⑴ 人工神经网络概念梳理与实例演示
人工神经网络概念梳理与实例演示
神经网络是一种模仿生物神经元的机器学习模型,数据从输入层进入并流经激活阈值的多个节点。
递归性神经网络一种能够对之前输入数据进行内部存储记忆的神经网络,所以他们能够学习到数据流中的时间依赖结构。
如今机器学习已经被应用到很多的产品中去了,例如,siri、Google Now等智能助手,推荐引擎——亚马逊网站用于推荐商品的推荐引擎,Google和Facebook使用的广告排名系统。最近,深度学习的一些进步将机器学习带入公众视野:AlphaGo 打败围棋大师李世石事件以及一些图片识别和机器翻译等新产品的出现。
在这部分中,我们将介绍一些强大并被普遍使用的机器学习技术。这当然包括一些深度学习以及一些满足现代业务需求传统方法。读完这一系列的文章之后,你就掌握了必要的知识,便可以将具体的机器学习实验应用到你所在的领域当中。
随着深层神经网络的精度的提高,语音和图像识别技术的应用吸引了大众的注意力,关于AI和深度学习的研究也变得更加普遍了。但是怎么能够让它进一步扩大影响力,更受欢迎仍然是一个问题。这篇文章的主要内容是:简述前馈神经网络和递归神经网络、怎样搭建一个递归神经网络对时间系列数据进行异常检测。为了让我们的讨论更加具体化,我们将演示一下怎么用Deeplearning4j搭建神经网络。
一、什么是神经网络?
人工神经网络算法的最初构思是模仿生物神经元。但是这个类比很不可靠。人工神经网络的每一个特征都是对生物神经元的一种折射:每一个节点与激活阈值、触发的连接。
连接人工神经元系统建立起来之后,我们就能够对这些系统进行训练,从而让他们学习到数据中的一些模式,学到之后就能执行回归、分类、聚类、预测等功能。
人工神经网络可以看作是计算节点的集合。数据通过这些节点进入神经网络的输入层,再通过神经网络的隐藏层直到关于数据的一个结论或者结果出现,这个过程才会停止。神经网络产出的结果会跟预期的结果进行比较,神经网络得出的结果与正确结果的不同点会被用来更正神经网络节点的激活阈值。随着这个过程的不断重复,神经网络的输出结果就会无限靠近预期结果。
二、训练过程
在搭建一个神经网络系统之前,你必须先了解训练的过程以及网络输出结果是怎么产生的。然而我们并不想过度深入的了解这些方程式,下面是一个简短的介绍。
网络的输入节点收到一个数值数组(或许是叫做张量多维度数组)就代表输入数据。例如, 图像中的每个像素可以表示为一个标量,然后将像素传递给一个节点。输入数据将会与神经网络的参数相乘,这个输入数据被扩大还是减小取决于它的重要性,换句话说,取决于这个像素就不会影响神经网络关于整个输入数据的结论。
起初这些参数都是随机的,也就是说神经网络在建立初期根本就不了解数据的结构。每个节点的激活函数决定了每个输入节点的输出结果。所以每个节点是否能够被激活取决于它是否接受到足够的刺激强度,即是否输入数据和参数的结果超出了激活阈值的界限。
在所谓的密集或完全连接层中,每个节点的输出值都会传递给后续层的节点,在通过所有隐藏层后最终到达输出层,也就是产生输入结果的地方。在输出层, 神经网络得到的最终结论将会跟预期结论进行比较(例如,图片中的这些像素代表一只猫还是狗?)。神经网络猜测的结果与正确结果的计算误差都会被纳入到一个测试集中,神经网络又会利用这些计算误差来不断更新参数,以此来改变图片中不同像素的重要程度。整个过程的目的就是降低输出结果与预期结果的误差,正确地标注出这个图像到底是不是一条狗。
深度学习是一个复杂的过程,由于大量的矩阵系数需要被修改所以它就涉及到矩阵代数、衍生品、概率和密集的硬件使用问题,但是用户不需要全部了解这些复杂性。
但是,你也应该知道一些基本参数,这将帮助你理解神经网络函数。这其中包括激活函数、优化算法和目标函数(也称为损失、成本或误差函数)。
激活函数决定了信号是否以及在多大程度上应该被发送到连接节点。阶梯函数是最常用的激活函数, 如果其输入小于某个阈值就是0,如果其输入大于阈值就是1。节点都会通过阶梯激活函数向连接节点发送一个0或1。优化算法决定了神经网络怎么样学习,以及测试完误差后,权重怎么样被更准确地调整。最常见的优化算法是随机梯度下降法。最后, 成本函数常用来衡量误差,通过对比一个给定训练样本中得出的结果与预期结果的不同来评定神经网络的执行效果。
Keras、Deeplearning4j 等开源框架让创建神经网络变得简单。创建神经网络结构时,需要考虑的是怎样将你的数据类型匹配到一个已知的被解决的问题,并且根据你的实际需求来修改现有结构。
三、神经网络的类型以及应用
神经网络已经被了解和应用了数十年了,但是最近的一些技术趋势才使得深度神经网络变得更加高效。
GPUs使得矩阵操作速度更快;分布式计算结构让计算能力大大增强;多个超参数的组合也让迭代的速度提升。所有这些都让训练的速度大大加快,迅速找到适合的结构。
随着更大数据集的产生,类似于ImageNet 的大型高质量的标签数据集应运而生。机器学习算法训练的数据越大,那么它的准确性就会越高。
