❶ 网络流量和流量监控与分析
掌控者网络监控软件——内网版
一、 功能列表:
移动存储设备管理
安全审计、上网行为管理
电子文档控管、数据防泄密
IT资产管理、补丁管理
网络维护、流控管理
身份认证、接入控制
二、移动存储设备管理:
控制是否可以使用移动存储设备,支持分组、分个人、分时段。
分组、分个人、分时段注册移动存储设备,对移动存储设备存储区域进行加密处理。
对移动存储设备生物取样指纹鉴别,控制设备的读写权限。
对移动存储设备的插拔、在设备中读取、访问、新建、修改、剪切、复制、重命名、移动、删除等详细记录。
对设备中的数据操作权限做以精细化控制和管理,包括读取、修改和删除。有效防止对文档的非授权操作,避免重要文档被篡改或者恶意删掘宴除。
对在修改或者删除时对数据进行自动备份,主动防御数据破坏,以防万一。
三、安全审计 上网行为管理:
禁止或允许使用的应用软件,分时段控制,支持模糊关键字,如“QQ”
禁止或允许使用的应用软件,分时段控制, 支持模糊关键字,如“163”
可自定义客户端上网的时间,如:从周一、周四、8:00-12:00不能上网。
同时监控多个客户端屏幕,一屏显示支持2X2,3X3,4X4,远程截取客户端即时屏幕判核银。
远程实时监视屏幕并录像,可后台播放所有记录屏幕影像。
记录上网信息,对客户端所登录的网站进行详细记录,统计每日上网(数据、饼图、柱图)。
详细记录文件复制、粘贴、剪切、改名、删除等操作,统计应用行为(数据、饼图、柱图)。
保护客户端文件,可设定访问、修改、改名或删除等文件操作权限。
对客户端打印的文件的名字和页数及其相关内容记录。
对QQ/MSN/TM/RTX/SKYPE/贸易通/UC/雅虎通/淘宝旺旺等聊天内容监控记录。
监控客户端在论坛和各网站上发布的帖子。
管理客户端在论坛和各网站上可发跌的内容或禁止发帖。
监控客户端的邮件发送的正文、标题、收发件人以及附件
客户端异常、非法卸载等报警,可自动阻断、关机 、启动 、发通知信息。
对网络客户端流量进行监控报警,客户端输入或输出流量超过管理员设定阈值时报警,可自动阻断、关机 、启动 、发通知信息。
客户端硬件信息变化报警,可自动阻断、关机 、启动 、发通知信息。
客户端软件信息变化报警,可自动阻断、关机 、启动 、发通知信息。
非法连接互联网报警,可自动阻断、关机 、启动 、发通知信息。
非法外来设备报警,可自动阻断、关机 、启动 、发通知信息。
四、电子文档控管、数据防泄密:
在不影响用户使用习惯的情况下,强制透明自 动加密涉密资料以及重要数据;控制泄密资料以邮件、即时通信工具、 U盘拷贝等方式泄密。即使发到外网数据在没有客户端的情况下无法正常使用,强制打开将以乱码方式显示,看不到文件的明文。这也是杜绝泄密的有效办法从 泄密文件根源上来解决问题。
软件预置大量常见格式,特殊格式可自定义,对任何文件加密解密、对任何目录加密解密、发送加密文件到可信邮箱时文件具备自动解密功能。
解密数据流程化,各级领导协同审批。
根据单位组织架构指定不同的加密策略等级,将不同类型氏悉的图档根据实际情况设置为不同的密级,针对不同密级的文档,只有特定的用户拥有该密级权限方可查看。
对脱离局域网的外网用户,如:合作伙伴、供应商等离线文件操作保护,对移动办公用户进行灵活合理的控制。
定义终端用户可以对文件访问、修改、删除权限。
以部门为单位定义要加密的图档格式,定义登录人员可浏览的图档格式。
制定客户端机器的某些文档或目录禁止被剪切、复制、删除、重命名,从而保障文档的安全性,不被误删除或非法删除。
客户端机器重要文件进行自动备份或手动备份,做到重要文档的安全备份,保障公司资料安全。核心资料因故意破坏或者异常操作删除时,系统自动备份破坏删除的文件到服务器。
五、网络维护、流控管理:
对客户端ip、mac进行绑定,对私自拨号非法外联、无线网卡进行限制禁用。
禁止使用或允许修改IP地址,网关,DNS等信息。
对终端机器的违规行为进行报警,多种处理方式:锁定键盘鼠标、注销 重启 关机、远程通知等。
对客户端进行远程网络配置,如:IP地址,网关,DNS,电脑名称等信息。
对所有计算机批量网络配置,如:IP地址,网关,DNS等信息。
禁止使用或允许修改IP地址,网关,DNS等信息。
禁止使用或允许使用“拨号连接 非法外联”。
远程修改客户端IE设置,如:主页,安全级别等信息。
定时清理客户端垃圾文件。
管理客户端共享资源,可分类阻止共享任何文件夹。
远程调试客户端,可完全接管客户端的键盘,鼠标,屏幕。
集中、定时、不定时发送文件或安装程序。
arp防火墙实时保护客户端机器安全,杜绝arp病毒,arp拦截日志汇总。
客户端端口通信协议实时分析,跟踪记录。
内、外网即时流量管理,超过设定峰值报警。
历史流量统计,内网输出,输入,外网输出,输入。
互联网流量控制,可分配客户端带宽,如最大流量100K。
协议和网络端口控制可阻断客户端的相关协议和端口。
检测和防止非法机器接入内网,一旦接入,自动阻断。
六、身份认证、接入控制:
强身份认证:非授权用户接入网络需要身份认证,在用户身份认证时,可绑定用户接入IP、MAC、接入备IP、端口等信息,进行强身份认证,防止帐号盗用、限定帐号所使用的终端,确保接入用户的身份安全。
网络隔离区:对于安全状态评估不合格的用户,可以限制其访问权限,被隔离到网络隔离区,待危险终端到达安全级别后方可入网。
软件安装和运行检测:检测终端软件的安装和运行状态。可以限制接入网络的用户必须安装、运行或禁安装、运行其中某些软件。对于不符合安全策略的用户可以记录日志、提醒或隔离。
终端授信认证:对于外来计算机由于业务需要接入内网或者访问Internet时,针对对方IP、MAC等端口做授信暂时放行。
内网安全域:可以限制用户只能在允许的时间和网络IP段内(接入设备和端口)使用网络。
1、 上网行为审计
看似正常的上网行为背后,实际隐藏着巨大的“看不见管不住”的风险,原因在于缺乏监督用户上网行为的有效手段,上网行为管理产品可以全面记录用户上网行为、上网时长等信息,通过庞大的应用协议特征库和URL库去定位违规操作,便于取证溯源;
2、 上网行为管控
可禁止员工访问跟工作无关的应用,比如:游戏、股票、视频、微博、娱乐新闻等。并可以限制员工的上网动作,比如:允许下载文件,但禁止上传、发送文件等操作;
3、 信息泄密管理
可根据制定敏关键字、敏感文件策略、文件传输协议等方式阻止员工通过邮件、聊天软件、论坛、等方式,将内部的重要文件(敏感信息)外发,导致造成信息泄露等安全事故;
4、 上网流量管控
限制员工在特定时间的上网访问权限,例如可限制视频、音乐、下载、P2P等无关流量,提升公司上网办公效率。可分时段对流量进行管控,上班时间禁止看视频下载、而午休时间允许。同时可以灵活调整行为管控策略,对不同用户不同用户组有相应的限制措施;
