导航:首页 > 网络问题 > 卷积网络中的过滤器步幅什么意思

卷积网络中的过滤器步幅什么意思

发布时间:2023-05-03 10:30:00

① 卷积神经网络

关于花书中卷积网络的笔记记录于 https://www.jianshu.com/p/5a3c90ea0807 。

卷积神经网络(Convolutional Neural Network,CNN或ConvNet)是一种具有 局部连接、权重共享 等特性的深层前馈神经网络。卷积神经网络是受生物学上感受野的机制而提出。 感受野(Receptive Field) 主要是指听觉、视觉等神经系统中一些神经元的特性,即 神经元只接受其所支配的刺激区域内的信号

卷积神经网络最早是主要用来处理图像信息。如果用全连接前馈网络来处理图像时,会存在以下两个问题:

目前的卷积神经网络一般是由卷积层、汇聚层和全连接层交叉堆叠而成的前馈神经网络,使用反向传播算法进行训练。 卷积神经网络有三个结构上的特性:局部连接,权重共享以及汇聚 。这些特性使卷积神经网络具有一定程度上的平移、缩放和旋转不变性。

卷积(Convolution)是分析数学中一种重要的运算。在信号处理或图像处理中,经常使用一维或二维卷积。

一维卷积经常用在信号处理中,用于计算信号的延迟累积。假设一个信号发生器每个时刻t 产生一个信号 ,其信息的衰减率为 ,即在 个时间步长后,信息为原来的 倍。假设 ,那么在时刻t收到的信号 为当前时刻产生的信息和以前时刻延迟信息的叠加:

我们把 称为 滤波器(Filter)或卷积核(Convolution Kernel) 。假设滤波器长度为 ,它和一个信号序列 的卷积为:

信号序列 和滤波器 的卷积定义为:

一般情况下滤波器的长度 远小于信号序列长度 ,下图给出一个一维卷积示例,滤波器为 :

二维卷积经常用在图像处理中。因为图像为一个两维结构,所以需要将一维卷积进行扩展。给定一个图像 和滤波器 ,其卷积为:

下图给出一个二维卷积示例:

注意这里的卷积运算并不是在图像中框定卷积核大小的方框并将各像素值与卷积核各个元素相乘并加和,而是先把卷积核旋转180度,再做上述运算。

在图像处理中,卷积经常作为特征提取的有效方法。一幅图像在经过卷积操作后得到结果称为 特征映射(Feature Map)

最上面的滤波器是常用的高斯滤波器,可以用来对图像进行 平滑去噪 ;中间和最下面的过滤器可以用来 提取边缘特征

在机器学习和图像处理领域,卷积的主要功能是在一个图像(或某种特征)上滑动一个卷积核(即滤波器),通过卷积操作得到一组新的特征。在计算卷积的过程中,需要进行卷积核翻转(即上文提到的旋转180度)。 在具体实现上,一般会以互相关操作来代替卷积,从而会减少一些不必要的操作或开销。

互相关(Cross-Correlation)是一个衡量两个序列相关性的函数,通常是用滑动窗口的点积计算来实现 。给定一个图像 和卷积核 ,它们的互相关为:

互相关和卷积的区别仅在于卷积核是否进行翻转。因此互相关也可以称为不翻转卷积 。当卷积核是可学习的参数时,卷积和互相关是等价的。因此,为了实现上(或描述上)的方便起见,我们用互相关来代替卷积。事实上,很多深度学习工具中卷积操作其实都是互相关操作。

在卷积的标准定义基础上,还可以引入滤波器的 滑动步长 零填充 来增加卷积多样性,更灵活地进行特征抽取。

滤波器的步长(Stride)是指滤波器在滑动时的时间间隔。

零填充(Zero Padding)是在输入向量两端进行补零。

假设卷积层的输入神经元个数为 ,卷积大小为 ,步长为 ,神经元两端各填补 个零,那么该卷积层的神经元数量为 。

一般常用的卷积有以下三类:

因为卷积网络的训练也是基于反向传播算法,因此我们重点关注卷积的导数性质:

假设 。

, , 。函数 为一个标量函数。

则由 有:

可以看出, 关于 的偏导数为 和 的卷积

同理得到:

当 或 时, ,即相当于对 进行 的零填充。从而 关于 的偏导数为 和 的宽卷积

用互相关的“卷积”表示,即为(注意 宽卷积运算具有交换性性质 ):

在全连接前馈神经网络中,如果第 层有 个神经元,第 层有 个神经元,连接边有 个,也就是权重矩阵有 个参数。当 和 都很大时,权重矩阵的参数非常多,训练的效率会非常低。

如果采用卷积来代替全连接,第 层的净输入 为第 层活性值 和滤波器 的卷积,即:

根据卷积的定义,卷积层有两个很重要的性质:

由于局部连接和权重共享,卷积层的参数只有一个m维的权重 和1维的偏置 ,共 个参数。参数个数和神经元的数量无关。此外,第 层的神经元个数不是任意选择的,而是满足 。

卷积层的作用是提取一个局部区域的特征,不同的卷积核相当于不同的特征提取器。

特征映射(Feature Map)为一幅图像(或其它特征映射)在经过卷积提取到的特征,每个特征映射可以作为一类抽取的图像特征。 为了提高卷积网络的表示能力,可以在每一层使用多个不同的特征映射,以更好地表示图像的特征。

在输入层,特征映射就是图像本身。如果是灰度图像,就是有一个特征映射,深度 ;如果是彩色图像,分别有RGB三个颜色通道的特征映射,深度 。

不失一般性,假设一个卷积层的结构如下:

为了计算输出特征映射 ,用卷积核 分别对输入特征映射 进行卷积,然后将卷积结果相加,并加上一个标量偏置 得到卷积层的净输入 再经过非线性激活函数后得到输出特征映射 。

在输入为 ,输出为 的卷积层中,每个输出特征映射都需要 个滤波器以及一个偏置。假设每个滤波器的大小为 ,那么共需要 个参数。

汇聚层(Pooling Layer)也叫子采样层(Subsampling Layer),其作用是进行特征选择,降低特征数量,并从而减少参数数量。

常用的汇聚函数有两种:

其中 为区域 内每个神经元的激活值。

可以看出,汇聚层不但可以有效地减少神经元的数量,还可以使得网络对一些小的局部形态改变保持不变性,并拥有更大的感受野。

典型的汇聚层是将每个特征映射划分为 大小的不重叠区域,然后使用最大汇聚的方式进行下采样。汇聚层也可以看做是一个特殊的卷积层,卷积核大小为 ,步长为 ,卷积核为 函数或 函数。过大的采样区域会急剧减少神经元的数量,会造成过多的信息损失。

一个典型的卷积网络是由卷积层、汇聚层、全连接层交叉堆叠而成。

目前常用卷积网络结构如图所示,一个卷积块为连续 个卷积层和 个汇聚层( 通常设置为 , 为 或 )。一个卷积网络中可以堆叠 个连续的卷积块,然后在后面接着 个全连接层( 的取值区间比较大,比如 或者更大; 一般为 )。

目前,整个网络结构 趋向于使用更小的卷积核(比如 和 )以及更深的结构(比如层数大于50) 。此外,由于卷积的操作性越来越灵活(比如不同的步长),汇聚层的作用变得也越来越小,因此目前比较流行的卷积网络中, 汇聚层的比例也逐渐降低,趋向于全卷积网络

在全连接前馈神经网络中,梯度主要通过每一层的误差项 进行反向传播,并进一步计算每层参数的梯度。在卷积神经网络中,主要有两种不同功能的神经层:卷积层和汇聚层。而参数为卷积核以及偏置,因此 只需要计算卷积层中参数的梯度。

不失一般性,第 层为卷积层,第 层的输入特征映射为 ,通过卷积计算得到第 层的特征映射净输入 ,第 层的第 个特征映射净输入

由 得:

同理可得,损失函数关于第 层的第 个偏置 的偏导数为:

在卷积网络中,每层参数的梯度依赖其所在层的误差项 。

卷积层和汇聚层中,误差项的计算有所不同,因此我们分别计算其误差项。

第 层的第 个特征映射的误差项 的具体推导过程如下:

其中 为第 层使用的激活函数导数, 为上采样函数(upsampling),与汇聚层中使用的下采样操作刚好相反。如果下采样是最大汇聚(max pooling),误差项 中每个值会直接传递到上一层对应区域中的最大值所对应的神经元,该区域中其它神经元的误差项的都设为0。如果下采样是平均汇聚(meanpooling),误差项 中每个值会被平均分配到上一层对应区域中的所有神经元上。

第 层的第 个特征映射的误差项 的具体推导过程如下:

其中 为宽卷积。

LeNet-5虽然提出的时间比较早,但是是一个非常成功的神经网络模型。基于LeNet-5 的手写数字识别系统在90年代被美国很多银行使用,用来识别支票上面的手写数字。LeNet-5 的网络结构如图:

不计输入层,LeNet-5共有7层,每一层的结构为:

AlexNet是第一个现代深度卷积网络模型,其首次使用了很多现代深度卷积网络的一些技术方法,比如采用了ReLU作为非线性激活函数,使用Dropout防止过拟合,使用数据增强来提高模型准确率等。AlexNet 赢得了2012 年ImageNet 图像分类竞赛的冠军。

AlexNet的结构如图,包括5个卷积层、3个全连接层和1个softmax层。因为网络规模超出了当时的单个GPU的内存限制,AlexNet 将网络拆为两半,分别放在两个GPU上,GPU间只在某些层(比如第3层)进行通讯。

AlexNet的具体结构如下:

在卷积网络中,如何设置卷积层的卷积核大小是一个十分关键的问题。 在Inception网络中,一个卷积层包含多个不同大小的卷积操作,称为Inception模块。Inception网络是由有多个inception模块和少量的汇聚层堆叠而成

v1版本的Inception模块,采用了4组平行的特征抽取方式,分别为1×1、3× 3、5×5的卷积和3×3的最大汇聚。同时,为了提高计算效率,减少参数数量,Inception模块在进行3×3、5×5的卷积之前、3×3的最大汇聚之后,进行一次1×1的卷积来减少特征映射的深度。如果输入特征映射之间存在冗余信息, 1×1的卷积相当于先进行一次特征抽取

② 卷积神经网络

1、二维互相关运算

二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影部分分别是输入的第一个计算区域、核数组以及对应的输出。

2、二维卷积层

卷积层得名于卷积运算,但卷积层中用到的并非卷积运算而是互相关运算。我们将核数组上下翻转、左右翻转,再与输入数组做互相关运算,这一过程就是卷积运算。由于卷积层的核数组是可学习的,所以使用互相关运算与使用卷积运算并无本质区别。

二维卷积层将输入和卷积核做互相关运算,并加上一个标量偏置来得到输出。卷积层的模型参数包括卷积核和标量偏置。

3、特征图与感受野

二维卷积层输出的二维数组可以看作是输入在空间维度(宽和高)上某一级的表征,也叫特征图(feature map)。影响元素x的前向计算的所有可能输入区域(可能大于输入的实际尺寸)叫做x的感受野(receptive field)。

以图1为例,输入中阴影部分的四个元素是输出中阴影部分元素的感受野。我们将图中形状为2×2的输出记为Y,将Y与另一个形状为2×2的核数组做互相关运算,输出单个元素z。那么,z在Y上的感受野包括Y的全部四个元素,在输入上的感受野包括其中全部9个元素。可见,我们可以通过更深的卷积神经网络使特征图中单个元素的感受野变得更加广阔,从而捕捉输入上更大尺寸的特征。

4、填充和步幅

我们介绍卷积层的两个超参数,即填充和步幅,它们可以对给定形状的输入和卷积核改变输出形状。

4.1 填充(padding)

是指在输入高和宽的两侧填充元素(通常是0元素),图2里我们在原输入高和宽的两侧分别添加了值为0的元素。

如果原输入的高和宽是 和 ,卷积核的高和宽是 和 ,在高的两侧一共填充 行,在宽的两侧一共填充 列,则输出形状为:

                                                               )

我们在卷积神经网络中使用奇数高宽的核,比如3×3,5×5的卷积核,对于高度(或宽度)为大小为2k+1的核,令步幅为1,在高(或宽)两侧选择大小为k的填充,便可保持输入与输出尺寸相同。

4.2 步幅(stride)

在互相关运算中,卷积核在输入数组上滑动,每次滑动的行数与列数即是步幅(stride)。此前我们使用的步幅都是1,图3展示了在高上步幅为3、在宽上步幅为2的二维互相关运算。

一般来说,当高上步幅为 ,宽上步幅为 时,输出形状为:

                                         

如果  ,那么输出形状将简化为:

                                                          

更进一步,如果输入的高和宽能分别被高和宽上的步幅整除,那么输出形状将是:(nh/sh)×(nw/sw)

                                                                              

当 时,我们称填充为p;当 时,我们称步幅为s。

5、多输入通道和多输出通道

之前的输入和输出都是二维数组,但真实数据的维度经常更高。例如,彩色图像在高和宽2个维度外还有RGB(红、绿、蓝)3个颜色通道。假设彩色图像的高和宽分别是h和w(像素),那么它可以表示为一个3×h×w的多维数组,我们将大小为3的这一维称为通道(channel)维。

5.1 多输入通道

卷积层的输入可以包含多个通道,图4展示了一个含2个输入通道的二维互相关计算的例子。

5.2 多输出通道

卷积层的输出也可以包含多个通道,设卷积核输入通道数和输出通道数分别为ci和co,高和宽分别为kh和kw。如果希望得到含多个通道的输出,我们可以为每个输出通道分别创建形状为ci×kh×kw的核数组,将它们在输出通道维上连结,卷积核的形状即co×ci×kh×kw。

对于输出通道的卷积核,我们提供这样一种理解,一个ci×kh×kw的核数组可以提取某种局部特征,但是输入可能具有相当丰富的特征,我们需要有多个这样的ci×kh×kw的核数组,不同的核数组提取的是不同的特征。

5.3 1x1卷积层

最后讨论形状为1×1的卷积核,我们通常称这样的卷积运算为1×1卷积,称包含这种卷积核的卷积层为1×1卷积层。图5展示了使用输入通道数为3、输出通道数为2的1×1卷积核的互相关计算。

1×1卷积核可在不改变高宽的情况下,调整通道数。1×1卷积核不识别高和宽维度上相邻元素构成的模式,其主要计算发生在通道维上。假设我们将通道维当作特征维,将高和宽维度上的元素当成数据样本,那么1×1卷积层的作用与全连接层等价。

6、卷积层与全连接层的对比

二维卷积层经常用于处理图像,与此前的全连接层相比,它主要有两个优势:

一是全连接层把图像展平成一个向量,在输入图像上相邻的元素可能因为展平操作不再相邻,网络难以捕捉局部信息。而卷积层的设计,天然地具有提取局部信息的能力。

二是卷积层的参数量更少。不考虑偏置的情况下,一个形状为(ci,co,h,w)的卷积核的参数量是ci×co×h×w,与输入图像的宽高无关。假如一个卷积层的输入和输出形状分别是(c1,h1,w1)和(c2,h2,w2),如果要用全连接层进行连接,参数数量就是c1×c2×h1×w1×h2×w2。使用卷积层可以以较少的参数数量来处理更大的图像。

X=torch.rand(4,2,3,5)

print(X.shape)

conv2d=nn.Conv2d(in_channels=2,out_channels=3,kernel_size=(3,5),stride=1,padding=(1,2))

Y=conv2d(X)

print('Y.shape: ',Y.shape)

print('weight.shape: ',conv2d.weight.shape)

print('bias.shape: ',conv2d.bias.shape)

输出:

torch.Size([4, 2, 3, 5])

Y.shape:  torch.Size([4, 3, 3, 5])

weight.shape:  torch.Size([3, 2, 3, 5])

bias.shape:  torch.Size([3])

7、池化

7.1 二维池化层

池化层主要用于缓解卷积层对位置的过度敏感性。同卷积层一样,池化层每次对输入数据的一个固定形状窗口(又称池化窗口)中的元素计算输出,池化层直接计算池化窗口内元素的最大值或者平均值,该运算也分别叫做最大池化或平均池化。图6展示了池化窗口形状为2×2的最大池化。