最后,随着我们理解能力以及神经网络算法的不断提升,神经网络的准确性在语音识别、机器翻译以及一些机器感知和面向目标的一些任务等方面不断刷新记录。
尽管神经网络架构非常的大,但是主要用到的神经网络种类也就是下面的几种。
3.1前馈神经网络
前馈神经网络包括一个输入层、一个输出层以及一个或多个的隐藏层。前馈神经网络可以做出很好的通用逼近器,并且能够被用来创建通用模型。
这种类型的神经网络可用于分类和回归。例如,当使用前馈网络进行分类时,输出层神经元的个数等于类的数量。从概念上讲, 激活了的输出神经元决定了神经网络所预测的类。更准确地说, 每个输出神经元返回一个记录与分类相匹配的概率数,其中概率最高的分类将被选为模型的输出分类。
前馈神经网络的优势是简单易用,与其他类型的神经网络相比更简单,并且有一大堆的应用实例。
3.2卷积神经网络
卷积神经网络和前馈神经网络是非常相似的,至少是数据的传输方式类似。他们结构大致上是模仿了视觉皮层。卷积神经网络通过许多的过滤器。这些过滤器主要集中在一个图像子集、补丁、图块的特征识别上。每一个过滤器都在寻找不同模式的视觉数据,例如,有的可能是找水平线,有的是找对角线,有的是找垂直的。这些线条都被看作是特征,当过滤器经过图像时,他们就会构造出特征图谱来定位各类线是出现在图像的哪些地方。图像中的不同物体,像猫、747s、榨汁机等都会有不同的图像特征,这些图像特征就能使图像完成分类。卷积神经网络在图像识别和语音识别方面是非常的有效的。
卷积神经网络与前馈神经网络在图像识别方面的异同比较。虽然这两种网络类型都能够进行图像识别,但是方式却不同。卷积神经网络是通过识别图像的重叠部分,然后学习识别不同部分的特征进行训练;然而,前馈神经网络是在整张图片上进行训练。前馈神经网络总是在图片的某一特殊部分或者方向进行训练,所以当图片的特征出现在其他地方时就不会被识别到,然而卷积神经网络却能够很好的避免这一点。
卷积神经网络主要是用于图像、视频、语音、声音识别以及无人驾驶的任务。尽管这篇文章主要是讨论递归神经网络的,但是卷积神经网络在图像识别方面也是非常有效的,所以很有必要了解。
3.3递归神经网络
与前馈神经网络不同的是,递归神经网络的隐藏层的节点里有内部记忆存储功能,随着输入数据的改变而内部记忆内容不断被更新。递归神经网络的结论都是基于当前的输入和之前存储的数据而得出的。递归神经网络能够充分利用这种内部记忆存储状态处理任意序列的数据,例如时间序列。
递归神经网络经常用于手写识别、语音识别、日志分析、欺诈检测和网络安全。
递归神经网络是处理时间维度数据集的最好方法,它可以处理以下数据:网络日志和服务器活动、硬件或者是医疗设备的传感器数据、金融交易、电话记录。想要追踪数据在不同阶段的依赖和关联关系需要你了解当前和之前的一些数据状态。尽管我们通过前馈神经网络也可以获取事件,随着时间的推移移动到另外一个事件,这将使我们限制在对事件的依赖中,所以这种方式很不灵活。
追踪在时间维度上有长期依赖的数据的更好方法是用内存来储存重要事件,以使近期事件能够被理解和分类。递归神经网络最好的一点就是在它的隐藏层里面有“内存”可以学习到时间依赖特征的重要性。
接下来我们将讨论递归神经网络在字符生成器和网络异常检测中的应用。递归神经网络可以检测出不同时间段的依赖特征的能力使得它可以进行时间序列数据的异常检测。
递归神经网络的应用
网络上有很多使用RNNs生成文本的例子,递归神经网络经过语料库的训练之后,只要输入一个字符,就可以预测下一个字符。下面让我们通过一些实用例子发现更多RNNs的特征。
应用一、RNNs用于字符生成
递归神经网络经过训练之后可以把英文字符当做成一系列的时间依赖事件。经过训练后它会学习到一个字符经常跟着另外一个字符(“e”经常跟在“h”后面,像在“the、he、she”中)。由于它能预测下一个字符是什么,所以它能有效地减少文本的输入错误。
Java是个很有趣的例子,因为它的结构包括很多嵌套结构,有一个开的圆括号必然后面就会有一个闭的,花括号也是同理。他们之间的依赖关系并不会在位置上表现的很明显,因为多个事件之间的关系不是靠所在位置的距离确定的。但是就算是不明确告诉递归神经网络Java中各个事件的依赖关系,它也能自己学习了解到。
在异常检测当中,我们要求神经网络能够检测出数据中相似、隐藏的或许是并不明显的模式。就像是一个字符生成器在充分地了解数据的结构后就会生成一个数据的拟像,递归神经网络的异常检测就是在其充分了解数据结构后来判断输入的数据是不是正常。
字符生成的例子表明递归神经网络有在不同时间范围内学习到时间依赖关系的能力,它的这种能力还可以用来检测网络活动日志的异常。
异常检测能够使文本中的语法错误浮出水面,这是因为我们所写的东西是由语法结构所决定的。同理,网络行为也是有结构的,它也有一个能够被学习的可预测模式。经过在正常网络活动中训练的递归神经网络可以监测到入侵行为,因为这些入侵行为的出现就像是一个句子没有标点符号一样异常。
应用二、一个网络异常检测项目的示例
假设我们想要了解的网络异常检测就是能够得到硬件故障、应用程序失败、以及入侵的一些信息。
模型将会向我们展示什么呢?