5、 上网认证管理
可以支持多种上网认证如本地认证、Portal认证、第三方认证系统对接等认证方式,规范上网操作,确保只有经过认证的人员才能使用公司网络。
❸ 异常检测有哪些主要的分析方法
1. 概率统计方法
在基于异常锋姿检测技术的IDS中应用最早也是最多的一种方法。
首先要对系统或用户的行为按照一定的时间间隔进行采样,样本的内容包括每个会话的登录、退出情况,CPU和内存的占用情况,硬盘等存储介质的使用情况等。
将每次采集到的样本进行计算,得出一系列的参数变量对这些行为进行描述,从而产生行为轮廓,将每次采样后得到的行为轮廓与已有轮廓进行合并,最终得到系统和用户的正常行为轮廓。IDS通过将当前采集到的行为轮廓与正常行为轮廓相比较,来检测是否存在网络入侵行为。
2. 预测模式生成法
假设条件是事件序列不是随机的而是遵循可辨别的模式。这种检测方法的特点是考虑了事件的序列及其相互联系,利用时间规则识别用户行为正常模式的特征。通过归纳学习产生这些规则集,并能动态地修改系统中的这些规则,使之具有较高的预测性、准确性。如果规则在大部分时间是正确的,并能够成功地运用预测所观察到的数据,那么规则就具有高可信度。
3. 神经网络方法
基本思想是用一系列信息单元(命令)训练神经单元,这样在给定一组输入后、就可能预测出输出。与统计理论相比,神经网络更好地表达了变量间的非线性关系,并且能自睁基兆动学习并更新。悉租实验表明UNIX系统管理员的行为几乎全是可以预测的,对于一般用户,不可预测的行为也只占了很少的一部分。
❹ 如何做用户异常行为分析
内部员工具备合法访问内部数据的权限,其主观恶意的行为在传统安全方法看来没有任何问题,因此无法定位和检测。目前网康等安全厂商提出的比较有效的检测方法是通过用户行为分析检测内部威胁。用户行为异常是内部威胁、定向攻击和财务诈骗的察芹灶早期信号,通过收集用户行为数据,使用大数据技术进行建模并建立用户行为基线,就可以发现用户异常行为,首旅从而帮助企业和组织及时发现问题并处理。配合防火墙、DLP、上网行败扮为管理等产品的阻断能力,可以实现对内部威胁的闭环解决方案。
❺ 什么叫互联网用户行为分析
用户行为分析,是指在获得网站访问量基本数据的情况下,对有关数据进行统计、分析,从中发现用户访问网站的规律,并将这些规律与网络营销策略等相结合,从而发现目前网络营销带前活动中可能存在的问题,并为进一步修正或重新制定网络营销策略提供依据。
用户行为分析应该包含以下重点分析数据: * 用户的来源地区、来路域名和页面; * 用户在网站的停留时戚扰间、跳出率、回访者、新访问者、回访次数、回访相隔天数; * 注册用户和非注册用户,分析两者之间的浏览习惯; * 用户所使用的搜索引擎、关键词、关联关键词和站内关键字; * 用户选择什么样的入口形式(广告或者网站入口链接)更为有效; * 用户访问网站流程,用来分析页面结构设计是否合理; * 用户在页面上的网页热点图分布数据和网页覆盖图数据; * 用户在不同时段的访问量情况等: * 用户是否对于网站的字体颜色的喜好程度。
通过对用户行为监测获得的数据进行分析,可以让企业更加详细、清楚地了解用户的行为习惯,从而找出网站、推广渠道等企业营销环境存在的问题,有助于企业发掘高转化率页面,让企业的营销更加精准、有效,提高业务转化率,从而提升企业的广告收益。时下比较高行旦精准的用户行为分析工具有广东天拓研发的Topsem等
❻ “宏观网络流量”的定义是什么有哪些异常检测方法
一种互联网宏观流量异常检测方法(2007-11-7 10:37) 摘要:网络流量异常指网络中流量不规则地显着变化。网络短暂拥塞、分布式拒绝服务攻击、大范围扫描等本地事件或者网络路由异常等全局事件都能够引起网络的异常。网络异常的检测和分析对于网络安全应急响应部门非常重要,但是宏观流量异常检测需要从大量高维的富含噪声的数据中提取和解释异常模式,因此变得很困难。文章提出一种分析网络异常的通用方法,该方法运用主成分分析手段将高维空间划分为对应正常和异常网络行为的子空间,并将流量向量影射在正常子空间中,使用基于距离的度量来检测宏观网络流量异常事件。公共互联网正在社会生活的各个领域发挥着越来越重要的作用,与此同时,由互联网的开放性和应用系统的复杂性所带来的安全风险也随之增多。2006年,国家计算机网络应急技术处理协调中心(CNCERT/CC)共接收26 476件非扫描类网络安全事件报告,与2005年相比增加2倍,超过2003—2005年3年的总和。2006年,CNCERT/CC利用部署的863-917网络安全监测平台,抽样监测发现中国大陆地区约4.5万个IP地址的主机被植入木马,与2005年同期相比增加1倍;约有1千多万个IP地址的主机被植入僵尸程序,被境外约1.6万个主机进行控制。黑客利用木马、僵尸网络等技术操纵数万甚至上百万台被入侵的计算机,释放恶意代码、发送垃圾邮件,并实施分布式拒绝服务攻击,这对包括骨干网在内的整个互联网网络带来严重的威胁。由数万台机器同时发起的分布式拒绝服务攻击能够在短时间内耗尽城域网甚至骨干网的带宽,从而造成局部的互联网崩溃。由于政府、金融、证券、能源、海关等重要信息系统的诸多业务依赖互联网开展,互联网骨干网络的崩溃不仅会带来巨额的商业损失,还会严重威胁国家安全。据不完全统计,2001年7月19日爆发的红色代码蠕虫病毒造成的损失估计超过20亿美元;2001年9月18日爆发的Nimda蠕虫病毒造成的经济损失超过26亿美元;2003年1月爆发的SQL Slammer蠕虫病毒造成经济损失超过12亿美元。针对目前互联网宏观网络安全需求,本文研究并提出一种宏观网络流量异常检测方法,能够在骨干网络层面对流量异常进行分析,在大规模安全事件爆发时进行快速有效的监测,从而为网络防御赢得时间。1 网络流量异常检测研究现状在骨干网络层面进行宏观网络流量异常检测时,巨大流量的实时处理和未知攻击的检测给传统入侵检测技术带来了很大的挑战。在流量异常检测方面,国内外的学术机构和企业不断探讨并提出了多种检测方法[1]。经典的流量监测方法是基于阈值基线的检测方法,这种方法通过对历史数据的分析建立正常的参考基线范围,一旦超出此范围就判断为异常,它的特点是简单、计算复杂度小,适用于实时检测,然而它作为一种实用的检测手段时,需要结合网络流量的特点进行修正和改进。另一种常用的方法是基于统计的检测,如一般似然比(GLR)检测方法[2],它考虑两个相邻的时间窗口以及由这两个窗口构成的合并窗口,每个窗口都用自回归模型拟合,并计算各窗口序列残差的联合似然比,然后与某个预先设定的阈值T 进行比较,当超过阈值T 时,则窗口边界被认定为异常点。这种检测方法对于流量的突变检测比较有效,但是由于它的阈值不是自动选取,并且当异常持续长度超过窗口长度时,该方法将出现部分失效。