二维平均池化的工作原理与二维最大池化类似,但将最大运算符替换成平均运算符。池化窗口形状为p×q的池化层称为p×q池化层,其中的池化运算叫作p×q池化。

池化层也可以在输入的高和宽两侧填充并调整窗口的移动步幅来改变输出形状。池化层填充和步幅与卷积层填充和步幅的工作机制一样。

在处理多通道输入数据时,池化层对每个输入通道分别池化,但不会像卷积层那样将各通道的结果按通道相加。这意味着池化层的输出通道数与输入通道数相等。

CNN网络中另外一个不可导的环节就是Pooling池化操作,因为Pooling操作使得feature map的尺寸变化,假如做2×2的池化,假设那么第l+1层的feature map有16个梯度,那么第l层就会有64个梯度,这使得梯度无法对位的进行传播下去。其实解决这个问题的思想也很简单,就是把1个像素的梯度传递给4个像素,但是需要保证传递的loss(或者梯度)总和不变。根据这条原则,mean pooling和max pooling的反向传播也是不同的。

7.2 mean pooling

mean pooling的前向传播就是把一个patch中的值求取平均来做pooling,那么反向传播的过程也就是把某个元素的梯度等分为n份分配给前一层,这样就保证池化前后的梯度(残差)之和保持不变,还是比较理解的,图示如下:

mean pooling比较容易让人理解错的地方就是会简单的认为直接把梯度复制N遍之后直接反向传播回去,但是这样会造成loss之和变为原来的N倍,网络是会产生梯度爆炸的。

7.3 max pooling

max pooling也要满足梯度之和不变的原则,max pooling的前向传播是把patch中最大的值传递给后一层,而其他像素的值直接被舍弃掉。那么反向传播也就是把梯度直接传给前一层某一个像素,而其他像素不接受梯度,也就是为0。所以max pooling操作和mean pooling操作不同点在于需要记录下池化操作时到底哪个像素的值是最大,也就是max id。

源码中有一个max_idx_的变量,这个变量就是记录最大值所在位置的,因为在反向传播中要用到,那么假设前向传播和反向传播的过程就如下图所示。

7.4 Pytorch 实现池化层

我们使用Pytorch中的nn.MaxPool2d实现最大池化层,关注以下构造函数参数:

kernel_size – the size of the window to take a max over

stride – the stride of the window. Default value is kernel_size

padding – implicit zero padding to be added on both sides

forward函数的参数为一个四维张量,形状为 ,返回值也是一个四维张量,形状为 ,其中N是批量大小,C,H,W分别表示通道数、高度、宽度。

X=torch.arange(32,dtype=torch.float32).view(1,2,4,4)

pool2d=nn.MaxPool2d(kernel_size=3,padding=1,stride=(2,1))

Y=pool2d(X)

print(X)

print(Y)

练习

1、假如你用全连接层处理一张256 \times 256256×256的彩色(RGB)图像,输出包含1000个神经元,在使用偏置的情况下,参数数量是:

     答:图像展平后长度为3×256×256,权重参数和偏置参数的数量是3× 256× 256 × 1000 + 1000 =196609000。

2、假如你用全连接层处理一张256×256的彩色(RGB)图像,卷积核的高宽是3×3,输出包含10个通道,在使用偏置的情况下,这个卷积层共有多少个参数:

    答:输入通道数是3,输出通道数是10,所以参数数量是10×3×3×3+10=280。

3、conv2d = nn.Conv2d(in_channels=3, out_channels=4, kernel_size=3, padding=2),输入一张形状为3×100×100的图像,输出的形状为:

    答:输出通道数是4,上下两侧总共填充4行,卷积核高度是3,所以输出的高度是104 - 3 + 1=102104−3+1=102,宽度同理可得。

4、关于卷积层,以下哪种说法是错误的:

A.1×1卷积可以看作是通道维上的全连接

B.某个二维卷积层用于处理形状为3×100×100的输入,则该卷积层无法处理形状为3×256×256的输入

C.卷积层通过填充、步幅、输入通道数、输出通道数等调节输出的形状

D .两个连续的3×3卷积核的感受野与一个5×5卷积核的感受野相同

答:选B,对于高宽维度,只要输入的高宽(填充后的)大于或等于卷积核的高宽即可进行计算。

the first layer is a 3 × 3 convolution, the second is a fully connected layer on top of the 3 × 3 output grid of the first layer (see Figure 1). Sliding this small network over the input activation grid boils down to replacing the 5 × 5 convolution with two layers of 3 × 3 convolution.

我们假设图片是5*5的

我们使用5*5的卷积核对其卷积,步长为1,得到的结果是:(5-5)/1+1=1

然后我们使用2个卷积核为3*3的,这里的两个是指2层:

第一层3*3:

得到的结果是(5-3)/1+1=3

第二层3*3:

得到的结果是(3-3)/1+1=1

所以我们的最终得到结果感受野大小和用5*5的卷积核得到的结果大小是一样的!!!

5、关于池化层,以下哪种说法是错误的:

A.池化层不参与反向传播

B.池化层没有模型参数

C.池化层通常会减小特征图的高和宽

D.池化层的输入和输出具有相同的通道数

答:A

选项1:错误,池化层有参与模型的正向计算,同样也会参与反向传播

选项2:正确,池化层直接对窗口内的元素求最大值或平均值,并没有模型参数参与计算

选项3:正确

选项4:正确

参考文献:

https://www.boyuai.com/

https://blog.csdn.net/qq_21578849/article/details/94667699

https://www.hu.com/question/265791259/answer/298610437

https://blog.csdn.net/zouxiaolv/article/details/97366681

③ 用卷积神经网络提取图像特征

前面讲到的都是基于知识的图像特征提取方法,除此之外还有另一条技术路线——基于深度学习的图像特征提取。

人在认知图像时是分层抽象的,首先理解的是颜色和亮度,然后是边缘、角点、直线等局部细节特征,接下来是纹理、几何形状等更复杂的信息和结构,最后形成整个物体的概念。
视觉神经科学(Visual Neuroscience)对于视觉机理的研究验证了这一结论,动物大脑的视觉皮层具有分层结构。眼睛将看到的景象成像在视网膜上,视网膜把光学信号转换成电信号,传递到大脑的视觉皮层(Visual cortex),视觉皮层是大脑中负责处理视觉信号的部分。1959年,David和Wiesel进行了一次实验,他们在猫的大脑初级视觉皮层内插入电极,在猫的眼前展示各种形状、空间位置、角度的光带,然后测量猫大脑神经元放出的电信号。实验发现,不同的宏盯神经元对各种空间位置和方向偏好不同。这一成果后来让他们获得了诺贝尔奖。
目前已经证明,视觉皮层具有层次结构。从视网膜传来的信号首先到达初级视觉皮层(primary visual cortex),即V1皮层。V1皮层简单神经元对一些细节、特定方向的图像信号敏感。V1皮层处理之后,将信号传导到V2皮层。V2皮层将边缘和轮廓信息表示成简单形状,然后由V4皮层中的神经元进行处理,它颜色信息敏感。复杂物体最终在IT皮层(inferior temporal cortex)被表示出来。

卷积神经网络可以看成是上面这种机制的简单模仿。它由多个卷积层构成,每个卷积层包含多个卷积核,用这些卷积核从左向右、从上往下依次扫描整个图像,得到称为特征图(feature map)的输出数据。网络前面的卷积层捕捉图像局部、细节信息,有小的感受野,即输出图像的每个像素只利用输入图像很小的一个范围。后面的卷积层感受野逐层加大,用于捕获图猜绝岩像更复杂,更抽象的信息。经过多个卷积层的运算,最后得到图像在各个不同尺度的抽象表示。

顾名思义,卷积层由一组卷积单元(又称"卷积核")组成,可以把这些卷积单元理解为过滤器,每个过滤器都会提取一种特定的特征,方法参见 图像卷积 。

卷积层的过滤器负责从图像中查找规律,过滤器越多则参数越多,这意味着卷积层的维度可能很穗御庞大。我们需要一种方法来降低维数,这就是卷积网络中的池化层(又名"下采样层")所扮的角色。

池化主要有3种形式:一般池化,重叠池化和金字塔池化。

池化窗口的尺寸为n*n,一般情况下池化窗口都是正方形的。步长(stride)等于n。此时池化窗口之间是没有重叠的。对于超出数字矩阵范围的,只计算范围内的或者范围外的用0填充再计算。又可以分为最大值池化,均值池化。

池化窗口范围内的最大值作为采样的输出值。
假如输入是一个4×4矩阵,执行最大池化是一个2×2矩阵,每次滑动2步。执行过程非常简单,把4×4的输入拆分成不同的区域,把这些区域用不同颜色来标记。对于2×2的输出,输出的每个元素都是其对应颜色区域中的最大元素值。

