导航:首页 > 网络问题 > 集合的含义是什么意思网络用语

集合的含义是什么意思网络用语

发布时间:2023-04-05 17:04:21

A. 集合是什么含义有什么作用

定义:集合'就是将数个对象归类而分成为一个或数个形态各异的大小整体。
一般来讲,集合是具有某种特性的事物的整体,或是一些确认对象的汇集。构成集合的事物或对象称作元素或是成员。集合的元素可以是任何事物,可以是人,可以是物,也可以是字母或数字等。
集合(或简称集)是基本的数学概念,它是集合论的研梁销配究对象。最简单的说法,即是在最原始的集合论─朴素集合论─中的定义,集合就是“一堆东西”。集合里的“东西”,叫作元素。若然 x 是集合
A 的元素,记作 x ∈ A。

集合是现代数学中一个重要的基本概念。集合论的基本理论直到十九世纪末才被创立,现在已经是数学教育中一个普遍存在的部分,在小学时就开始学习了。这里对被数学家们称为“直观的”或“朴素的”集合论进行一个简短而基本的介绍;更详细的分析可见朴素集合论。对集合进行严格的橡指公理推导可见公理斗扰化集合论。
参考http://zh.wikipedia.org/wiki/%E9%9B%86%E5%90%88_(%E6%95%B0%E5%AD%A6)

B. 集合的含义是什么

在数学教学中:
集合是把枣销人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合穗岩尺的元素(或简称猜高为元)。

C. 数学中集合的意思是什么通俗些谢谢百分百好评!

集合就是“一堆东西”。集合里的“东西”,叫作元素。若x是集合A的元素,则记作x∈A。
对这些东西进义定义,分类,符合条件的,归为同一堆。如A记作家庭中女性的集合,则元素X可能是姐妹,悔搭妈妈,奶奶等,有没尺的家庭奶奶不在,那X就只有姐妹,妈妈了。集枯前高合也就是符一定规定的元素,将其归类在一起。

D. 集合的含义 集合是什么意思

1、许多分散的人或物聚集在一起。《汉书·匈奴传下》:“发三十万众,具三百日粮……计其道里,一年尚未集肢碰合,兵先至者聚居暴露。”如:集合队伍。

2、集体,团体。鲁迅《书信集·致许寿裳》:“惟近来出杂志一种曰《新潮》,颇强人意,只是二十人左右之小集合所作,间亦杂教员着作。”

3、数学名词。指若干具有共同属性的事裂昌物的总体。如全部自然数就成一个自然数的集合,一个单位的全体人员就成一个该单位全体人员的集合历源谈。简称“集”。

E. 集合字母的含义是什么

数学中集合字母的含义如下凯衫:

1、Q表示有理数集;

2、N表示非负整数集{0,1,2,3……};

3、Z表示整数集合{-1,0,1……};

4、R:实数集合(包括有理数和无理数);

5、N*/N+:正整数集合{1,2,3,……};

6、C:复数集合;

7、∅:空集(不含有任何元素的集合);

8、Q+:正有理数集合;

9、Q-:负有理数集合;

10、R+:正实数集合;

11、R-:负实数集合。

集合的性质

1、确定性

给定一个集合,任给一个元素,该元素或者属于或者不属于该集含芹合,二者必居其一,不允许有模棱两可的情况出现。

2、互异性

一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。

3、无序性

一个集合中,每个元素的地位都是谈孙毕相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。

F. 数学中的集合是什么意思

定义
非正式的,一个集合就是将几个对象适当归类而作为一个整体。一般来说,集合为具有某种属性的事物的全体,或是一些确定对象的汇合。构成集合的事物或对象称作元素或成员。集合的元素可以是任何东西:数字,人,字母,别的集合,等等。[编辑]
符号
集合通常表示为大写字母
A,
B,
C……。而元素通常表示为小写字母a,b,c……。元素a属于集合A,记作aA。假如元素a不属于A,则记作aA。如果两个集合
A

B
它们各自所包含的元素完全一样,则二者相等,写作
A
=
B。[编辑]
集合的特点
无序性
在同一个集合里面的每一个元素的地位都是相同的,所以元素的排列是没有顺序的。
互异性
在同一个集合里面每一个元素只能出现一次,不能重复出现。
确定性
定制集合的标准是确定的而不是含糊的,如全国全体较高的男生,这里的较高没有标准是含糊的。
[编辑]
集合的表示
集合可以用文字或数学符号描述,称为描述法,比如:
A
=
大于零的前三个自然数
B
=
红色、白色、历汪橡蓝色和绿色
集合的另一种表示方法是在大括号中列出其元素,称为列举法,比如:
C
=
{1,
2,
3}
D
=
{红色,白色,蓝色,绿色}
尽管两个集合有不同的表示,它们仍可能是相同的。比如:上述集合中,A
=
C

B
=
D,因为它们正好有相同的元素。元素列出的顺序不同,或者元素列表中有重复,都没有关系。比如:这三个集合
{2,
4},{4,
2}

{2,
2,
4,
2}
是肢旁相同的,同样因为它们有相同的元素。集合在不严格的意义下也可陵伍以通过草图来表示,更多信息,请见文氏图。
[编辑]
集合的元素个数
上述每一个集合都有确定的元素个数;比如:集合
A
有三个元素,而集合
B
有四个。一个集合中元素的数目称为该集合的基数。集合可以没有元素。这样的集合叫做空集,用符号
表示。比如:在2004年,集合
A
是所有住在月球上的人,它没有元素,则
A
=
。就像数字零,看上去微不足道,而在数学上,空集非常重要。更多信息请看空集。如果集合含有有限个元素,那么这个集合可以称为有限集。集合也可以有无穷多个元素。比如:自然数的集合是无穷大的。关于无穷大和集合的大小的更多信息请见集合的势。[编辑]
子集
主条目:子集如果集合
A
的所有元素同时都是集合
B
的元素,则
A
称作是
B
的子集,写作
A