统计学模型在流量异常检测中具有广阔的研究前景,不同的统计学建模方式能够产生不同的检测方法。最近有许多学者研究了基于变换域进行流量异常检测的方法[3],基于变换域的方法通常将时域的流量信号变换到频域或者小波域,然后依据变换后的空间特征进行异常监测。P. Barford等人[4]将小波分析理论运用于流量异常检测,并给出了基于其理论的4类异常结果,但该方法的计算过于复杂,不适于在高速骨干网上进行实时检测。Lakhina等人[5-6]利用主成分分析方法(PCA),将源和目标之间的数据流高维结构空间进行PCA分解,归结到3个主成分上,以3个新的复合变量来重构网络流的特征,并以此发展出一套检测方法。此外还有一些其他的监测方法[7],例如基于Markov模型的网络状态转换概率检测方法,将每种类型的事件定义为系统状态,通过过程转换模型来描述所预测的正常的网络特征,当到来的流量特征与期望特征产生偏差时进行报警。又如LERAD检测[8],它是基于网络安全特征的检测,这种方法通过学习得到流量属性之间的正常的关联规则,然后建立正常的规则集,在实际检测中对流量进行规则匹配,对违反规则的流量进行告警。这种方法能够对发生异常的地址进行定位,并对异常的程度进行量化。但学习需要大量正常模式下的纯净数据,这在实际的网络中并不容易实现。随着宏观网络异常流量检测成为网络安全的技术热点,一些厂商纷纷推出了电信级的异常流量检测产品,如Arbor公司的Peakflow、GenieNRM公司的GenieNTG 2100、NetScout公司的nGenius等。国外一些研究机构在政府资助下,开始部署宏观网络异常监测的项目,并取得了较好的成绩,如美国研究机构CERT建立了SiLK和AirCERT项目,澳大利亚启动了NMAC流量监测系统等项目。针对宏观网络异常流量监测的需要,CNCERT/CC部署运行863-917网络安全监测平台,采用分布式的架构,能够通过多点对骨干网络实现流量监测,通过分析协议、地址、端口、包长、流量、时序等信息,达到对中国互联网宏观运行状态的监测。本文基于863-917网络安全监测平台获取流量信息,构成监测矩阵,矩阵的行向量由源地址数量、目的地址数量、传输控制协议(TCP)字节数、TCP报文数、数据报协议(UDP)字节数、UDP报文数、其他流量字节数、其他流量报文书、WEB流量字节数、WEB流量报文数、TOP10个源IP占总字节比例、TOP10个源IP占总报文数比例、TOP10个目的IP占总字节数比例、TOP10个目的IP占总报文数比例14个部分组成,系统每5分钟产生一个行向量,观测窗口为6小时,从而形成了一个72×14的数量矩阵。由于在这14个观测向量之间存在着一定的相关性,这使得利用较少的变量反映原来变量的信息成为可能。本项目采用了主成份分析法对观测数据进行数据降维和特征提取,下面对该算法的工作原理进行介绍。 2 主成分分析技术主成分分析是一种坐标变换的方法,将给定数据集的点映射到一个新轴上面,这些新轴称为主成分。主成分在代数学上是p 个随机变量X 1, X 2……X p 的一系列的线性组合,在几何学中这些现线性组合代表选取一个新的坐标系,它是以X 1,X 2……X p 为坐标轴的原来坐标系旋转得到。新坐标轴代表数据变异性最大的方向,并且提供对于协方差结果的一个较为简单但更精练的刻画。主成分只是依赖于X 1,X 2……X p 的协方差矩阵,它是通过一组变量的几个线性组合来解释这些变量的协方差结构,通常用于高维数据的解释和数据的压缩。通常p 个成分能够完全地再现全系统的变异性,但是大部分的变异性常常能够只用少量k 个主成分就能够说明,在这种情况下,这k 个主成分中所包含的信息和那p 个原变量做包含的几乎一样多,于是可以使用k 个主成分来代替原来p 个初始的变量,并且由对p 个变量的n 次测量结果所组成的原始数据集合,能够被压缩成为对于k 个主成分的n 次测量结果进行分析。运用主成分分析的方法常常能够揭示出一些先前不曾预料的关系,因而能够对于数据给出一些不同寻常的解释。当使用零均值的数据进行处理时,每一个主成分指向了变化最大的方向。主轴以变化量的大小为序,一个主成分捕捉到在一个轴向上最大变化的方向,另一个主成分捕捉到在正交方向上的另一个变化。设随机向量X '=[X 1,X 1……X p ]有协方差矩阵∑,其特征值λ1≥λ2……λp≥0。考虑线性组合:Y1 =a 1 'X =a 11X 1+a 12X 2……a 1pX pY2 =a 2 'X =a 21X 1+a 22X 2……a 2pX p……Yp =a p'X =a p 1X 1+a p 2X 2……a p pX p从而得到:Var (Yi )=a i' ∑a i ,(i =1,2……p )Cov (Yi ,Yk )=a i '∑a k ,(i ,k =1,2……p )主成分就是那些不相关的Y 的线性组合,它们能够使得方差尽可能大。第一主成分是有最大方差的线性组合,也即它能够使得Var (Yi )=a i' ∑a i 最大化。我们只是关注有单位长度的系数向量,因此我们定义:第1主成分=线性组合a 1'X,在a1'a 1=1时,它能够使得Var (a1 'X )最大;第2主成分=线性组合a 2 'X,在a2'a 2=1和Cov(a 1 'X,a 2 'X )=0时,它能够使得Var (a 2 'X )最大;第i 个主成分=线性组合a i'X,在a1'a 1=1和Cov(a i'X,a k'X )=0(k<i )时,它能够使得Var (a i'X )最大。由此可知主成分都是不相关的,它们的方差等于协方差矩阵的特征值。总方差中属于第k个主成分(被第k个主成分所解释)的比例为:如果总方差相当大的部分归属于第1个、第2个或者前几个成分,而p较大的时候,那么前几个主成分就能够取代原来的p个变量来对于原有的数据矩阵进行解释,而且信息损失不多。在本项目中,对于一个包含14个特征的矩阵进行主成分分析可知,特征的最大变化基本上能够被2到3个主成分捕捉到,这种主成分变化曲线的陡降特性构成了划分正常子空间和异常子空间的基础。3 异常检测算法本项目的异常流量检测过程分为3个阶段:建模阶段、检测阶段和评估阶段。下面对每个阶段的算法进行详细的介绍。3.1 建模阶段本项目采用滑动时间窗口建模,将当前时刻前的72个样本作为建模空间,这72个样本的数据构成了一个数据矩阵X。在试验中,矩阵的行向量由14个元素构成。主成份分为正常主成分和异常主成份,它们分别代表了网络中的正常流量和异常流量,二者的区别主要体现在变化趋势上。正常主成份随时间的变化较为平缓,呈现出明显的周期性;异常主成份随时间的变化幅度较大,呈现出较强的突发性。