普通均值池化就是将池化窗口范围内的平均值作为采样的输出值。这种池化不如最大池化常用。

池化窗口之间有重叠。也就是步长大于等于1小于n,计算和一般池化是一样的。

空间金字塔池化(Spatial Pyramid Pooling,简称SPP)可以将尺寸大小不一样的图片转换为同样的尺寸。
SPP首先把图片看成1块,对这1块进行最大值池化,得到1个值,分成4块,对这4块分别进行最大值池化,得到4个值;分成16块,对这16块分别进行最大值池化,得到16个值,以此类推。这样就可以保证对于不同尺寸的图片而言,最终得到的值的个数是一样的。因为是最大值池化,超出范围的用不用0填充不会影响结果。

直接对原始图像做卷积,会存在两个问题。一是每次卷积后图像(特征图)都会缩小,这样卷不了几次就没了; 二是相比于图片中间的点,图片边缘的点在卷积中被计算的次数很少,导致边缘的信息易于丢失。
为了解决这个问题,我们可以采用填充的方法。我们每次卷积前,先给图片周围都补一圈空白,让卷积之后图片跟原来一样大,同时,原来的边缘也被计算了更多次。

比如,我们把(8,8)的图片给补成(10,10),那么经过(3,3)的filter之后,就是(8,8),没有变。
能够保证输入的数据和输出的数据具有相同的空间尺寸,假设零填充个数为p,卷积核为f * f,卷积核滑动步长为s,则p应设置为

假设原始输入图像为m * m,输出图像为n * n,零填充个数为p,卷积核为f * f,卷积核滑动步长为s,则输出尺寸为

假设输入图像为(m,m,d),其中d为图像深度(通道数),卷积核为f * f,卷积核个数为n,则weight个数为

bias个数:

池化层很少使用零填充。假设原始输入图像为m * m,输出图像为n * n,卷积核为f * f,卷积核滑动步长为s,则输出尺寸为

④ 34-卷积神经网络(Conv)

深度学习网络和普通神经网络的区别

全连接神经网络的缺点

卷积神经网络的错误率

卷积神经网络的发展历程

卷积神经网络的结构

结构特点:
神经网络(neural networks)的基本组成包括输入层、隐藏层、输出层。而卷积神经网络的特点在于隐藏层分为卷积层和池化层(pooling layer,又叫下采样层)。

卷积过程

纠正:卷积层的过滤器,就是一个矩阵,里面的元素是对应扫描时每个像素点的权重

即:每个过滤器会产生一张feature map

0填充的两种方式
卷积核在提取特征映射时的动作称之为padding(零填充),由于移动步长不一定能整出整张图的像素宽度。其中有两种方式,SAME和VALID

彩色图片的卷积过程

由于彩色图片有3个通道,即3张表,所以filter需要分3次去分别观察,每次观察的结果直接相加作为最后的结果

过滤器的个数

有几个过滤器,就会生成几张表。eg:
对于[28, 28, 1]的图片,如果有32个过滤器,就会卷积的结果就为[28, 28, 32],相当于图片被“拉长”了

观察结果大小的计算

面试可能考

注意:如果计算结果出现小数,需要结合情况具体考虑,而不是说直接四舍五入

卷积的api

在卷积神经网络中,主要使用Relu函数作为激活函数

即在这里使用relu函数去掉了像素中小于0的值

神经网络中为什么要使用激活函数

为什么使用relu而不再使用sigmoid函数?

api

卷积就是进行特征的提取,观察更加仔细,然而,观察仔细就意味着数据多,运算量增加,这就需要使用池化层以减少计算量

Pooling层主要的作用是特征提取,通过去掉Feature Map中不重要的样本,进一步减少参数数量。Pooling的方法很郑扒多,最常用的是Max Pooling。

池化层也有一个窗口大小(过滤器)

即:池化过程迟丛洞让图片变得更“窄”

即:卷积层使得图片变长,池化层使得图片变窄,所以经过卷积,图片越来越“细长”

api

池化中SAME的计算方式与卷积过程中SAME的计算方式一样。eg:
[None, 28, 28, 32]的数据,经过2x2,步长为2,padding为SAME的池化,码枯变成了[None, 14, 14, 32]

分析:前面的卷积和池化相当于做特征工程,后面的全连接相当于做特征加权。最后的全连接层在整个卷积神经网络中起到“分类器”的作用。

所以神经网络也相当于是一个特征选择的方式

⑤ 卷积神经网络

卷积神经网络 (Convolutional Neural Networks,CNN)是一种前馈神经网络。卷积神经网络是受生物学上感受野(Receptive Field)的机制而提出的。感受野主要是指听觉系统、本体感觉系统和视觉系统中神经元的一些性质。比如在视觉神经系统中,一个神经元的感受野是指视网膜上的特定区域,只有这个区域内的刺激才能够激活该神经元。

卷积神经网络又是怎样解决这个问题的呢?主要有三个思路:

在使用CNN提取特征时,到底使用哪一层的输出作为最后的特征呢?

答:倒数第二个全连接层的输出才是最后我们要提取的特征,也就是最后一个全连接层的输入才是我们需要的特征。

全连接层会忽视形状。卷积层可以保持形状不变。当输入数据是图像时,卷积层会以3维数据的形式接收输入数据,并同样以3维数据的形式输出至下一层。因此,在CNN中,可以(有可能)正确理解图像等具有形状的数据。

CNN中,有时将 卷积层的输入输出数据称为特征图(feature map) 。其中, 卷积层的输入数据称为输入特征图(input feature map) 输出数据称为输出特征图(output feature map)。

卷积层进行的处理就是 卷积运算 。卷积运算相当于图像处理中的“滤波器运算”。

滤波器相当于权重或者参数,滤波器数值都是学习出来的。 卷积层实现的是垂直边缘检测

边缘检测实际就是将图像由亮到暗进行区分,即边缘的过渡(edge transitions)。

卷积层对应到全连接层,左上角经过滤波器,得到的3,相当于一个神经元输出为3.然后相当于,我们把输入矩阵拉直为36个数据,但是我们只对其中的9个数据赋予了权重。

步幅为1 ,移动一个,得到一个1,相当于另一个神经单元的输出是1.

并且使用的是同一个滤波器,对应到全连接层,就是权值共享。

在这个例子中,输入数据是有高长方向的形状的数据,滤波器也一样,有高长方向上的维度。假设用(height, width)表示数据和滤波器的形状,则在本例中,输入大小是(4, 4),滤波器大小是(3, 3),输出大小是(2, 2)。另外,有的文献中也会用“核”这个词来表示这里所说的“滤波器”。

对于输入数据,卷积运算以一定间隔滑动滤波器的窗口并应用。这里所说的窗口是指图7-4中灰色的3 × 3的部分。如图7-4所示,将各个位置上滤
波器的元素和输入的对应元素相乘,然后再求和(有时将这个计算称为乘积累加运算)。然后,将这个结果保存到输出的对应位置。将这个过程在所有位置都进行一遍,就可以得到卷积运算的输出。

CNN中,滤波器的参数就对应之前的权重。并且,CNN中也存在偏置。

在进行卷积层的处理之前,有时要向输入数据的周围填入固定的数据(比如0等),这称为填充(padding),是卷积运算中经常会用到的处理。比如,在图7-6的例子中,对大小为(4, 4)的输入数据应用了幅度为1的填充。“幅度为1的填充”是指用幅度为1像素的0填充周围。

应用滤波器的位置间隔称为 步幅(stride)

假设输入大小为(H, W),滤波器大小为(FH, FW),输出大小为(OH, OW),填充为P,步幅为S。

但是所设定的值必须使式(7.1)中的 和 分别可以除尽。当输出大小无法除尽时(结果是小数时),需要采取报错等对策。顺便说一下,根据深度学习的框架的不同,当值无法除尽时,有时会向最接近的整数四舍五入,不进行报错而继续运行。

之前的卷积运算的例子都是以有高、长方向的2维形状为对象的。但是,图像是3维数据,除了高、长方向之外,还需要处理通道方向。

在3维数据的卷积运算中,输入数据和滤波器的通道数要设为相同的值。

因此,作为4维数据,滤波器的权重数据要按(output_channel, input_channel, height, width)的顺序书写。比如,通道数为3、大小为5 × 5的滤
波器有20个时,可以写成(20, 3, 5, 5)。