随着大量的网络活动日志被输入到递归神经网络中去,神经网络就能学习到正常的网络活动应该是什么样子的。当这个被训练的网络被输入新的数据时,它就能偶判断出哪些是正常的活动,哪些是被期待的,哪些是异常的。
训练一个神经网络来识别预期行为是有好处的,因为异常数据不多,或者是不能够准确的将异常行为进行分类。我们在正常的数据里进行训练,它就能够在未来的某个时间点提醒我们非正常活动的出现。
说句题外话,训练的神经网络并不一定非得识别到特定事情发生的特定时间点(例如,它不知道那个特殊的日子就是周日),但是它一定会发现一些值得我们注意的一些更明显的时间模式和一些可能并不明显的事件之间的联系。
我们将概述一下怎么用 Deeplearning4j(一个在JVM上被广泛应用的深度学习开源数据库)来解决这个问题。Deeplearning4j在模型开发过程中提供了很多有用的工具:DataVec是一款为ETL(提取-转化-加载)任务准备模型训练数据的集成工具。正如Sqoop为Hadoop加载数据,DataVec将数据进行清洗、预处理、规范化与标准化之后将数据加载到神经网络。这跟Trifacta’s Wrangler也相似,只不过它更关注二进制数据。
开始阶段
第一阶段包括典型的大数据任务和ETL:我们需要收集、移动、储存、准备、规范化、矢量话日志。时间跨度的长短是必须被规定好的。数据的转化需要花费一些功夫,这是由于JSON日志、文本日志、还有一些非连续标注模式都必须被识别并且转化为数值数组。DataVec能够帮助进行转化和规范化数据。在开发机器学习训练模型时,数据需要分为训练集和测试集。
训练神经网络
神经网络的初始训练需要在训练数据集中进行。
在第一次训练的时候,你需要调整一些超参数以使模型能够实现在数据中学习。这个过程需要控制在合理的时间内。关于超参数我们将在之后进行讨论。在模型训练的过程中,你应该以降低错误为目标。
但是这可能会出现神经网络模型过度拟合的风险。有过度拟合现象出现的模型往往会在训练集中的很高的分数,但是在遇到新的数据时就会得出错误结论。用机器学习的语言来说就是它不够通用化。Deeplearning4J提供正则化的工具和“过早停止”来避免训练过程中的过度拟合。
神经网络的训练是最花费时间和耗费硬件的一步。在GPUs上训练能够有效的减少训练时间,尤其是做图像识别的时候。但是额外的硬件设施就带来多余的花销,所以你的深度学习的框架必须能够有效的利用硬件设施。Azure和亚马逊等云服务提供了基于GPU的实例,神经网络还可以在异构集群上进行训练。
创建模型
Deeplearning4J提供ModelSerializer来保存训练模型。训练模型可以被保存或者是在之后的训练中被使用或更新。
在执行异常检测的过程中,日志文件的格式需要与训练模型一致,基于神经网络的输出结果,你将会得到是否当前的活动符合正常网络行为预期的结论。
代码示例
递归神经网络的结构应该是这样子的:
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder(
.seed(123)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1)
.weightInit(WeightInit.XAVIER)
.updater(Updater.NESTEROVS).momentum(0.9)
.learningRate(0.005)
.gradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue)
.(0.5)
.list()
.layer(0, new GravesLSTM.Builder().activation("tanh").nIn(1).nOut(10).build())
.layer(1, new RnnOutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
.activation("softmax").nIn(10).nOut(numLabelClasses).build())
.pretrain(false).backprop(true).build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();
下面解释一下几行重要的代码:
.seed(123)
随机设置一个种子值对神经网络的权值进行初始化,以此获得一个有复验性的结果。系数通常都是被随机的初始化的,以使我们在调整其他超参数时仍获得一致的结果。我们需要设定一个种子值,让我们在调整和测试的时候能够用这个随机的权值。
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1)
决定使用哪个最优算法(在这个例子中是随机梯度下降法)来调整权值以提高误差分数。你可能不需要对这个进行修改。
.learningRate(0.005)
当我们使用随机梯度下降法的时候,误差梯度就被计算出来了。在我们试图将误差值减到最小的过程中,权值也随之变化。SGD给我们一个让误差更小的方向,这个学习效率就决定了我们该在这个方向上迈多大的梯度。如果学习效率太高,你可能是超过了误差最小值;如果太低,你的训练可能将会永远进行。这是一个你需要调整的超参数。