根据采样数据,判断正常主成分的算法是:依据主成分和采样数据计算出第一主成分变量,求第一主成分变量这72个数值的均值μ1和方差σ1,找出第一主成分变量中偏离均值最大的元素,判断其偏离均值的程度是否超过了3σ1。如果第一主成分变量的最大偏离超过了阈值,取第一主成份为正常主成分,其他主成份均为异常主成分,取主成份转换矩阵U =[L 1];如果最大偏离未超过阈值,转入判断第下一主成分,最后取得U =[L 1……L i -1]。第一主成份具有较强的周期性,随后的主成份的周期性渐弱,突发性渐强,这也体现了网络中正常流量和异常流量的差别。在得到主成份转换矩阵U后,针对每一个采样数据Sk =xk 1,xk 2……xk p ),将其主成份投影到p维空间进行重建,重建后的向量为:Tk =UU T (Sk -X )T计算该采样数据重建前与重建后向量之间的欧氏距离,称之为残差:dk =||Sk -Tk ||根据采样数据,我们分别计算72次采样数据的残差,然后求其均值μd 和标准差σd 。转换矩阵U、残差均值μd 、残差标准差σd 是我们构造的网络流量模型,也是进行流量异常检测的前提条件。 3.2 检测阶段在通过建模得到网络流量模型后,对于新的观测向量N,(n 1,n 2……np ),采用与建模阶段类似的分析方法,将其中心化:Nd =N -X然后将中心化后的向量投影到p维空间重建,并计算残差:Td =UUTNdTd =||Nd -Td ||如果该观测值正常,则重建前与重建后向量应该非常相似,计算出的残差d 应该很小;如果观测值代表的流量与建模时发生了明显变化,则计算出的残差值会较大。本项目利用如下算法对残差进行量化:3.3 评估阶段评估阶段的任务是根据当前观测向量的量化值q (d ),判断网络流量是否正常。根据经验,如果|q (d )|<5,网络基本正常;如果5≤|q (d )|<10,网络轻度异常;如果10≤|q (d )|,网络重度异常。4 实验结果分析利用863-917网络安全监测平台,对北京电信骨干网流量进行持续监测,我们提取6小时的观测数据,由于篇幅所限,我们给出图1—4的时间序列曲线。由图1—4可知单独利用任何一个曲线都难以判定异常,而利用本算法可以容易地标定异常发生的时间。本算法计算结果如图5所示,异常发生时间在图5中标出。我们利用863-917平台的回溯功能对于异常发生时间进行进一步的分析,发现在标出的异常时刻,一个大规模的僵尸网络对网外的3个IP地址发起了大规模的拒绝服务攻击。 5 结束语本文提出一种基于主成分分析的方法来划分子空间,分析和发现网络中的异常事件。本方法能够准确快速地标定异常发生的时间点,从而帮助网络安全应急响应部门及时发现宏观网络的流量异常状况,为迅速解决网络异常赢得时间。试验表明,我们采用的14个特征构成的分析矩阵具有较好的识别准确率和分析效率,我们接下来将会继续寻找更具有代表性的特征来构成数据矩阵,并研究更好的特征矩阵构造方法来进一步提高此方法的识别率,并将本方法推广到短时分析中。6 参考文献[1] XU K, ZHANG Z L, BHATTACHARYYA S. Profiling Internet backbone traffic: Behavior models and applications [C]// Proceedings of ACM SIGCOMM, Aug 22- 25, 2005, Philadelphia, PA, USA. New York, NY,USA:ACM,2005:169-180.[2] HAWKINS D M, QQUI P, KANG C W. The change point model for statistical process control [J]. Journal of Quality Technology,2003, 35(4).[3] THOTTAN M, JI C. Anomaly detection in IP networks [J]. IEEE Transactions on Signal Processing, 2003, 51 )8):2191-2204.[4] BARFORD P, KLINE J, PLONKA D, et al. A signal analysis of network traffic anomalies [C]//Proceedings of ACM SIGCOMM Intemet Measurement Workshop (IMW 2002), Nov 6-8, 2002, Marseilles, France. New York, NY,USA:ACM, 2002:71-82.[5] LAKHINA A, CROVELLA M, DIOT C. Mining anomalies using traffic feature distributions [C]// Proceedings of SIGCOMM, Aug 22-25, 2005, Philadelphia, PA, USA. New York, NY,USA: ACM, 2005: 217-228.[6] LAKHINA A, CROVELLA M, DIOT C. Diagnosing network-wide traffic anomalies [C]// Proceedings of ACM SIGCOMM, Aug 30 - Sep 3, 2004, Portland, OR, USA. New York, NY,USA: ACM, 2004: 219-230.[7] SCHWELLER R, GUPTA A, PARSONS E, et al. Reversible sketches for efficient and accurate change detection over network data streams [C]//Proceedings of ACM SIGCOMM Internet Measurement Conference (IMC’04), Oct 25-27, 2004, Taormina, Sicily, Italy. New York, NY,USA: ACM, 2004:207-212.[8] MAHONEY M V, CHAN P K. Learning rules for anomaly detection of hostile network traffic [C]// Proceedings of International Conference on Data Mining (ICDM’03), Nov 19-22, Melbourne, FL, USA . Los Alamitos, CA, USA: IEEE Computer Society, 2003:601-604.