B。

A

B
的子集,且
A
不等于
B,则
A
称作是
B
的真子集,写作
A

B。B
的子集
A
举例:所有男人的集合是所有人的集合的真子集。
所有自然数的集合是所有整数的集合的真子集。
{1,
3}

{1,
2,
3,
4}
{1,
2,
3,
4}

{1,
2,
3,
4}
空集是所有集合的子集,而所有集合都是其本身的子集:⊆
A
A

A
[编辑]
并集
主条目:并集有多种方法通过现有集合来构造新的集合。两个集合可以相"加"。A

B
的并集(联集),写作
A

B,是或属于
A
的、或属于
B
的所有元素组成的集合。A

B
的并集
举例:{1,
2}

{红色,
白色}
=
{1,
2,
红色,
白色}
{1,
2,
绿色}

{红色,
白色,
绿色}
=
{1,
2,
红色,
白色,
绿色}
{1,
2}

{1,
2}
=
{1,
2}
并集的一些基本性质A

B
=
B

A
A

A

B
A

A
=
A
A

=
A
[编辑]
交集
主条目:交集一个新的集合也可以通过两个集合"共"有的元素来构造。A

B
的交集,写作
A

B,是既属于
A
的、又属于
B
的所有元素组成的集合。若
A

B
=
,则
A

B
称作不相交。A

B
的交集
举例:{1,
2}

{红色,
白色}
=
{1,
2,
绿色}

{红色,
白色,
绿色}
=
{绿色}
{1,
2}

{1,
2}
=
{1,
2}
交集的一些基本性质A

B
=
B

A
A

B

A
A

A
=
A
A

=
[编辑]
补集
主条目:补集两个集合也可以相"减"。A

B
中的相对补集,写作
B

A,是属于
B
的、但不属于
A
的所有元素组成的集合。在特定情况下,所讨论的所有集合是一个给定的全集
U
的子集。这样,
U

A
称作
A
的绝对补集,或简称补集(馀集),写作
A′或CUA。相对补集
A
-
B
补集可以看作两个集合相减,有时也称作差集。举例:{1,
2}

{红色,
白色}
=
{1,
2}
{1,
2,
绿色}

{红色,
白色,
绿色}
=
{1,
2}
{1,
2}

{1,
2}
=

U
是整数集,则奇数的补集是偶数
补集的基本性质:A

A′
=
U
A

A′
=
(A′)′
=
A
A

B
=
A

B′
[编辑]
对称差
见对称差。[编辑]
集合的其它名称
在数学交流当中为了方便,集合会有一些别名。比如:族、系通常指它的元素也是一些集合。
[编辑]
公理集合论
把集合看作“一堆东西”会得出所谓罗素悖论。为解决罗素悖论,数学家提出公理化集合论。在公理集合论中,集合是一个不加定义的概念。[编辑]

在更深层的公理化数学中,集合仅仅是一种特殊的类,是“良性类”,是能够成为其它类的元素的类。类区分为两种:一种是可以顺利进行类运算的“良性类”,我们把这种“良性类”称为集合;另一种是要限制运算的“本性类”,对于本性类,类运算是并不都能进行的。定义
类A如果满足条件“”,则称类A为一个集合(简称为集),记为Set(A)。否则称为本性类。这说明,一个集合可以作为其它类的元素,但一个本性类却不能成为其它类的元素。因此可以理解为“本性类是最高层次的类”。

G. 集合是的含义什么

(一)有关概念:
1、集合的概念
(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作余亩轮对象.
(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.
(3)元素:集合中每个对象叫做这个集合的元素.
集合通常用大竖信写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……
2、元素与集合的关系
(1)属于: 如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
要注意“∈”的方向,不能把a∈A颠倒过来写.
3、集合中元素的特性
(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.
(2)互异性:集合中的元素一定是不同的.
(3)无序性:集合中的元素没有固定的顺序.
4、集合分类
根据集合所含元素个属不同,可把集合分为如下几类:
(1)把不含任何元素的集合耐大叫做空集Ф
(2)含有有限个元素的集合叫做有限集
(3)含有无穷个元素的集合叫做无限集

阅读全文

与集合的含义是什么意思网络用语相关的资料

热点内容
新乡哪里有网络推广系统 浏览:595
发视频就显示网络异常 浏览:120
济南网络营销外包 浏览:833
适合学习的网络软件 浏览:980
网络视听基地有哪些 浏览:89
网络秘密如何修改 浏览:97
无线网络规划的准备工作有哪两项 浏览:73
台式电脑上有一个不识别网络 浏览:410
手机上e网络是什么 浏览:92
学编程和网络营销哪个好 浏览:423
移动网络类型哪个网速最快 浏览:726
网络适配器哪个是正在使用的网卡 浏览:803
不是网络电视机可以连接wifi吗 浏览:758
安卓手机怎么重置网络接入点 浏览:635
考研网络平台哪个好一点 浏览:209
战场信息网络包括哪些软件 浏览:66
计算机网络dx考试 浏览:182
360长沙网络安全业务 浏览:401
网络电视哪里可以看奥运会直播 浏览:471
共享网络需要蓝牙吗 浏览:787

友情链接