对于每个通道,均使用自己的权值矩阵进行处理,输出时将多个通道所输出的值进行加和即可。

卷积运算的批处理,需要将在各层间传递的数据保存为4维数据。具体地讲,就是按(batch_num, channel, height, width)的顺序保存数据。

这里需要注意的是,网络间传递的是4维数据,对这N个数据进行了卷积运算。也就是说,批处理将N次的处理汇总成了1次进行。

池化是缩小高、长方向上的空间的运算。比如,如图7-14所示,进行将2 × 2的区域集约成1个元素的处理,缩小空间大小。

图7-14的例子是按步幅2进行2 × 2的Max池化时的处理顺序。“Max池化”是获取最大值的运算,“2 × 2”表示目标区域的大小。如图所示,从
2 × 2的区域中取出最大的元素。此外,这个例子中将步幅设为了2,所以2 × 2的窗口的移动间隔为2个元素。另外,一般来说,池化的窗口大小会和步幅设定成相同的值。比如,3 × 3的窗口的步幅会设为3,4 × 4的窗口的步幅会设为4等。

除了Max池化之外,还有Average池化等。相对于Max池化是从目标区域中取出最大值,Average池化则是计算目标区域的平均值。 在图像识别领域,主要使用Max池化。 因此,本书中说到“池化层”时,指的是Max池化。

池化层的特征
池化层有以下特征。
没有要学习的参数
池化层和卷积层不同,没有要学习的参数。池化只是从目标区域中取最大值(或者平均值),所以不存在要学习的参数。
通道数不发生变化
经过池化运算,输入数据和输出数据的通道数不会发生变化。如图7-15所示,计算是按通道独立进行的。

对微小的位置变化具有鲁棒性(健壮)
​ 输入数据发生微小偏差时,池化仍会返回相同的结果。因此,池化对输入数据的微小偏差具有鲁棒性。比如,3 × 3的池化的情况下,如图
​ 7-16所示,池化会吸收输入数据的偏差(根据数据的不同,结果有可能不一致)。

经过卷积层和池化层之后,进行Flatten,然后丢到全连接前向传播神经网络。

(找到一张图片使得某个filter响应最大。相当于filter固定,未知的是输入的图片。)未知的是输入的图片???

k是第k个filter,x是我们要找的参数。?这里我不是很明白。我得理解应该是去寻找最具有代表性的特征。

使用im2col来实现卷积层

卷积层的参数是需要学习的,但是池化层没有参数需要学习。全连接层的参数需要训练得到。

池化层不需要训练参数。全连接层的参数最多。卷积核的个数逐渐增多。激活层的size,逐渐减少。

最大池化只是计算神经网络某一层的静态属性,没有什么需要学习的,它只是一个静态属性

像这样展开之后,只需对展开的矩阵求各行的最大值,并转换为合适的形状即可(图7-22)。

参数
• input_dim ― 输入数据的维度:( 通道,高,长 )
• conv_param ― 卷积层的超参数(字典)。字典的关键字如下:
filter_num ― 滤波器的数量
filter_size ― 滤波器的大小
stride ― 步幅
pad ― 填充
• hidden_size ― 隐藏层(全连接)的神经元数量
• output_size ― 输出层(全连接)的神经元数量
• weitght_int_std ― 初始化时权重的标准差

LeNet

LeNet在1998年被提出,是进行手写数字识别的网络。如图7-27所示,它有连续的卷积层和池化层(正确地讲,是只“抽选元素”的子采样层),最后经全连接层输出结果。

和“现在的CNN”相比,LeNet有几个不同点。第一个不同点在于激活函数。LeNet中使用sigmoid函数,而现在的CNN中主要使用ReLU函数。
此外,原始的LeNet中使用子采样(subsampling)缩小中间数据的大小,而现在的CNN中Max池化是主流。

AlexNet

在LeNet问世20多年后,AlexNet被发布出来。AlexNet是引发深度学习热潮的导火线,不过它的网络结构和LeNet基本上没有什么不同,如图7-28所示。

AlexNet叠有多个卷积层和池化层,最后经由全连接层输出结果。虽然结构上AlexNet和LeNet没有大的不同,但有以下几点差异。
• 激活函数使用ReLU。
• 使用进行局部正规化的LRN(Local Response Normalization)层。
• 使用Dropout

TF2.0实现卷积神经网络

valid意味着不填充,same是填充
or the SAME padding, the output height and width are computed as:

out_height = ceil(float(in_height) / float(strides[1]))

out_width = ceil(float(in_width) / float(strides[2]))

And

For the VALID padding, the output height and width are computed as:

out_height = ceil(float(in_height - filter_height + 1) / float(strides[1]))

out_width = ceil(float(in_width - filter_width + 1) / float(strides[2]))
因此,我们可以设定 padding 策略。在 tf.keras.layers.Conv2D 中,当我们将 padding 参数设为 same 时,会将周围缺少的部分使用 0 补齐,使得输出的矩阵大小和输入一致。

⑥ 深度卷积网络

LeNet网络的结构如下图所示,可以看出,LeNet网络并没有使用padding,每进行一次卷积,图像的高度和宽度都会缩小,而通道数会一直增加。在全连接层中有400个节点,每个极点都有120个神经元,有时还会从这400个节点抽取一部分节点构建一个全连接层,即有两个全连接层。在该网络中,最后一步就是利用84个特征得到最后的输出,该网络刚开始使用的是 sigmoid 函数 tanh 函数,而现在常常倾向于使用 softmax 函数。需要注意的是,LeNet-5网络进行图像分类时,输入的图像是单通道的灰度图像。

AlexNet是以论文第一作者的名字命名的,该网络的结构,如下图所示,该网络的输出层使用了 softmax 函数。AlexNet网络比LeNet网络规模更大,大约有6000万个参数,用于训练图像和数据集时,能够处理非常相似的基本构造模块,这些模块中包含着大量的隐藏单元,并且与LeNet网络不同的是,该网络使用了ReLu的激活函数。

VGG-16网络没有太多的超参数,这是一种专注于构建卷积层的简单网络。如下图所示,该网络首先利用64个过滤器进行了两次卷积,接着在池化层将输入图像压缩,接着又是128个过滤器进行两次卷积,接着载池化。继续用256个过滤器进行3次卷积,再池化,接着再利用512个过滤器卷积3次,再池化,将稍后得到的特征图进行全连接操作,再进 softmax 激活。

由于存在梯度消失和梯度爆炸的原因,深层次的神经网络是很难训练的,如果采用一种跳跃连接的方式,即从某一层网络层获取激活,然后迅速反馈给另外一层,甚至是神经网络的更深层。这种利用跳跃连接构建的深度神经网络ResNets,深度能够超过100层

一个简单的两层神经网络示例,如下图所示:

常规的输出和输出之间的关系可以用如下的公式表示:

如上公式所述,这是一条神经网络的主路径。如果将 的输入直接到深层的激活函数之前,此时,神经网络有了一条副路径,其对应输出将有公式(5)变成如下所示的公式(6)

此时的输入除了原先的输入 外,多了一个 项,即由于 产生了一个残差块。

构建一个ResNet网络就是将很多这样的残差块堆积在一起,形成一个深度神经网络,如下所示:

使用传统的标准优化算法训练一个网络,随着网络深度的增加,训练误差会先减小再增加,随着网络层数的增加,优化算法会越难以训练,训练误差也会越来越多。但是,使用ResNet网络,能够有效地避免这种情况。

如上所述,加入残差网络之后,其输出计算公式如公式(6)所示,展开这个公式,则有:

如果使用L2正则化或者权重衰减,则会压缩权重参数 的值,如果参数 和参数 等于0,其输出将由公式(7)变成 ,假定使用ReLU激活函数,则有:

由于残差网络存在的这种跳跃连接,很容易得出以上等式,这意味着,即使给神经网络增加两层,但是其效率并不逊色与更简单的神经网络。并且由于存在以上恒等式,使得网络学习隐藏层的单元的信息更加容易。而普通网络,随着网络层数的增加,学习参数会变得很困难。

此外,关于残差网络,如公式(6)所示,假设 与 具有相同的维度,由于ResNets使用了许多same卷积, 的维度等于输出层的维度。如果输入和输出具有不同的维度,可以再增加一个矩阵 ,使得 和 具有相同的维度。而 的维度可以通过0值填充调节。