❼ 用户行为特征
用户行为特征
用户行为特征,对于运营来说用户的行为是需要关注的一个点,很多时候用户的行为决定了一个网站甚至是一个软件能否继续运运营下去,所以通常都是要对于用户行为特征进行一个分析,下面一起看看相关内容。
用户行为是用户在产品上产生的行为,实际表现为相关的用户数据。产品经理运用不同分析方法对不同数据进行分析,进而为产品迭代和发展提供方向。
一、用户行为是什么?
1、用户行为
用户行为是用户在产品上产生的行为。我们以小明的case具象化用户行为表现:
因为小明关注作者的信息被记录了下来,当该作者有发布信息时,则会通知所有关注他的人,而小明也是其中之一。
小明关注作者的信息记录,则是行为数据。小明的行为数据会有 启动app、浏览、查看图集、播放视频、点赞、关注作者……
2、用户行为数据
用户行为数据是从一次次的行为中而来的,行为数据是通过埋点进行监控(相见埋点介绍)、后续一篇文章将介绍如何(设计埋点)。通常是数据同学完成埋点设计,由开发完成监控程序 或 调用SDK。针对小明的行为(假设以下均已埋点):
3、用户行为分析
是指对用户行为数据进行数据分析、研究。
4、用户行为分析的作用
(1)通过用户行为分析,可以还原用户使用的真实过程。
一个xxx的人在什么样的环境中(由于什么样的行为)在时间点做了xxx事情做了什么事情结果如何
(2)“了解用户,还原用户”是“以用户中心”的第一步。只有详细、清楚的了解用户的行为习惯、真实的使用路径、进而找出 产品使用、渠道推广等过程中存在的问题,提高用户/页面/业务过程中的转化率。
(3)用户行为分析(case需要补充)可以用于
A、拉新:渠道分析、SEM分析、用户质量分析、
B、转化:新增用户注册转化过程、产品使用过程转化(搜索、推荐等)、push推送调起过程、站外拉起过程
C、促活:用户停留时长、用户行为分布、
D、留存:用户留存分析
E、商业化:根据用户历史行为展示广告
二、如何进行用户行为分析?
1、行为事件分析
行为事件分析方法主要用于 深度研究某行为事件,以及对产品的影响以及影响程度。
针对某一具体行为,全面的描述、对比,针对其异常表象 深度下钻分析各维度、确认导致该行为数据表现的原因。如快手的播放量徒增:同期对比分析,确认历史上是否有发生过,对比 去年/上个季度/上月/上周/昨日的 数据的相对表现。多事件对比分析。对比浏览量、点赞、评论、分享事件的数据是否存在徒增。通过对比多个事件,确认徒增现象发生的范围。维度下钻:由于播放量取决于3个部门用户在快手消费视频,被监控程序上报。
所以在三个方面分析:
监控程序是否异常?在快手哪个页面的播放量增加呢?是发现、关注、还是同城?-> 对应页面做了哪些调整?是否增加了引流;哪一部分用户群的播放量增加了?交叉分析 用户自然属性(平台、性别、年龄、地域、教育学历、机型、消费能力)、行为属性(新增、回流、常活跃用户;直播用户、短视频用户…、)、视频属性(视频类型、作者类型…、)
2、留存分析
留存是衡量用户是否再次使用产品的指标,也是每一个app赖以生存的指标,能够反映任何一款产品健康度,是产品、运营、推荐效果的整体表现。如果一个app从来没有留存用户,那DAU将永远是新增用户,那么产品将无法运行下去,更别说新用户成本付诸东流。
贴合业务属性、精细化留存过程 将对留存数据更有价值和指导意义。通过留存分析,能够剖析用户留在产品的原因,从而优化产品核心功能提升留存。
留存的类型:
用户留存:用户使用app后,经过一段时间仍旧使用。功能留存:用户使用xxx功能后,经过一段时间仍旧使用该功能,且其他功能均有所变化。此时,该功能对用户留存有正向作用。先前有写过 留存分析的文章,这里就不赘述了。
3、漏斗分析
漏斗分析实质是转化分析,是通过衡量每一个转化步骤的转化率,通过转化率的异常数据找出有问题的环节并解决,进而实现优化整个流程的完成率。
在产品初期(处于与市场适配的阶段):通过漏斗分析找到用户触达的瓶颈,帮助用户触达产品核心价值,真实反映MVP与市场匹配程度;在产品中期(处于用户平稳增加的阶段): (1)通过漏斗分析优化渠道,找到目标群体用户; (2)通过漏斗分析优化用户在各模块的体验(基础的登录模块、产品核心价值模块: 如抖音的播放模块、淘宝的购买模块等);在产品后期(处于用户价值产出的阶段): (1)通过漏斗分析可以改善用户生命周期(优化用户体验提高用户生命周期,间接拉长用户群体的价值产出的时间长度,减少高价值用户群体的流失);(2)可以通过漏斗分析优化商业化模块,像商品的购买过程(购物车-提交订单的转化漏斗)、广告的曝光点击等,提高生命周期中单位时间产生的价值。
4、路径分析
路径分析可以将纷杂的app日志按照用户的使用过程,呈现出“明确的”用户现存路径。发现路径问题,进而优化,使用户尽可能短路径体验到产品核心价值。
通过路径分析,可以了解到像小明这样9点左右播放视频的用户:他们是通过push点击而来,这部分用户占比是多少;他们匆匆结束播放,再也没有下一步行为,这部分用户占比又有多少。针对他们利用碎片化时间播放视屏的场景,尤其是突然退出的'场景,是否在下一次打开app时,仍旧打开终端的视频。是否有其他策略可以针对该场景来优化?
