⑴ 网络安全-哈希算法和数字签名
常见 HASH 算法:
HASH 算法主要应用:
1)文件校验
我们比较熟悉的校验算法有奇偶校验和CRC校验,这2种校验并没有抗数据篡改的能力,它们一定程度上能检测并纠正数据传输中的信道误码,但却不能防止对数据的恶意破坏。
MD5 Hash算法的"数字指纹"特性,使它成为目前应用最广泛的一种文件完整性校验和(Checksum)算法,不少Unix系统有提供计算md5 checksum的命令。
2)数字签名
Hash 算法也是现代密码体系中的一个重要组成部分。由于非对称算法的运算速度较慢,所以在数字签名协议中,单向散列函数扮演了一个重要的角色。对 Hash 值,又称"数字摘要"进行数字签名,在统计上可以认为与对文件本身进行数字签名是等效的。而且这样的协议还有其他的优点。
3)鉴权协议
如下的鉴权协议又被称作"挑战--认证模式:在传输信道是可被侦听,但不可被篡改的情况下,这是一种简单而安全的方法。
数字签名签署和验证数据的步骤如图所示:
PKCS1 和 PKCS7 标准格式的签名:
1. PKCS1签名:即裸签名,签名值中只有签名信息。
2. PKCS7签名:签名中可以带有其他的附加信息,例如签名证书信息、签名原文信息、时间戳信息等。
PKCS7 的 attached 和 detached 方式的数字签名:
1. attached 方式是将签名内容和原文放在一起,按 PKCS7 的格式打包。PKCS7的结构中有一段可以放明文,但明文必需进行ASN.1编码。在进行数字签名验证的同时,提取明文。这里的明文实际上是真正内容的摘要。
2. detached 方式打包的 PKCS7格式包中不包含明文信息。因此在验证的时候,还需要传递明文才能验证成功。同理,这里的明文实际上是真正内容的摘要。
一种互联网宏观流量异常检测方法(2007-11-7 10:37) 摘要:网络流量异常指网络中流量不规则地显着变化。网络短暂拥塞、分布式拒绝服务攻击、大范围扫描等本地事件或者网络路由异常等全局事件都能够引起网络的异常。网络异常的检测和分析对于网络安全应急响应部门非常重要,但是宏观流量异常检测需要从大量高维的富含噪声的数据中提取和解释异常模式,因此变得很困难。文章提出一种分析网络异常的通用方法,该方法运用主成分分析手段将高维空间划分为对应正常和异常网络行为的子空间,并将流量向量影射在正常子空间中,使用基于距离的度量来检测宏观网络流量异常事件。公共互联网正在社会生活的各个领域发挥着越来越重要的作用,与此同时,由互联网的开放性和应用系统的复杂性所带来的安全风险也随之增多。2006年,国家计算机网络应急技术处理协调中心(CNCERT/CC)共接收26 476件非扫描类网络安全事件报告,与2005年相比增加2倍,超过2003—2005年3年的总和。2006年,CNCERT/CC利用部署的863-917网络安全监测平台,抽样监测发现中国大陆地区约4.5万个IP地址的主机被植入木马,与2005年同期相比增加1倍;约有1千多万个IP地址的主机被植入僵尸程序,被境外约1.6万个主机进行控制。黑客利用木马、僵尸网络等技术操纵数万甚至上百万台被入侵的计算机,释放恶意代码、发送垃圾邮件,并实施分布式拒绝服务攻击,这对包括骨干网在内的整个互联网网络带来严重的威胁。由数万台机器同时发起的分布式拒绝服务攻击能够在短时间内耗尽城域网甚至骨干网的带宽,从而造成局部的互联网崩溃。由于政府、金融、证券、能源、海关等重要信息系统的诸多业务依赖互联网开展,互联网骨干网络的崩溃不仅会带来巨额的商业损失,还会严重威胁国家安全。