在卷积网络的架构设计中,一种有趣的想法是会使用到1×1的过滤矩阵,实际上,对于单通道的图像而言,1×1的过滤矩阵,意义不大,但是,对于多通道的图像而言,1×1的过滤矩阵能够有效减少图像卷积之后的通道数量。

根据卷积和池化的基本知识,随着神经网络层数的增加,图像的通道数量会逐渐增加,采用1×1的过滤矩阵卷积之后,可以有效减少图像的通道数量,一个简单的示例,如下所示:

假设有一个6×6×32的图片,使用1×1×32的过滤矩阵进行卷积运算,整个运算过程将会遍历36个单元格,并计算过滤矩阵所覆盖区域的元素积之和,将其应用到ReLu非线性函数,会得到一个输出值。此计算过程中,可能会用到多个1×1×32的过滤器,那么,通过以上计算会得到一个 6×6×过滤器数量 的矩阵。

构建卷积神经网络时,有时会很难决定过滤器的大小,而Inception网络的引入,却能很好的解决这个问题。

Inception网络的作用就是代替人工确定选择卷积层的过滤器类型。如下图所示,对于一个多通道图像,可以使用不同的过滤矩阵或者池化层,得到不同的输出,将这些输出堆积起来。

有了如上图所示的Inception块,最终输出为32+32+64+128=256,而Inception模块的输入为28×28×192,其整个计算成本,以5×5的过滤矩阵为例,其乘法的计算次数为:28×28×32×5×5×192,整个计算次数超过了1.2亿次。而如果使用如下所示的优化计算方法,则可以有效减少计算量。

如果利用1×1的过滤器,将输入矩阵的通道减少至16,则可以有效减少计算量,如下所示:

如上图所示的价格中,整个网络的运算次数为:28×28×192×16+28×28×32×5×5×16=1240万,整个计算成本降低至原来的十分之一。而,通过1×1×192过滤器卷积得到的这个网络层被称之为瓶颈层。

如上,所示,可以给每一个非1×1的卷积层之前,加入一个1×1的瓶颈层,就可以构建一个基本的inception模块了,如下图所示:

而一个inception网络就是多个Inception模块连接起来,如下图所示:

事实上,以上网络中,还存在一些分支,如编号1所示,这些分支就是全连接层,而全连接层之后就是一个softmax层用于预测。又如分支2所示,包含一些隐藏层(编号3),通过全连接层和softmax进行预测。这些分支结构能够确保,即使是隐藏层和中间层也参与了特征计算,并且也能够预测图片的分类。这种做法能够有效避免网络过拟合。

对于计算机视觉领域而言,神经网络的训练可能需要大量的数据,但是当数据量有限时,可以通过数据增强来实现数据量的扩充,以提高系统的鲁棒性,具体的数据增强方法如下所示:

除了以上三种数据增强的方法外,更多的数据增强方法和实现可以参考 图像数据增强

数据增强可以利用计算机多线程实现,一个线程用来实现加载数据,实现数据增强,其他线程可以训练这些数据以加快整体的运算速度。

⑦ 卷积神经网络CNN(Convolutional Neural Network)

上图计算过程为,首先我们可以将右边进行卷积的可以称为过滤器也可以叫做核,覆盖到左边第一个区域,然后分别按照对应位置相乘再相加,3*1+1*1+2*1+0*0+0*0+0*0+1*(-1)+8*(-1)+2*(-1)=-5;
按照上述的计算方法逐步按右移一个步长(步长可以设定为1,2,...等),然后按往下移,逐渐计算相应的值,得出最终的值。

如上图显示,对于第一个图像矩阵对应的图,一边是白色,一边是黑色,那么中间就会存在一个垂直的边缘,我们可以选择一个垂直边缘检测过滤器,如乘法右边的矩阵,那么两者做卷积后得出的图会显示如等号右边的结果矩阵对应的灰度图中间会有一个白色的中间带,也就是检测出来的边缘,那为什么感觉中间边缘带会比较宽呢?而不是很细的一个局域呢?原因是我们输入的图像只有6*6,过于小了,如果我们选择输出更大的尺寸的图,那么结果来说就是相对的一个细的边缘检测带,也就将我们的垂直边缘特征提取出来了。
上述都是人工选择过滤器的参数,随着神经网络的发展我们可以利用反向传播算法来学习过滤器的参数

我们可以将卷积的顾虑器的数值变成一个参数,通过反向传播算法去学习,这样学到的过滤器或者说卷积核就能够识别到很多的特征,而不是依靠手工选择过滤器。

- padding 操作,卷积经常会出现两个问题:
1.每经过一次卷积图像都会缩小,如果卷积层很多的话,后面的图像就缩的很小了;
2.边缘像素利用次数只有一次,很明显少于位于中间的像素,因此会损失边缘图像信息。
为了解决上述的问题,我们可以在图像边缘填充像素,也就是 padding 操作了。

如果我们设置在图像边缘填充的像素数为p,那么经过卷积后的图像是:(n+2p-f+1)x(n+2p-f+1).
如何去选择p呢
通常有两种选择:
-Valid:也就是说不填充操作(no padding),因此如果我们有nxn的图像,fxf的过滤器,那么我们进行卷积nxn fxf=(n-f+1)x(n-f+1)的输出图像;
-Same:也就是填充后是输出图像的大小的与输入相同,同样就有(n+2p)x(n+2p)
fxf=nxn,那么可以算,n+2p-f+1=n,得到p=(f-1)/2。
通常对于过滤器的选择有一个默认的准则就是选择过滤器的尺寸是奇数的过滤器。
- 卷积步长设置(Strided COnvolution)
卷积步长也就是我们进行卷积操作时,过滤器每次移动的步长,上面我们介绍的卷积操作步长默认都是1,也就是说每次移动过滤器时我们是向右移动一格,或者向下移动一格。
但是我们可以对卷积进行步长的设置,也就是我们能够对卷积移动的格数进行设置。同样假如我们的图像是nxn,过滤器是fxf,padding设置是p,步长strided设置为s,那么我们进行卷积操作后输出的图像为((n+2p-f)/s+1)x((n+2p-f)/s+1),那么这样就会出现一个问题,如果计算结果不是整数怎么办?

一般是选择向下取整,也就是说明,只有当我们的过滤器完全在图像上能够覆盖时才对它进行计算,这是一个惯例。
实际上上述所述的操作在严格数学角度来说不是卷积的定义,卷积的定义上我们计算的时候在移动步长之前也就是对应元素相乘之前是需要对卷积核或者说我们的过滤器进行镜像操作的,经过镜像操作后再把对应元素进行相乘这才是严格意义上的卷积操作,在数学角度上来说这个操作不算严格的卷积操作应该是属于互相关操作,但是在深度学习领域中,大家按照惯例都省略了反转操作,也把这个操作叫做卷积操作

我们知道彩色图像有RGB三个通道,因此对于输入来说是一个三维的输入,那么对三维输入的图像如何进行卷积操作呢?

例子,如上图我们输入图像假设为6×6×3,3代表有RGB三个通道channel,或者可以叫depth深度,过滤器的选择为3×3×3,其中需要规定的是,顾虑器的channel必须与输入图像的channel相同,长宽没有限制,那么计算过程是,我们将过滤器的立体覆盖在输入,这样对应的27个数对应相乘后相加得到一个数,对应到我们的输出,因此这样的方式进行卷积后我们得出的输出层为4×4×1。如果我们有多个过滤器,比如我们分别用两个过滤器一个提取垂直特征,一个提取水平特征,那么输出图4×4×2 。也就是代表我们输出的深度或者说通道与过滤器的个数是相等的。

第l层的卷积标记如下:

加入我们的过滤器是3×3×3规格的,如果我们设定10个过滤器,那么需要学习的参数总数为每个过滤器为27个参数然后加上一个偏差bias那么每个过滤器的参数为28个,所以十个过滤器的参数为280个。从这里也就可以看出,不管我们输入的图片大小是多大,我们都只需要计算这些参数,因此参数共享也就很容易理解了。

为了缩减模型的大小,提高计算速度,同时提高所提取特征的鲁棒性,我们经常会使用池化层。池化层的计算方式与卷积类似,只是我们需要对每一个通道都进行池化操作。
池化的方式一般有两种:Max Pooling和Average Pooling。