此外,路径分析不仅仅可以用于行为路径分析,也可以用于用户群体转化分析。例如:新用户中分别转化为 忠实用户、常活跃用户、潜在流失用户、流失用户的分析。
5、用户分群分析
通过了解用户画像,可以帮助运营理解用户。根据用户画像(基本属性、用户偏好、生活习惯、用户行为等)的标签信息将用户分群。
通过用户分群行为表现对比,可以进一步了解不同群体对产品的反馈,有针对性的优化产品。
发现中 西南地区的低端机型使用app时,奔溃率特别高,开发可以针对该点进行优化、降低奔溃率;可以针对不同的用户群体的行为表现 做 定向投放、push等,从而实现精细化运营。业内的商业化行为分析产品,基本上将用户画像的生成、标签的过程均合并在用户分群的群体定义中,降低了操作流程。
三、用户行为分析的完整链路
以小明为case的用户行为每天数以万/亿计的产生,如何对“这类人群”进行“行为分析”?需要行为分析将明细级别的日志聚合后再以较为可读的形式展示出来。
为了保障埋点可靠、数据上报及时、行为数据分析有效。需要一套完整的用户行为系统,包括从数据埋点设计、埋点开发、数据上报、数据模型开发、行为数据分析。 过程中也需要多方协作完成,如何保障多方协作中高效、便利的完成、产出具有业务价值的数据分析结论。后续将介绍服务于用户行为分析的相关平台介绍。
一、什么是用户行为
中国有句古话“天地四方为宇,古往今来为宙”,这句话揭示了空间和时间的概念。我们要想透彻地研究任何事物,常以时间和空间两个维度来考虑。分析用户行为也不例外。
换句话说,用户行为的研究内容可以按照时间和空间维度展开。
从时间的维度来看,按照管理学大师菲利普科特勒的理论,用户的行为轨迹包括:产生需求、信息收集、方案比选、购买决策;购后行为5个阶段。其中购后行为包括使用习惯、使用体验、满意度、忠诚度等。
从空间的维度来看,用户行为的构成要素包括5W2H,例如我们要全面描述用户在购买阶段的行为,就要回答这样的问题,谁(who)?打算在什么时候(when)?什么地方(where)?买什么东西(what)?产生需求的动机是什么(why)?打算买多少(how much)?如何买(how)?同理,在使用阶段也可以从这7个要素来描述。
5阶段和7要素的结合,形成了用户行为分析的研究体系。这个体系细化了用户行为的研究内容,基于这些内容,就有了用户调查问卷的一些基本的问题。
二、为什么分析用户行为(Why)?
之所以分析用户行为,是为了找到用户行为的特征,从而为企业的经营提供支持。
大家想想,用户行为具有哪些特征呢?
Q1: 用户行为是同质化的,还是差异化的?
A1:差异化的,因此用户行为具有差异性
Q2:用户行为是静态不动的,还是动态变化的?
A2:动态变化的,因此用户行为具有流动性
Q3:用户行为是相互隔绝的,还是相互影响的?
A3:相互影响的,因此用户行为具有传播性
差异性、流动性和传播性是用户行为的三个显着特征。那么,这些特征具体是如何表现的,分析这些特征对企业的经营有什么作用?
这里我们只谈差异性,后面的博文中会谈流动性和传播性。
用户行为从时间和空间的维度,分为5阶段7要素。因此用户的差异性,就表现在这5阶段和7要素上。例如,在产生需求阶段,用户的需求动机why不同。同样是买电脑,有的是为了工作、有的为了学习、有的是为了消遣;再比如,在信息收集阶段,用户的信息收集渠道where不同。同样是买房子,有的看网络广告;有的听朋友介绍;有的到现场采点。
这里只举了两个阶段,你能说出在其他阶段用户的差异性表现吗?
意识到用户的差异性,企业的营销工作就不会搞一刀切,就不会拿大炮轰蚊子,而是会进行市场细分和目标市场选择,然后针对目标用户进行精准营销。这种精准营销体现在市场定位、竞争战略选择、品牌形象和营销组合等很多方面。
三、如何分析用户行为(How)?
这里我们只谈差异性,后面的博文中会谈流动性和传播性。
我们前面谈到因为用户行为具有差异性,因此需要进行市场细分和目标市场选择,那么如何进行市场细分和目标市场选择呢?