据不完全统计,2001年7月19日爆发的红色代码蠕虫病毒造成的损失估计超过20亿美元;2001年9月18日爆发的Nimda蠕虫病毒造成的经济损失超过26亿美元;2003年1月爆发的SQL Slammer蠕虫病毒造成经济损失超过12亿美元。针对目前互联网宏观网络安全需求,本文研究并提出一种宏观网络流量异常检测方法,能够在骨干网络层面对流量异常进行分析,在大规模安全事件爆发时进行快速有效的监测,从而为网络防御赢得时间。1 网络流量异常检测研究现状在骨干网络层面进行宏观网络流量异常检测时,巨大流量的实时处理和未知攻击的检测给传统入侵检测技术带来了很大的挑战。在流量异常检测方面,国内外的学术机构和企业不断探讨并提出了多种检测方法[1]。经典的流量监测方法是基于阈值基线的检测方法,这种方法通过对历史数据的分析建立正常的参考基线范围,一旦超出此范围就判断为异常,它的特点是简单、计算复杂度小,适用于实时检测,然而它作为一种实用的检测手段时,需要结合网络流量的特点进行修正和改进。另一种常用的方法是基于统计的检测,如一般似然比(GLR)检测方法[2],它考虑两个相邻的时间窗口以及由这两个窗口构成的合并窗口,每个窗口都用自回归模型拟合,并计算各窗口序列残差的联合似然比,然后与某个预先设定的阈值T 进行比较,当超过阈值T 时,则窗口边界被认定为异常点。这种检测方法对于流量的突变检测比较有效,但是由于它的阈值不是自动选取,并且当异常持续长度超过窗口长度时,该方法将出现部分失效。统计学模型在流量异常检测中具有广阔的研究前景,不同的统计学建模方式能够产生不同的检测方法。最近有许多学者研究了基于变换域进行流量异常检测的方法[3],基于变换域的方法通常将时域的流量信号变换到频域或者小波域,然后依据变换后的空间特征进行异常监测。P. Barford等人[4]将小波分析理论运用于流量异常检测,并给出了基于其理论的4类异常结果,但该方法的计算过于复杂,不适于在高速骨干网上进行实时检测。Lakhina等人[5-6]利用主成分分析方法(PCA),将源和目标之间的数据流高维结构空间进行PCA分解,归结到3个主成分上,以3个新的复合变量来重构网络流的特征,并以此发展出一套检测方法。此外还有一些其他的监测方法[7],例如基于Markov模型的网络状态转换概率检测方法,将每种类型的事件定义为系统状态,通过过程转换模型来描述所预测的正常的网络特征,当到来的流量特征与期望特征产生偏差时进行报警。又如LERAD检测[8],它是基于网络安全特征的检测,这种方法通过学习得到流量属性之间的正常的关联规则,然后建立正常的规则集,在实际检测中对流量进行规则匹配,对违反规则的流量进行告警。这种方法能够对发生异常的地址进行定位,并对异常的程度进行量化。但学习需要大量正常模式下的纯净数据,这在实际的网络中并不容易实现。随着宏观网络异常流量检测成为网络安全的技术热点,一些厂商纷纷推出了电信级的异常流量检测产品,如Arbor公司的Peakflow、GenieNRM公司的GenieNTG 2100、NetScout公司的nGenius等。国外一些研究机构在政府资助下,开始部署宏观网络异常监测的项目,并取得了较好的成绩,如美国研究机构CERT建立了SiLK和AirCERT项目,澳大利亚启动了NMAC流量监测系统等项目。针对宏观网络异常流量监测的需要,CNCERT/CC部署运行863-917网络安全监测平台,采用分布式的架构,能够通过多点对骨干网络实现流量监测,通过分析协议、地址、端口、包长、流量、时序等信息,达到对中国互联网宏观运行状态的监测。