也称为下采样。在图像处理中,下采样之后,图像的大小会变为原来的 1/4 ,即水平方向和垂直方向上图像大小分别减半。Pooling有多种,这里主要介绍两种,max-pooling和average-pooling。max-pooling即为从四个元素中选取一个最大的来表示这四个元素,average-pooling则用四个元素的平均值来表示这四个元素。Pooling示意图如下:
在LeNet在进行第二层Pooling运算后,输出结果为 14*14 的 6 个feature map。其连接数为 (2*2+1) * 14 * 14 *6 = 5880 。Pooling层的主要作用就是减少数据,降低数据纬度的同时保留最重要的信息。在数据减少后,可以减少神经网络的纬度和计算量,可以防止参数太多过拟合。LeNet在这一层是将四个元素相加,然后乘以参数w再加上偏置b,然后计算sigmoid值。
LeNet第三层(C3层)也是卷积层,卷积核大小仍为 5*5 ,不过卷积核的数量变为 16 个。第三层的输入为 14*14 的 6 个feature map,卷积核大小为 5*5 ,因此卷积之后输出的feature map大小为 10*10 ,由于卷积核有 16 个,因此希望输出的feature map也为 16 个,但由于输入有 6 个feature map,因此需要进行额外的处理。输入的 6 个feature map与输出的 16 个feature map的关系图如下:
如上图所示,第一个卷积核处理前三幅输入的feature map,得出一个新的feature map。
上一层卷积运算之后,结果为大小为 10*10 的 16 个feature map,因此在第四层(S4层)进行pooling运算之后,输出结果为 16 个大小为 5*5 的feature map。与S2层进行同样的操作。
LeNet第五层是卷积层(C5层),卷积核数目为120个,大小为 5*5 ,由于第四层输出的feature map大小为 5*5 ,因此第五层也可以看成全连接层,输出为120个大小为 1*1 的feature map。
LeNet第六层是全连接层(F6层),有84个神经元(84与输出层的设计有关),与C5层全连接。
LeNet神经网络结构在Caffe中的配置文件如下:
参考资料:
1. https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/