上面为Max Pooling,那么计算方法与卷积类似,首先设定超参数比如过滤器的大小与步长,然后覆盖到对应格子上面,用最大值取代其值作为输出的结果,例如上图为过滤器选择2×2,步长选择为2,因此输出就是2×2的维度,每个输出格子都是过滤器对应维度上输入的最大值。如果为平均池化,那么就是选择其间的平均值作为输出的值。
因此从上面的过程我们看到,通过池化操作能够缩小模型,同时能让特征值更加明显,也就提高了提取特征的鲁棒性。

⑧ 嵌入式与神经网络(二):CNN卷积层

姓名:王央京    学号:18050100052   学院:电子工程学院

转自:https://blog.csdn.net/qq_25762497/article/details/51052861

【嵌牛导读】本文具体介绍了CNN中的卷积层

【嵌牛鼻子】卷积层

【嵌牛提问】在初步了解之后,对CNN中的卷积层进行具体介绍

【嵌牛正文】

局部感知(Local Connectivity)

普通神经网络把输入层和隐含层进行“全连接(Full Connected)“的设计。从计算的角度来讲,相对较小的图像从整幅图像中计算特征是可行的。但是,如果是更大的图像(如 96x96 的图像),要通过这种全联通网络的这种方法来学习整幅图像上的特征,从计算角度而言,将变得非常耗时。你需要设计 10 的 4 次方(=10000)个输入单元,假设你要学习 100 个特征,那么就有 10 的 6 次方个参数需要去学习。与 28x28 的小块图像相比较, 96x96 的图像使用前向输送或者后向传导的计算方式,计算过程也会慢 100倍。

卷积层解决这类问题的一种简单方法是对隐含单元和输入单元间的连接加以限制:每个隐含单元仅仅只能连接输入单元的一部分。例如,每个隐含单元仅仅连接输入图像的一小片相邻区域。(对于不同于图像输入的输入形式,也会有一些特别的连接到单隐含层的输入信号“连接区域”选择方式。如音频作为一种信号输入方式,一个隐含单元所需要连接的输入单元的子集,可能仅仅是一段音频输入所对应的某个时间段上的信号。)

每个隐含单元连接的输入区域大小叫r神经元的感受野(receptive field)。

由于卷积层的神经元也是三维的,所以也具有深度。卷积层的参数包含一系列过滤器(filter),每个过滤器训练一个深度,有几个过滤器输出单元就具有多少深度。

具体如下图所示,样例输入单元大小是32×32×3, 输出单元的深度是5, 对于输出单元不同深度的同一位置,与输入图片连接的区域是相同的,但是参数(过滤器)不同。

虽然每个输出单元只是连接输入的一部分,但是值的计算方法是没有变的,都是权重和输入的点积,然后加上偏置,这点与普通神经网络是一样的,如下图所示:

空间排列(Spatial arrangement)

一个输出单元的大小有以下三个量控制:depth, stride 和 zero-padding。

深度(depth) : 顾名思义,它控制输出单元的深度,也就是filter的个数,连接同一块区域的神经元个数。又名:depth column

步幅(stride):它控制在同一深度的相邻两个隐含单元,与他们相连接的输入区域的距离。如果步幅很小(比如 stride = 1)的话,相邻隐含单元的输入区域的重叠部分会很多; 步幅很大则重叠区域变少。

补零(zero-padding) : 我们可以通过在输入单元周围补零来改变输入单元整体大小,从而控制输出单元的空间大小。

我们先定义几个符号:

W : 输入单元的大小(宽或高)

F : 感受野(receptive field)

S : 步幅(stride)

P : 补零(zero-padding)的数量

K : 深度,输出单元的深度

则可以用以下公式计算一个维度(宽或高)内一个输出单元里可以有几个隐藏单元:

如果计算结果不是一个整数,则说明现有参数不能正好适合输入,步幅(stride)设置的不合适,或者需要补零,证明略,下面用一个例子来说明一下。

这是一个一维的例子,左边模型输入单元有5个,即W=5, 边界各补了一个零,即P=1,步幅是1, 即S=1,感受野是3,因为每个输出隐藏单元连接3个输入单元,即F=3,根据上面公式可以计算出输出隐藏单元的个数是5,与图示吻合。右边那个模型是把步幅变为2,其余不变,可以算出输出大小为3,也与图示吻合。若把步幅改为3,则公式不能整除,说明步幅为3不能恰好吻合输入单元大小。另外,网络的权重在图的右上角,计算方法和普通神经网路一样。

参数共享(Parameter Sharing)

应用参数共享可以大量减少参数数量,参数共享基于一个假设:如果图像中的一点(x1, y1)包含的特征很重要,那么它应该和图像中的另一点(x2, y2)一样重要。换种说法,我们把同一深度的平面叫做深度切片(depth slice),那么同一个切片应该共享同一组权重和偏置。我们仍然可以使用梯度下降的方法来学习这些权值,只需要对原始算法做一些小的改动, 这里共享权值的梯度是所有共享参数的梯度的总和。

我们不禁会问为什么要权重共享呢?一方面,重复单元能够对特征进行识别,而不考虑它在可视域中的位置。另一方面,权值共享使得我们能更有效的进行特征抽取,因为它极大的减少了需要学习的自由变量的个数。通过控制模型的规模,卷积网络对视觉问题可以具有很好的泛化能力。

卷积(Convolution)

如果应用参数共享的话,实际上每一层计算的操作就是输入层和权重的卷积!这也就是卷积神经网络名字的由来。

先抛开卷积这个概念不管。为简便起见,考虑一个大小为5×5的图像,和一个3×3的卷积核。这种情况下,卷积核实际上有9个神经元,他们的输出又组成一个3×3的矩阵,称为特征图。第一个神经元连接到图像的第一个3×3的局部,第二个神经元则连接到第二个局部。具体如下图所示。

图的上方是第一个神经元的输出,下方是第二个神经元的输出。每个神经元的运算依旧是

现在我们回忆一下离散卷积运算。假设有二维离散函数 f(x,y) , g(x,y), 那么它们的卷积定义为

上面例子中的9个神经元均完成输出后,实际上等价于图像和卷积核的卷积操作。

⑨ 卷机神经网络中的对输入图像的过滤器是什么这里的过滤器怎么理解

ConvOp是Theano中对卷积层的一个实现。它重复了Scipy中scipy.signal.convolve2d的函数功能,总的来讲,ConvOp包含了两个输入(参数):
(1)对应输入图像的mini-batch的4D张量。每个张量的大小为:[mini-batch的大小,输入的特征图的数量,图像的高度,图像的宽度]。
(2)对应于权值W的4D张量。每个张量的大小为:[m层的特征图数量,m-1层的特征图数量,滤波器的高度,滤波器的宽度]。

如果输入数据是小块图像,比如8×8,那这种方法是可行的,但是如果输入图像是96×96,假设隐含层神经元100个,那么就有一百万个(96×96×100)参数需要学习,向前或向后传播计算时计算时间也会慢很多。
解决这类问题的一种简单方法是对隐含单元和输入单元间的连接加以限制:每个隐含单元仅仅只能连接输入单元的一部分。例如,每个隐含单元仅仅连接输入图像的一小片相邻区域。这也是卷积神经网络的基本思想,它是一种特殊的MLP,这个概念是从生物里面演化过来的. 根据Hubel和Wiesel早期在猫的视觉皮层上的工作, 我们知道在视觉皮层上面存在一种细胞的复杂分布,这些细胞对一些局部输入是很敏感的,它们被成为感知野, 并通过这种特殊的组合方式来覆盖整个视野. 这些过滤器对输入空间是局部敏感的,因此能够更好得发觉自然图像中不同物体的空间相关性。
对一副图片的局部特性的提取在整个视野上是可重复的,比如我们在96×96图像中选取8×8作为样本,在样本上学习到的特征应用到整幅图像上,即利用8×8中学习到的特征在96×96图像上做卷积,从而获得不同的特征值,所需要学习的参数也从96×96降到了8×8,这样成为一个特征图。我们需要从一副图像上学习的特征肯定不止一种,所以需要建立n个特征图来学习不同的特征。即使是这样,算法的复杂度也比之前全连接的方法大大的降低了。