⑵ 大数据科学家需要掌握的几种异常值检测方法
引言
异常值检测与告警一直是工业界非常关注的问题,自动准确地检测出系统的异常值,不仅可以节约大量的人力物力,还能尽早发现系统的异常情况,挽回不必要的损失。个推也非常重视大数据中的异常值检测,例如在运维部门的流量管理业务中,个推很早便展开了对异常值检测的实践,也因此积累了较为丰富的经验。本文将从以下几个方面介绍异常值检测。
1、异常值检测研究背景
2、异常值检测方法原理
3、异常值检测应用实践
异常值检测研究背景
异常值,故名思议就是不同于正常值的值。 在数学上,可以用离群点来表述,这样便可以将异常值检测问题转化为数学问题来求解。
异常值检测在很多场景都有广泛的应用,比如:
1、流量监测
互联网上某些服务器的访问量,可能具有周期性或趋势性:一般情况下都是相对平稳的,但是当受到某些黑客攻击后,其访问量可能发生显着的变化,及早发现这些异常变化对企业而言有着很好的预防告警作用。
2、金融风控
正常账户中,用户的转账行为一般属于低频事件,但在某些金融诈骗案中,一些嫌犯的账户就可能会出现高频的转账行为,异常检测系统如果能发现这些异常行为,及时采取相关措施,则会规避不少损失。
3、机器故障检测
一个运行中的流水线,可能会装有不同的传感器用来监测运行中的机器,这些传感器数据就反应了机器运行的状态,这些实时的监测数据具有数据量大、维度广的特点,用人工盯着看的话成本会非常高,高效的自动异常检测算法将能很好地解决这一问题。
异常值检测方法原理
本文主要将异常值检测方法分为两大类:一类是基于统计的异常值检测,另一类是基于模型的异常值检测。
基于统计的方法
基于模型的方法
1、基于统计的异常值检测方法
常见的基于统计的异常值检测方法有以下2种,一种是基于3σ法则,一种是基于箱体图。
3σ法则
箱体图
3σ法则是指在样本服从正态分布时,一般可认为小于μ-3σ或者大于μ+3σ的样本值为异常样本,其中μ为样本均值,σ为样本标准差。在实际使用中,我们虽然不知道样本的真实分布,但只要真实分布与正太分布相差不是太大,该经验法则在大部分情况下便是适用的。
箱体图也是一种比较常见的异常值检测方法,一般取所有样本的25%分位点Q1和75%分位点Q3,两者之间的距离为箱体的长度IQR,可认为小于Q1-1.5IQR或者大于Q3+1.5IQR的样本值为异常样本。
基于统计的异常检测往往具有计算简单、有坚实的统计学基础等特点,但缺点也非常明显,例如需要大量的样本数据进行统计,难以对高维样本数据进行异常值检测等。
2、基于模型的异常值检测
通常可将异常值检测看作是一个二分类问题,即将所有样本分为正常样本和异常样本,但这和常规的二分类问题又有所区别,常规的二分类一般要求正负样本是均衡的,如果正负样本不均匀的话,训练结果往往会不太好。但在异常值检测问题中,往往面临着正(正常值)负(异常值)样本不均匀的问题,异常值通常比正常值要少得多,因此需要对常规的二分类模型做一些改进。
基于模型的异常值检测一般可分为有监督模型异常值检测和无监督模型异常值检测,比较典型的有监督模型如oneclassSVM、基于神经网络的自编码器等。 oneclassSVM就是在经典的SVM基础上改进而来,它用一个超球面替代了超平面,超球面以内的值为正常值,超球面以外的值为异常值。
经典的SVM
1
基于模型的方法
2
基于神经网络的自编码器结构如下图所示。
自编码器(AE)
将正常样本用于模型训练,输入与输出之间的损失函数可采用常见的均方误差,因此检测过程中,当正常样本输入时,均方误差会较小,当异常样本输入时,均方误差会较大,设置合适的阈值便可将异常样本检测出来。但该方法也有缺点,就是对于训练样本比较相近的正常样本判别较好,但若正常样本与训练样本相差较大,则可能会导致模型误判。
无监督模型的异常值检测是异常值检测中的主流方法,因为异常值的标注成本往往较高,另外异常值的产生往往无法预料,因此有些异常值可能在过去的样本中根本没有出现过, 这将导致某些异常样本无法标注,这也是有监督模型的局限性所在。 较为常见的无监督异常值检测模型有密度聚类(DBSCAN)、IsolationForest(IF)、RadomCutForest(RCF)等,其中DBSCAN是一种典型的无监督聚类方法,对某些类型的异常值检测也能起到不错的效果。该算法原理网上资料较多,本文不作详细介绍。
IF算法最早由南京大学人工智能学院院长周志华的团队提出,是一种非常高效的异常值检测方法,该方法不需要对样本数据做任何先验的假设,只需基于这样一个事实——异常值只是少数,并且它们具有与正常值非常不同的属性值。与随机森林由大量决策树组成一样,IsolationForest也由大量的树组成。IsolationForest中的树叫isolation tree,简称iTree。iTree树和决策树不太一样,其构建过程也比决策树简单,因为其中就是一个完全随机的过程。
假设数据集有N条数据,构建一颗iTree时,从N条数据中均匀抽样(一般是无放回抽样)出n个样本出来,作为这颗树的训练样本。
在样本中,随机选一个特征,并在这个特征的所有值范围内(最小值与最大值之间)随机选一个值,对样本进行二叉划分,将样本中小于该值的划分到节点的左边,大于等于该值的划分到节点的右边。