本文基于863-917网络安全监测平台获取流量信息,构成监测矩阵,矩阵的行向量由源地址数量、目的地址数量、传输控制协议(TCP)字节数、TCP报文数、数据报协议(UDP)字节数、UDP报文数、其他流量字节数、其他流量报文书、WEB流量字节数、WEB流量报文数、TOP10个源IP占总字节比例、TOP10个源IP占总报文数比例、TOP10个目的IP占总字节数比例、TOP10个目的IP占总报文数比例14个部分组成,系统每5分钟产生一个行向量,观测窗口为6小时,从而形成了一个72×14的数量矩阵。由于在这14个观测向量之间存在着一定的相关性,这使得利用较少的变量反映原来变量的信息成为可能。本项目采用了主成份分析法对观测数据进行数据降维和特征提取,下面对该算法的工作原理进行介绍。 2 主成分分析技术主成分分析是一种坐标变换的方法,将给定数据集的点映射到一个新轴上面,这些新轴称为主成分。主成分在代数学上是p 个随机变量X 1, X 2……X p 的一系列的线性组合,在几何学中这些现线性组合代表选取一个新的坐标系,它是以X 1,X 2……X p 为坐标轴的原来坐标系旋转得到。新坐标轴代表数据变异性最大的方向,并且提供对于协方差结果的一个较为简单但更精练的刻画。主成分只是依赖于X 1,X 2……X p 的协方差矩阵,它是通过一组变量的几个线性组合来解释这些变量的协方差结构,通常用于高维数据的解释和数据的压缩。通常p 个成分能够完全地再现全系统的变异性,但是大部分的变异性常常能够只用少量k 个主成分就能够说明,在这种情况下,这k 个主成分中所包含的信息和那p 个原变量做包含的几乎一样多,于是可以使用k 个主成分来代替原来p 个初始的变量,并且由对p 个变量的n 次测量结果所组成的原始数据集合,能够被压缩成为对于k 个主成分的n 次测量结果进行分析。运用主成分分析的方法常常能够揭示出一些先前不曾预料的关系,因而能够对于数据给出一些不同寻常的解释。当使用零均值的数据进行处理时,每一个主成分指向了变化最大的方向。主轴以变化量的大小为序,一个主成分捕捉到在一个轴向上最大变化的方向,另一个主成分捕捉到在正交方向上的另一个变化。设随机向量X '=[X 1,X 1……X p ]有协方差矩阵∑,其特征值λ1≥λ2……λp≥0。考虑线性组合:Y1 =a 1 'X =a 11X 1+a 12X 2……a 1pX pY2 =a 2 'X =a 21X 1+a 22X 2……a 2pX p……Yp =a p'X =a p 1X 1+a p 2X 2……a p pX p从而得到:Var (Yi )=a i' ∑a i ,(i =1,2……p )Cov (Yi ,Yk )=a i '∑a k ,(i ,k =1,2……p )主成分就是那些不相关的Y 的线性组合,它们能够使得方差尽可能大。第一主成分是有最大方差的线性组合,也即它能够使得Var (Yi )=a i' ∑a i 最大化。我们只是关注有单位长度的系数向量,因此我们定义:第1主成分=线性组合a 1'X,在a1'a 1=1时,它能够使得Var (a1 'X )最大;第2主成分=线性组合a 2 'X,在a2'a 2=1和Cov(a 1 'X,a 2 'X )=0时,它能够使得Var (a 2 'X )最大;第i 个主成分=线性组合a i'X,在a1'a 1=1和Cov(a i'X,a k'X )=0(k<i )时,它能够使得Var (a i'X )最大。由此可知主成分都是不相关的,它们的方差等于协方差矩阵的特征值。总方差中属于第k个主成分(被第k个主成分所解释)的比例为:如果总方差相当大的部分归属于第1个、第2个或者前几个成分,而p较大的时候,那么前几个主成分就能够取代原来的p个变量来对于原有的数据矩阵进行解释,而且信息损失不多。