市场细分的思路是看看从哪个维度切分市场,使所分得的细分市场内部具有的共性,细分市场之间具有个性。从哪个维度切要结合企业所处的行业特点的。例如食品市场,地域差异比较明显,南甜北咸东辣西酸,所以食品市场可按地域分;服装市场,性别差异非常突出,男款少而精;而女款多而靓,所以服装市场可按性别分。此外二八原则,也广泛用于市场细分,即我们可以按重要程度将用户分为大中小三类。重要性可以有很多评价指标,比如规模、综合实力、业内影响力、对企业的贡献率、在同类产品上的总投入等等。
将市场划分成几个细分市场后,企业就面临着目标市场选择的问题。如何选择目标市场呢?这是一个团体决策的过程,在选择目标市场时往往需要企业的管理人员和骨干营销人员坐在一起讨论来确定。讨论共有五步进行
第一步指标的选择需结合企业自身的实际情况。例如,我是大企业,规模经济是我的优势,那市场规模就是我选择的重要指标;我是中小企业,我要更关注竞争的激烈程度,因为竞争太激烈了,我可能无法存活。因此,竞争强度就是我选择的重要指标。
第二和第三步确定优先级和为指标打分的方法可参考小蚊子的《谁说菜鸟不会数据分析》中的权重确定方法
第四步的综合得分是第二步和第三步的结果加权平均得到。
第五步选择目标市场可以企业适应度和市场吸引力为横纵坐标,得出各个细分市场在四个象限中的位置。
中国移动互联网市场经过几年的高速发展,增速已经明显放缓,人口红利逐渐消失。移动互联网进入了下半场,市场竞争已经从增量用户竞争逐步转化成为存量用户竞争。同时伴随流量红利消失,数据红利时代已经到来,流程驱动性公司正转变为数据驱动的数字公司,竞争从同业蔓延至异业竞争,跟随用户,跨场景地满足用户的需求将会成为数据红利时代最核心的诉求。
如果说数字化转型不可逆,那么对于用户的精细化运营将会是数字化转型的支撑点之一。要实现对用户的精细化运营,必不可少要对用户行为进行分析。比如对网站、APP等渠道的用户行为数据进行采集,对获取到的用户行为数据进行多维度、多角度对比分析,用以指导提升获客效率、优化产品服务和用户体验,以数据驱动业务持续增长。
但目前来看,距离要实现这一目标,还有一定的差距。由于日常工作中,大家的分工不同,仅关注某一个方面的数据显然不够,无法全面了解产品运营情况,更不能提出行之有效的分析建议。
现在的情况是在公司内,业务部门想要看数据,会先提出自己的数据需求,这时候需要找到技术人员或者数据分析师,根据需求写SQL将数据从库里提出来,交给数据分析师进行分析,形成对应报表之后,再发给业务部门查看,完成整个过程没个三五天搞不定,数据分析的时效性大大降低。
企业采用用户行为分析工具,可以让产品、运营、市场、数据等业务部门更方便的分析数据,让技术部门日常面对的零碎需求更少,能把等多精力放在建立数据仓库等核心工作上。
当我们在做产品开发或者产品运营时,通常需要第三方工具去做用户行为分析以提供数据支持。因此免费产品的试用成了大家在前期选择工具的必要方式。为了方便大家对目前市场上的用户分析工具有一个清晰的了解,我们在试用了大量的工具后,分别从数据接入、数据分析、安全与拓展几个方面进行了综合分析。
许多人都在问,市场上有没有免费的用户行为分析工具,答案是有的!不过各家各有特点,国外知名用户行为数据分析工具像Google Analytics(以下简称GA)、Mixpanel,国内有网络统计、易观方舟Argo、友盟、TalkingData免费版(以下简称TD免费版)。
01、数据接入
谈到数据接入,首先需要说明的是几个产品在数据模型上的差别。
GA、网络统计诞生于传统PC互联网时代,都是以传统的页面浏览(PV)和用户会话(Session)为核心。其中GA经过多年演进,增加了一些关于事件分析和自定义属性的内容,但本质上主要还是服务于页面类的产品。网络统计还是依然只支持页面和会话统计。
随着移动互联网时代到来,用户的行为触点变多,以往以页面和会话为中心所能采集到的结构化数据颗粒度不够细,页面和会话模型已经不适用了。因此,基于“用户+事件(User+Event)”模型出现了,在分析的时候可以完全自主的定义需要分析的事件,并从不同的属性维度进行交叉分析。刚推出不久的易观方舟Argo,以及Mixpanel、友盟、TalkingData免费版都采用了 “用户+事件”模型。
在埋点方面,目前根据埋点的工具和方式,可以划分为三种类型:代码埋点,可视化埋点和全埋点,并没有说哪一种方式能够碾压其他几种,因为都各有弊端,具体的各种埋点方法的分类与优缺点我们也做一下对比:
下面我们看一下市面上几家免费的数据分析产品之间在数据接入方面对比。需要注意的是由于GA、Mixpanel都是国外产品,在数据采集的规则适配了iOS、Android的设计规范,但国内开发者常常直接忽视这些设计规范开发产品,而GA、Mixpanel在数据采集上没有针对国内产品的特点进行优化,因此在数据采集的准确性上可能会受到一些影响。
另外,需要提到的一点是Mixpanel和易观方舟Argo的数据采集SDK开放了源代码,一定程度上可以打消企业在数据采集安全方面的顾虑。
02、数据分析
数据分析是用户行为分析工具的核心,除了网络统计以外,其他几款产品都可以满足用户行为数据分析的基本需求,但在功能的丰富程度上不尽相同。具体对比可以看下表。
从分析模型丰富程度上来看,Mixpanle和易观方舟Argo是里面功能最全的,堪称全家桶,唯一遗憾的是目前易观方舟Argo目前尚不支持热图分析。比如最常用的“事件分析”这个功能,不止可以从PV、UV等方面进行分析,还可以根据不同的属性值设定具体的指标按照不同的维度进行对比,功能非常强大。
从数据准确性上来看,GA在算法的严谨性上应该是最好的,但如果用户或者事件量比较大的时候,会采取抽样分析,可能会影响到数据的准确性,Mixpanel的免费版本也会存在类似的问题。易观方舟Argo在这方面表现抢眼,在数据计算上支持秒级实时数据分析、自定义指标、多维多人群指标对比、人群交叉分析、智能分析、数据实时回传、即席数据分析等。
从数据管理、项目管理、权限管理这些常用的管理功能方面来看,几款工具都提供了比较友好的支持。但仅有友盟+提供了手机app,可以随时通过手机查看监测的数据情况,易观方舟Argo支持通过手机浏览器访问查看数据看板。
另外,值得一提的是易观方舟Argo里面的用户运营和触达功能。目前易观方舟Argo可以在完成用户分析与分群后,通过邮件、短信、Push消息等方式对目标用户进行触达,还支持配置UTM追踪参数对广告进行跟踪。
03、安全与拓展性