这样得到了一个分裂条件和左、右两边的数据集,然后分别在左右两边的数据集上重复上面的过程,直至达到终止条件。 终止条件有两个,一个是数据本身不可再分(只包括一个样本,或者全部样本相同),另外一个是树的高度达到log2(n)。 不同于决策树,iTree在算法里面已经限制了树的高度。不限制虽然也可行,但出于效率考虑,算法一般要求高度达到log2(n)深度即可。
把所有的iTree树构建好了,就可以对测试数据进行预测了。预测的过程就是把测试数据在iTree树上沿对应的条件分支往下走,直到达到叶子节点,并记录这过程中经过的路径长度h(x),即从根节点,穿过中间的节点,最后到达叶子节点,所走过的边的数量(path length)。最后,将h(x)带入公式,其中E(.)表示计算期望,c(n)表示当样本数量为n时,路径长度的平均值,从而便可计算出每条待测数据的异常分数s(Anomaly Score)。异常分数s具有如下性质:
1)如果分数s越接近1,则该样本是异常值的可能性越高;
2)如果分数s越接近0,则该样本是正常值的可能性越高;
RCF算法与IF算法思想上是比较类似的,前者可以看成是在IF算法上做了一些改进。针对IF算法中没有考虑到的时间序列因素,RCF算法考虑了该因素,并且在数据样本采样策略上作出了一些改进,使得异常值检测相对IF算法变得更加准确和高效,并能更好地应用于流式数据检测。
IF算法
RCF算法
上图展示了IF算法和RCF算法对于异常值检测的异同。我们可以看出原始数据中有两个突变异常数据值,对于后一个较大的突变异常值,IF算法和RCF算法都检测了出来,但对于前一个较小的突变异常值,IF算法没有检测出来,而RCF算法依然检测了出来,这意味着RCF有更好的异常值检测性能。
异常值检测应用实践
理论还需结合实践,下面我们将以某应用从2016.08.16至2019.09.21的日活变化情况为例,对异常值检测的实际应用场景予以介绍:
从上图中可以看出该应用的日活存在着一些显着的异常值(比如红色圆圈部分),这些异常值可能由于活动促销或者更新迭代出现bug导致日活出现了比较明显的波动。下面分别用基于统计的方法和基于模型的方法对该日活序列数据进行异常值检测。
基于3σ法则(基于统计)
RCF算法(基于模型)
从图中可以看出,对于较大的突变异常值,3σ法则和RCF算法都能较好地检测出来, 但对于较小的突变异常值,RCF算法则要表现得更好。
总结
上文为大家讲解了异常值检测的方法原理以及应用实践。综合来看,异常值检测算法多种多样 ,每一种都有自己的优缺点和适用范围,很难直接判断哪一种异常检测算法是最佳的, 具体在实战中,我们需要根据自身业务的特点,比如对计算量的要求、对异常值的容忍度等,选择合适的异常值检测算法。
接下来,个推也会结合自身实践,在大数据异常检测方面不断深耕,继续优化算法模型在不同业务场景中的性能,持续为开发者们分享前沿的理念与最新的实践方案。
⑶ 算法太多挑花眼
算法太多挑花眼?教你如何选择正确的机器学习算法
机器学习算法虽多,却没有什么普适的解决方案。决策树、随机森林、朴素贝叶斯、深度网络等等等等,是不是有时候觉得挑花了眼呢?福利来啦~本文将教你慧眼识精,快速挑选出满意的算法!
机器学习既是一门科学,也是一种艺术。纵观各类机器学习算法,并没有一种普适的解决方案或方法。事实上,有几个因素会影响你对机器学习算法的选择。
有些问题是非常特别的,需要用一种特定的解决方法。例如,如果你对推荐系统有所了解,你会发现它是一类很常用的机器学习算法,用来解决一类非常特殊的问题。而其它的一些问题则非常开放,可能需要一种试错方法(例如:强化学习)。监督学习、分类、回归等问题都是非常开放的,可以被用于异常检测或建立更加广泛的预测模型。
此外,我们在选择机器学习算法时所做出的一些决定与算法的优化或技术层面关系并不大,而更多地与业务决策相关。下面,让我们一起来看看有哪些因素能帮你缩小机器学习算法的选择范围。
数据科学过程
在你开始研究不同的机器学习算法前,你需要对自己拥有的数据、面对的问题及相关约束有清晰的了解。
理解你的数据
当我们决定使用哪种算法时,我们所拥有的数据的类型和形态起着关键性的作用。有些算法可以利用较小的样本集合工作,而另一些算法则需要海量的样本。特定的算法对特定类型的数据起作用。例如,朴素贝叶斯算法对处理待分类的输入特别有效,但是对于缺失值则一点都不敏感。
因此,你需要做到:
了解你的数据
1. 查看总结统计和数据可视化的结
百分比可以帮助你识别大多数数据的范围
平均数和中位数可以描述集中趋势
相关系数可以指出强的关联性
2. 数据可视化
箱形图可以识别出异常值
密度图和直方图可以显示出数据的散布情况
散点图可以描述二元关
数据清洗
1. 处理缺失值。缺失的数据对于某些模型的影响比对其它模型更大。即使是对于那些被用于处理缺失数据的模型来说,它们也可能对缺失数据很敏感(某些变量的缺失数据可能导致预测性能变差)
2. 选择处理异常值的方法
异常值在多维数据中十分常见。
有些模型对异常值的敏感性比其它模型要低。通常而言,树模型对于异常值的存在不太敏感。然而回归模型、或者任何试图使用方程的模型都会受到异常值的严重影响。
异常值可能是糟糕的数据收集造成的,也可能是合理的极值。
3. 数据需要被聚合吗?