⑩ 卷积神经网络——卷积层、池化层和激活函数

2018年11月20日,在看tensorflow的时候发现还是有很多概念没有理解透彻,发现一个很赞的资源(估计大家都知道的,只有我现在才发现),吴恩达老师在网易云课堂上开的深度学习的 课程 ,感觉很赞.本文实际上是吴恩达卷积神经网络视频学习笔记。

2019年2月14日,再次温故这部分的内容,添加了1.1章节的自问自答,添加了对池化层实现反向传播的方式,添加了激活函数relu和sigmoid的对比。

通过一个3 * 3的每列值相同、第一列为1,第二列为0,第三列为-1的过滤器可以检测垂直的边沿。注意到1表示亮,-1表示暗。这样可以发现正负值的边沿。
对于垂直边缘过滤器而言,重要的是中间一列为0,左右两列的值可以相差尽可能的大。
这个过滤器的数值也是可以通过反向传播皮运行算法学习的,不一定需要在算法开始之前就决定。
深度学习甚至可以去学习其他的边沿,无论是45度、73度乃至是其他的角度,虽然比手工要复杂一些,但是确实具有这样的能力。

为什么需要填充?大家都知道,卷积就是用过滤器(f x f)从左到右、从上到下的扫描一个矩阵(n x n)。有两种卷积操作,一种称为valid-conv,一种称为same-conv。每次卷积的时候,过滤器右侧碰到矩阵右边界就结束当前行的扫描,下侧碰到矩阵下边界就结束扫描,因此通过过滤器的图像都会缩小,变为(n-f+1) * (n-f+1)。valid-conv就是这样的卷积操作,而same-conv会在卷积之前填充原始图,使得卷积之后的大小不变。

一般来说燃哗,若原图像大小为n * n,过滤器大小为f * f,那么需要padding的大小为p=(f-1)/2。一般来说我们会设置f为奇数,很少看见偶数的过滤器。其中的原因之一就是为了对称填充。另一个原因可能是一般需要将过滤器的中间点用于定位卷积的位置,而偶数过滤器没有中间点。

上面的提到的卷积过程每次只移动一步。实际上过滤器可以移动不止一步,用s表示步长。那么n x n的矩阵输入, f x f的过滤器, p填充padding,以及s步长的情况下,输出的矩阵大小为 (n+2p-f)/2+1 x (n+2p-f)/2+1 ,这里是向下取整的,这意味过滤器只能在输入图像内部移动,不可以移动出边缘。

注意 在tensorflow中,有两种填充方式,一种是same,一种是valid。same是填充,而valid是不填充。如果遇到valid,那么实际计算矩阵大小的时候,是向上取悄袜整,而不是这里提到的向下取整。如果是same模式,那么最后的矩阵形状是n/s,也是向上取整

上面提到的卷积的输入是n x n的,这一般是灰度图像。对应彩色图像则存在RGB三个颜色channel,这样的图片是n x n x 3。此时的过滤器也必须存在第三个维度,即channel维度,且一个过滤器的channel维度必须和输入的channel维度一致。这样的卷积结果就是三个维度上,过滤器和输入的重叠位置乘积之和。最后的输出是(n - f + 1) x ( n - f +1)的。 注意,输出是二维的

我们可以使用N个不同的过滤器得到不同的N个二维输出,按照输入的格式将其叠起来,这样输出就是 (n - f + 1) x ( n - f +1) x N了。

在上面一节中已经讲了如何得到输入和一个过滤器卷积之后的结果。通常会给卷积的结果添加一个偏执,然后使用非线性的函数进行处理,得到的就是这层网络的输出。将过滤器的参数标记为W,偏置为 b(一个channel的输出矩阵Wa的偏置是一个实数,而非一个矩阵。一个layer的偏置b的维度和通道数channel一致) , 输入数据为上层的激活值。这样每个过滤器处理之后的结果就可以看成是经过了该layer一个节点之后的输出。

下面是每层的符号标记,以及根据上一层计算下一层输入大小的公式,右下角是使用BP学习更新的时候参数更新的次数。可以看到每层的参数的个数只和这层的filter的大小、数目有关,而和输入的规模无关。这样就可以通过控制参数的数量避免过拟合了。

可以从下面的课件中看到,卷积神经网络的趋势是长度和高度逐渐减少,而channel逐渐加深。最后一层会将卷积层平铺开来,形成一个全连接。全连接层会连接到最后一个判别函数上,判别函数可以是logistic或者softmax层,用于输出类别或者概率。

一般情况下,卷积网络除了卷积层之外,还会有池化层和全连接层,这些层可以提供更好的学习。

池化层一般在卷积层之后,可以也可以看成一个过滤器,实际上实现的一个采样的功能,其主要的思想是,着重提取具有某种倾向的特征,比如最大池化对应的是更显着的特征;平均池化对应的是更加平滑的特征。过滤器有几点不同

一般常用的池化层有max_pooling和average_pooling.max_pooling更加常用。 ,最大池化层意味着检测某个特征,并始终将这个特征留在池化层的输出中

池化层的输入n x n x nc,过滤器 f x f,步长s,输出 ((n-f)/s+1) x ((n-f)/s+1) * nc。
一般取s=2,这意味着输入的长宽减小一半。

比较好奇的一个问题是,池化层的存在对反向传播有什么影响?我们都知道在传统的神经网络中,反向传播算法实际上就是利用函数的梯度进行反向传播的,那么池化层这种既改变了矩阵大小又不好求导的情况,怎么处理呢?
(下面的内容来自 迷川浩浩_ZJU 的博客 )

mean pooling的前向传播就是把一个patch中的值求取平均来做pooling,那么反向传播的过程也就是把某个元素的梯度等分为n份分配给前一层,这样就保证池化前后的梯度(残差)之和保持不变,还是比较理解的。mean pooling比较容易让人理解错的地方就是会简单的认为直接把梯度复制N遍之后直接反向传播回去,但是这样会造成loss之和变为原来的N倍,网络是会产生梯度爆炸的。

2、max pooling

max pooling也要满足梯度之和不变的原则,max pooling的前向传播是把patch中最大的值传递给后一层,而其他像素的值直接被舍弃掉。那么反向传播也就是把梯度直接传给前一层某一个像素,而其他像素不接受梯度,也就是为0。所以max pooling操作和mean pooling操作不同点在于需要记录下池化操作时到底哪个像素的值是最大,也就是max id

一般概念上的一层包括卷积层和池化层,之所以不把池化层当做新的一层是因为池化层没有需要学习的参数,一般意义上的layer是有权重和参数需要学习的。

尽量不要自己设置超参数,而是尽量参考别人论文里面使用的超参数,选择一个在别人任务中效果很好的超参数。

下面的表中列举了上面的网络每一层的数据规模a^(l)以及参数数量。可以发现数据的规模逐渐减小。主卷积层的参数比较少,而进入全连接层之后参数数量很大。(表格中最后三列的参数数量可能存在错误,应该是48000 + 120, 120 * 84 + 84, 84 * 10 + 10)

以上的两个特征可以明显的减少参数。减少过拟合

(内容来自 迷川浩浩_ZJU 的博客 )
常用的激活函数有sigmoid函数和relu函数.
Relu(x)={if x>0 then x;else 0}为了在反向传播算法中可以正常使用,将其在x=0x=0处的导数置为1,所以它的导数也就变为了 δRelu(x)={if x>0 then 1 else 0}
Relu是一个非常优秀的激活哈数,相比较于传统的Sigmoid函数,有三个作用

阅读全文

与卷积网络中的过滤器步幅什么意思相关的资料

热点内容
松子网络用语代表什么 浏览:99
网络怎么信号那么差 浏览:703
夏朗手机的应用中心怎么连接网络 浏览:764
新闻报道该如何使用网络语言 浏览:313
打开网络连接无法显示wifi 浏览:459
房间网络数据信号差 浏览:36
网易云音乐如何不用网络听歌 浏览:267
旅游地产网络营销的问题及解决方案 浏览:9
家里只有网络怎么连接wifi 浏览:823
无法访问数据请连接网络 浏览:555
在国外没网络拨打什么电话 浏览:457
监控器改装无线网络 浏览:862
吕梁网络营销电话 浏览:202
联想笔记本电脑有网络打不开 浏览:640
移动网络300m怎么样 浏览:220
教我手机有网络 浏览:594
网络安全绳有什么用 浏览:958
如何退订网络加速业务 浏览:2
娄底网络安全检查 浏览:568
偃师移动网络维修 浏览:169

友情链接