企业级产品在数据安全性和可拓展性上,需要提前做一些考量,几款产品也各有侧重,具体对比情况如下表所示:
(点击图片可查看清晰大图)
GA免费版 和 Mixpanel 提供的都是SaaS服务,但因为服务器都在国外,在国内使用起来稳定性和刷新速度上可能会有一定的影响;网络统计、友盟统计、TD免费版基本上都是SaaS服务;易观方舟Argo提供安装包,可由企业自己私有部署,如果对数据安全有顾虑,易观方舟Argo是个不错的选择。在服务方面,除了GA和易观方舟Argo可提供社区服务支持以外,其他产品目前还没有完善的用户服务支持。
总结
对比来说,刚推出不久的易观方舟Argo,在数据采集、数据分析能力上,已经可以满足产品数据和用户行为数据分析的需求,而且提供了独家的一站式用户运营和用户触达。与目前其他国内的免费工具产品对比来说,易观方舟Argo在颗粒度细致程度、分析模型全面性、系统性能方面表现优秀。
目的,大多数成长型团队、创业团队的市场及运营预算都相对紧张,每一分投出去的钱恨不得立马知道什么时候能转化回来,如果自己搭建一套完整的数据分析平台要花费的功夫肯定不少。相信更多性能全面的用户分析和运营分析工具的免费开放,能避免企业在市场运营方面走弯路;也能解放团队更专注的在业务上,通过用户行为分析提升营销效率、优化迭代产品、留住更多用户,真正用数据指导和驱动业务。
最后,这次选型过程中,在易观方舟Argo社区交流感受较好,现在市面上能见到的免费工具产品不少,但真正形成自己技术服务社区的不多。相信未来他们能把这个社区做的更好,就像当年小米运营MIUI做社区一样,能给广大的技术宅和数据爱好者提供一个炫技、PK、互助的圈子。
❽ 手机显示网络异常怎么回事
说到上网时的烦心事,没有比手机总是提示网络异常更让人恼火了,下面就让我来为你介绍一下为什么手机老显示网络异常,以及相应的解决方法吧。
4、服务器问题,这通常表现为服务器死机或关闭,这一般很少见,可以采用打电话咨询网络服务商的方法解决;
5、确定手机软件是否有问题。解决办法更换软件恢复手机出厂设置或刷机;
以上就是可能导致网络出现异常的几个原因,希望能帮助大家解决网络异常现象。
❾ 如何做用户行为路径分析
用户行为分析是网站分析最为关键的要素,也是决定网站运营分析最为关键的环节,用户分析分析能帮你判断出你的客户群是否精准,你的广告费是否花到位,通过用户行为分析,实现精准营销。
什么是用户行为分析用户行为分析,是指在获得网站访问量基本数据的情况下,对有关数据进行统计、分析,从中发现用户访问网站的规律,并将这些规律与网络营销策略等相结合,从而发现目前网络营销活动中可能存在的问题,并为进一步修正或重新制定网络营销策略提供依据。这是狭义的只指网络上的用户行为分析。
重点分析的数据
用户的来源地区、来路域名和页面;
用户在网站的停留时间、跳出率、回访者、新访问者、回访次数、回访相隔天数;
注册用户和非注册用户,分析两者之间的浏览习惯;
用户所使用的搜索引擎、关键词、关联关键词和站内关键字;
用户选择什么样的入口形式(广告或者网站入口链接)更为有效;
用户访问网站流程,用来分析页面结构设计是否合理;
用户在页面上的网页热点图分布数据和网页覆盖图数据;
用户在不同时段的访问量情况等:
用户对于网站的字体颜色的喜好程度。
访客流量分析
用户群:用户者主要所在区域,24小时之内有多少回访。
访问者:访问主要来源哪个区域,如国家、省份、城市。
访问量:分析网站月访问瞎友,日访问,时访问,来确定网站的高峰是在是何月何日何时。
浏览量:访客在一定时间内所浏览内容,日最大浏览量多少,日最小浏览量多少。
流量来源:分析网站是从哪方便来的流量。
流量页面:哪些页面主要引来的流量。
访问者分析:在24小时的回访次数,访客浏览多少页面,在网站中逗留多长时间。
访客访问分析:用户电脑所采用的系统语言,所使用的浏览器,屏幕尺寸,屏幕颜色位数。
搜索引擎:搜索引擎是提供信息查询的工具,通过分析网站来源关键词,来确定搜索引擎用户主要关注网站哪些方面。
广告效果分析
广告效果、性价比分析、成本分析、转化率等?
恶意点击分析
损耗分析、防御策略等等
用户行为分析的维度行为分析数据的记录与整理
电子商务网站到手不是立刻开展优化,而是记录之前的数据情况,记录之后要进行一系列维度的数据整合。可以说,数据分析和整理做好对以后的优化有很大的帮助。我一直很强调基础,我们做网站优化要善于记录日志,操作日志,异常日志都要有据可循。也许你会觉得一时很麻烦,但是会免去你以后的很多失误。
举个例子:除了基本的收录、外链、锚文本、UV、关键词排名等,你至少还要注意,访客地区分布情况,频道流量情况,页面点击行为等,而且要把搜索流量与广告流量区分开。对于基础的数据还要记录主要竞争对手的。
关键词分析
一个电子商务网站需要兄神宴拥有大量的产品和目录,同时海量的页面信息。这些页面是否能带来搜索引擎流量取决于网站自身构架的良好性,页面体验与SEO优化做的到位程度有关。SEO优化怎么样,从网站的关键词策略能大概分析的出,包括很多长尾布局,频道关键词以及首页title的书写。良好的关键词策略是获得大量长尾关键词流量的利器!
所以前期对关键词进行有效的整理,例如对首页核心关键词,频道关羡银键词和重点的一些关键词排名进行检测和记录,必要时要针对专题或者单页面进行特别的seo优化处理。
数据分析
推广流量与自然流量要做好区分,基本上我们所谈及与seo有关的流量是自然流量部分,推广流量中有直接流量,自然流量中也含有直接流量,这势必造成数据上的误导与混淆;所以要安装监控代码识别出来,必要的时候要使用第三方的数据分析工具(如GA.99click旗下的siteflow)。
网站易用性分析
你要了解网站如何呈现给用户的,因为一切seo都是站在用户角度,而不是你的角度,所以网站体验非常重要。尤其对于一个电子商务网站来说,用户体验就是重中之重了。作为电商网站的运营或者seo来说,易用性体现在网站具有清晰的导航系统,方便的搜索系统与醒目的引导系统。三大系统结合起来,会使用户有“流连忘返”的感觉。
用户分析的主要目的把握网站整体布局颜色等。
分析用户行为数据进行网站调整。
掌握大多数网站用户心理。
网站用户行为策划。
思维活跃,随时根据用户与改变。
通过对用户行为监测获得的数据进行分析,可以让企业更加详细、清楚地了解用户的行为习惯,从而找出网站、推广渠道等企业营销环境存在的问题,有助于企业发掘高转化率页面,让企业的营销更加精准、有效,提高业务转化率,从而提升企业的广告收益,实现销量的提升。