数据增强
1. 特征工程是从原始数据中产生能够被用于建模的数据的过程,可以起到以下几种作用:
使模型更容易被解释(如数据分箱(binning))
捕获更复杂的关系(如神经网络)
减少数据冗余并降低数据维度(如主成分分析(PCA))
重新缩放变量(如标准化或归一化)
2. 不同的模型可能有不同的特征工程的要求。有的模型有内置的特征工程。
对问题进行分类
下一步是对问题进行分类。这是一个需要分两步实现的过程。
1. 根据输入分类:
如果你拥有的是带标签的数据,那么这就是一个监督学习问题。
如果你拥有的是未标注过的数据,并且希望从中找到有用的结构,那么这就是一个无监督学习问题。
如果你想要通过与环境的交互来优化一个目标函数,那么这就是一个强化学习问题。
2. 根据输出分类:
如果模型的输出是一个(连续的)数字,那么这就是一个回归问题。
如果模型的输出是一个类别,那么这就是一个分类问题。
如果模型的输出是一组用输入数据划分出的簇,那么这就是一个聚类问题。
你想发现一个异常点吗?此时你面对的就是一个异常检测问题。
理解你要满足的约束条
你需要考虑你能够存储数据的容量有多大?这取决于系统的存储容量,你可能无法存储若干 GB 大小的分类、回归模型或者若干 GB 的用于聚类分析的数据。例如,在嵌入式系统中,你就会面临这种情况。
对预测过程的速度是否有要求?在实时应用中,很显然,尽快得出预测结果是十分重要的。例如,在自动驾驶问题中,应用必须尽可能快地对道路标志进行分类,以免发生交通事故。
对学习过程的速度是否有要求?在某些情况下,快速训练模型是十分必要的:有时,你需要使用不同的数据集快速地实时更新你的模型。
寻找可用的算法
当对自己的任务环境有了一个清晰的认识后,你就可以使用你所掌握的工具确定适用于待解决的问题并切实可行的算法。一些影响你选择模型的因素如下:
模型是否满足业务目标
模型需要多少数据预处理工作
模型有多准确
模型的可解释性如何
模型运行的速度有多快:构造模型需要多久?模型做出预测需要多长时间?
模型的可伸缩性如何
模型的复杂度是一个影响算法选择的重要标准。一般来说,一个更复杂的模型具备下列特征:
它依赖于更多的特征进行学习和预测(例如,使用十个而不是两个特征来预测目标)
它依赖于更复杂的特征工程(例如,使用多项式特征、交互特征或主成分)
它有更大的计算开销(例如,需要一个由 100 棵决策树组成的随机森林,而不是一棵单独的决策树)
除此之外,同样的机器学习算法可以基于参数的个数和某些超参数的选择而变得更加复杂。例如:
回归模型可以拥有更多的特征,或者多项式项和交互项。
决策树可以拥有更大或更小的深度。
将相同的算法变得更加复杂增加了发生过拟合的几率。
常用的机器学习算法
线性回归
这可能是机器学习中最简单的算法。例如,当你想要计算一些连续值,而不是将输出分类时,可以使用回归算法。因此,当你需要预测一个正在运行的过程未来的值时,你可以使用回归算法。然而,当特征冗余,即如果存在多重共线性(multicollinearity)时,线性回归就不太稳定。
在下列情况下可以考虑使用线性回归:
从一个地方移动到另一个地方所需的时间
预测下个月某种产品的销售情况
血液中的酒精含量对协调能力的影响
预测每个月礼品卡的销售情况,并改善年收入的估算
Logistic 回归
Logistic 回归执行二进制分类,因此输出二值标签。它将特征的线性组合作为输入,并且对其应用非线性函数(sigmoid),因此它是一个非常小的神经网络的实例。
logistic回归提供了许多方法对你的模型进行正则化处理,因此正如在朴素贝叶斯算法中那样,你不必担心你的特征是否相关。该模型还有一个很好的概率化的解释。不像在决策树或者支持向量机中那样,你可以很容易地更新你的模型以获取新的数据。如果你想要使用一个概率化的框架,或者你希望在未来能够快速地将更多的训练数据融合到你的模型中,你可以使用 logistic 回归算法。logistic 回归还可以帮助你理解预测结果背后起作用的因素,它不完全是一个黑盒方法。
在下列情况下可以考虑使用 logistic 回归算法:
预测客户流失
信用评分和欺诈检测
评价市场营销活动的效果
决策树
决策树很少被单独使用,但是不同的决策树可以组合成非常高效的算法,例如随机森林或梯度提升树算法。
决策树很容易处理特征交互,并且决策树是一种非参数模型,所以你不必担心异常值或者数据是否是线性可分的。决策树算法的一个缺点是,它们不支持在线学习,因此当你要使用新的样本时,你不得不重新构建决策树。决策树的另一个缺点是,它很容易发生过拟合,而这就是像随机森林(或提升树)这样的集成学习方法能够派上用场的地方。决策树也需要大量的内存空间(拥有的特征越多,你的决策树可能会越深、越大)
决策树能够很好地帮助你在诸多行动路径中做出选择:
做出投资决策
预测客户流失
找出可能拖欠银行贷款的人
在“建造”和“购买”两种选择间进行抉择
销售主管的资质审核
K-均值
有时,你完全没有数据的标签信息,并且你的目的是根据对象的特征来为其打上标签。这种问题被称为聚类任务。聚类算法可以在这种情况下被使用:例如,当你有一大群用户,你希望根据他们共有的一些属性将其划分到一些特定的组中。
如果在你的问题声明中有这样的问题:例如,找出一群个体的组织形式,或将某些东西分组,或找出特定的组。这时,你就应该使用聚类算法。
该方法最大的缺点是,K-均值算法需要提前知道你的数据会有多少簇,因此这可能需要进行大量的试验去“猜测”我们最终定义的簇的最佳个数——K。
主成分分析(PCA)
主成分分析能够对数据进行降维。有时,你拥有各种各样的特征,这些特征之间的相关性可能很高,而模型如果使用如此大量的数据可能会产生过拟合现象。这时,你可以使用主成分分析(PCA)技术。
主成分分析(PCA)能够起作用的关键因素是:除了低维的样本表征,它还提供了各种变量的一种同步的低维表征。同步的样本和变量的表征提供了一种能够可视化地找到能够表示一组样本的特征的变量的方法。
支持向量机
支持向量机(SVM)是一种在模式识别和分类问题中被广泛应用的监督机器学习技术——当你的数据恰好有两类时。
支持向量机准确率高,对于防止过拟合很好的理论保障。当你使用一个合适的核函数时,即使你的数据在基(低维)特征空间中是线性不可分的,他们也可以很好地工作。支持向量机在文本分类问题中非常流行,在该问题中,输入是一个维度非常高的空间是很正常的。然而,SVM 是一种内存密集型算法,它很难被解释,并且对其进行调优十分困难。
在下列现实世界的应用中,你可以使用支持向量机:
发现患有糖尿病等常见疾病的人
手写字符识别
文本分类——将文章按照话题分类
股票市场价格预测
朴素贝叶斯
这是一种基于贝叶斯定理的分类技术,它很容易构建,非常适用于大规模数据集。除了结构简单,据说朴素贝叶斯的表现甚至比一些复杂得多的分类方法更好。当 CPU 和内存资源有限时,朴素贝叶斯算法也是一个很好的选项。
朴素贝叶斯非常简单,你仅仅是在做大量的计数工作。如果朴素贝叶斯的条件独立假设确实成立,朴素贝叶斯分类器的收敛速度会比 logistic 回归这样的判别模型更快,因此需要的训练数据更少。即使朴素贝叶斯的假设不成立,朴素贝叶斯分类器往往也能很好地完成任务。如果你想使用一种快速的、简单的、性能也不错的模型,朴素贝叶斯是一个很好的选择。这种算法最大的缺点就是它不能学习到特征之间的相互作用。
在下列真实世界的应用中,你可以使用朴素贝叶斯:
情感分析和文本分类
类似于 Netflix、Amazon 这样的推荐系统
识别垃圾邮件
人脸识别
随机森林
随机森林是一种决策树的集成方法。它能够同时解决具有大规模数据集的回归问题和分类问题,还有助于从数以千计的输入变量中找出最重要的变量。随机森林具有很强的可伸缩性,它适用于任何维数的数据,并且通常具有相当不错的性能。此外,还有一些遗传算法,它们可以在具有最少的关于数据本身的知识的情况下,很好地扩展到任何维度和任何数据上,其中最简单的实现就是微生物遗传算法。然而,随机森林学习的速度可能会很慢(取决于参数设置),并且这种方法不能迭代地改进生成模型。
在下列现实世界的应用中,你可以使用随机森林:
预测高危患者
预测零件在生产中的故障
预测拖欠贷款的人
神经网络
神经网络中包含着神经元之间连接的权重。这些权重是平衡的,逐次对数据点进行学习。当所有的权重都被训练好后,如果需要对新给定的数据点进行回归,神经网络可以被用于预测分类结果或一个具体数值。利用神经网络,可以对特别复杂的模型进行训练,并且将其作为一种黑盒方法加以利用,而在训练模型之前,我们无需进行不可预测的复杂特征工程。通过与“深度方法”相结合,甚至可以采用更加不可预测的模型去实现新任务。例如,最近人们已经通过深度神经网络大大提升了物体识别任务的结果。深度学习还被应用于特征提取这样的非监督学习任务,也可以在人为干预更少的情况下,从原始图像或语音中提取特征。
另一方面,神经网络很难被解释清楚,其参数设置也复杂地让人难以置信。此外,神经网络算法也都是资源密集型和内存密集型的。
SCIKIT 参考手册
Scikit learning 为大家提供了一个非常深入的、解释地很清楚的流程图,它能够帮助你选择正确的算法。我认为此图十分方便。
结论
一般来说,你可以根据上面介绍的要点来筛选出一些算法,但是要想在一开始就知道哪种方法最好是很难的。你最好多迭代几次选择算法的过程。将你的数据输入给那些你确定的潜在优秀机器学习算法,通过并行或串行的方式运行这些算法,最终评估算法性能,从而选择出最佳的算法。
在最后,我想告诉你:为现实生活中的问题找到正确的解决方案,通常不仅仅是一个应用数学方法的问题。这要求我们对业务需求、规则和制度、相关利益者的关注点有所了解,并且具备大量的专业知识。在解决一个机器学习问题的同时,能够结合并平衡这些问题是至关重要的,那些能做到这一点的人可以创造最大的价值。
⑷ BP神经网络的原理的BP什么意思
原文链接:http://tecdat.cn/?p=19936
在本教程中,您将学习如何在R语言中创建神经网络模型。
神经网络(或人工神经网络)具有通过样本进行学习的能力。人工神经网络是一种受生物神经元系统启发的信息处理模型。它由大量高度互连的处理元件(称为神经元)组成,以解决问题。它遵循非线性路径,并在整个节点中并行处理信息。神经网络是一个复杂的自适应系统。自适应意味着它可以通过调整输入权重来更改其内部结构。
该神经网络旨在解决人类容易遇到的问题和机器难以解决的问题,例如识别猫和狗的图片,识别编号的图片。这些问题通常称为模式识别。它的应用范围从光学字符识别到目标检测。
本教程将涵盖以下主题:
神经网络概论
正向传播和反向传播
激活函数
R中神经网络的实现
案例
利弊
结论
神经网络概论
神经网络是受人脑启发执行特定任务的算法。它是一组连接的输入/输出单元,其中每个连接都具有与之关联的权重。在学习阶段,网络通过调整权重进行学习,来预测给定输入的正确类别标签。
人脑由数十亿个处理信息的神经细胞组成。每个神经细胞都认为是一个简单的处理系统。被称为生物神经网络的神经元通过电信号传输信息。这种并行的交互系统使大脑能够思考和处理信息。一个神经元的树突接收来自另一个神经元的输入信号,并根据这些输入将输出响应到某个其他神经元的轴突。
创建测试数据集
创建测试数据集:专业知识得分和沟通技能得分
预测测试集的结果
使用计算函数预测测试数据的概率得分。
现在,将概率转换为二进制类。
预测结果为1,0和1。
利弊
神经网络更灵活,可以用于回归和分类问题。神经网络非常适合具有大量输入(例如图像)的非线性数据集,可以使用任意数量的输入和层,可以并行执行工作。
还有更多可供选择的算法,例如SVM,决策树和回归算法,这些算法简单,快速,易于训练并提供更好的性能。神经网络更多的是黑盒子,需要更多的开发时间和更多的计算能力。与其他机器学习算法相比,神经网络需要更多的数据。NN仅可用于数字输入和非缺失值数据集。一位着名的神经网络研究人员说:“神经网络是解决任何问题的第二好的方法。最好的方法是真正理解问题。”
神经网络的用途
神经网络的特性提供了许多应用方面,例如:
模式识别:神经网络非常适合模式识别问题,例如面部识别,物体检测,指纹识别等。
异常检测:神经网络擅长异常检测,它们可以轻松检测出不适合常规模式的异常模式。
时间序列预测:神经网络可用于预测时间序列问题,例如股票价格,天气预报。
自然语言处理:神经网络在自然语言处理任务中提供了广泛的应用,例如文本分类,命名实体识别(NER),词性标记,语音识别和拼写检查。
最受欢迎的见解
1.r语言用神经网络改进nelson-siegel模型拟合收益率曲线分析
2.r语言实现拟合神经网络预测和结果可视化
3.python用遗传算法-神经网络-模糊逻辑控制算法对乐透分析
4.用于nlp的python:使用keras的多标签文本lstm神经网络分类
5.用r语言实现神经网络预测股票实例
6.R语言基于Keras的小数据集深度学习图像分类
7.用于NLP的seq2seq模型实例用Keras实现神经机器翻译
8.python中基于网格搜索算法优化的深度学习模型分析糖
9.matlab使用贝叶斯优化的深度学习
⑸ 什么是BP神经网络
BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。经反复学习,最终使误差减小到可接受的范围。具体步骤如下:
1、从训练集中取出某一样本,把信息输入网络中。
2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。
3、计算网络实际输出与期望输出的误差。
4、将误差逐层反向回传至之前各层,并按一定原则将误差信号加载到连接权值上,使整个神经网络的连接权值向误差减小的方向转化。
5、対训练集中每一个输入—输出样本对重复以上步骤,直到整个训练样本集的误差减小到符合要求为止。
⑹ 异常检测有哪些主要的分析方法
1. 概率统计方法
在基于异常检测技术的IDS中应用最早也是最多的一种方法。
首先要对系统或用户的行为按照一定的时间间隔进行采样,样本的内容包括每个会话的登录、退出情况,CPU和内存的占用情况,硬盘等存储介质的使用情况等。
将每次采集到的样本进行计算,得出一系列的参数变量对这些行为进行描述,从而产生行为轮廓,将每次采样后得到的行为轮廓与已有轮廓进行合并,最终得到系统和用户的正常行为轮廓。IDS通过将当前采集到的行为轮廓与正常行为轮廓相比较,来检测是否存在网络入侵行为。
2. 预测模式生成法
假设条件是事件序列不是随机的而是遵循可辨别的模式。这种检测方法的特点是考虑了事件的序列及其相互联系,利用时间规则识别用户行为正常模式的特征。通过归纳学习产生这些规则集,并能动态地修改系统中的这些规则,使之具有较高的预测性、准确性。如果规则在大部分时间是正确的,并能够成功地运用预测所观察到的数据,那么规则就具有高可信度。
3. 神经网络方法
基本思想是用一系列信息单元(命令)训练神经单元,这样在给定一组输入后、就可能预测出输出。与统计理论相比,神经网络更好地表达了变量间的非线性关系,并且能自动学习并更新。实验表明UNIX系统管理员的行为几乎全是可以预测的,对于一般用户,不可预测的行为也只占了很少的一部分。