在本项目中,对于一个包含14个特征的矩阵进行主成分分析可知,特征的最大变化基本上能够被2到3个主成分捕捉到,这种主成分变化曲线的陡降特性构成了划分正常子空间和异常子空间的基础。3 异常检测算法本项目的异常流量检测过程分为3个阶段:建模阶段、检测阶段和评估阶段。下面对每个阶段的算法进行详细的介绍。3.1 建模阶段本项目采用滑动时间窗口建模,将当前时刻前的72个样本作为建模空间,这72个样本的数据构成了一个数据矩阵X。在试验中,矩阵的行向量由14个元素构成。主成份分为正常主成分和异常主成份,它们分别代表了网络中的正常流量和异常流量,二者的区别主要体现在变化趋势上。正常主成份随时间的变化较为平缓,呈现出明显的周期性;异常主成份随时间的变化幅度较大,呈现出较强的突发性。根据采样数据,判断正常主成分的算法是:依据主成分和采样数据计算出第一主成分变量,求第一主成分变量这72个数值的均值μ1和方差σ1,找出第一主成分变量中偏离均值最大的元素,判断其偏离均值的程度是否超过了3σ1。如果第一主成分变量的最大偏离超过了阈值,取第一主成份为正常主成分,其他主成份均为异常主成分,取主成份转换矩阵U =[L 1];如果最大偏离未超过阈值,转入判断第下一主成分,最后取得U =[L 1……L i -1]。第一主成份具有较强的周期性,随后的主成份的周期性渐弱,突发性渐强,这也体现了网络中正常流量和异常流量的差别。在得到主成份转换矩阵U后,针对每一个采样数据Sk =xk 1,xk 2……xk p ),将其主成份投影到p维空间进行重建,重建后的向量为:Tk =UU T (Sk -X )T计算该采样数据重建前与重建后向量之间的欧氏距离,称之为残差:dk =||Sk -Tk ||根据采样数据,我们分别计算72次采样数据的残差,然后求其均值μd 和标准差σd 。转换矩阵U、残差均值μd 、残差标准差σd 是我们构造的网络流量模型,也是进行流量异常检测的前提条件。 3.2 检测阶段在通过建模得到网络流量模型后,对于新的观测向量N,(n 1,n 2……np ),采用与建模阶段类似的分析方法,将其中心化:Nd =N -X然后将中心化后的向量投影到p维空间重建,并计算残差:Td =UUTNdTd =||Nd -Td ||如果该观测值正常,则重建前与重建后向量应该非常相似,计算出的残差d 应该很小;如果观测值代表的流量与建模时发生了明显变化,则计算出的残差值会较大。本项目利用如下算法对残差进行量化:3.3 评估阶段评估阶段的任务是根据当前观测向量的量化值q (d ),判断网络流量是否正常。根据经验,如果|q (d )|<5,网络基本正常;如果5≤|q (d )|<10,网络轻度异常;如果10≤|q (d )|,网络重度异常。4 实验结果分析利用863-917网络安全监测平台,对北京电信骨干网流量进行持续监测,我们提取6小时的观测数据,由于篇幅所限,我们给出图1—4的时间序列曲线。由图1—4可知单独利用任何一个曲线都难以判定异常,而利用本算法可以容易地标定异常发生的时间。本算法计算结果如图5所示,异常发生时间在图5中标出。我们利用863-917平台的回溯功能对于异常发生时间进行进一步的分析,发现在标出的异常时刻,一个大规模的僵尸网络对网外的3个IP地址发起了大规模的拒绝服务攻击。 5 结束语本文提出一种基于主成分分析的方法来划分子空间,分析和发现网络中的异常事件。本方法能够准确快速地标定异常发生的时间点,从而帮助网络安全应急响应部门及时发现宏观网络的流量异常状况,为迅速解决网络异常赢得时间。试验表明,我们采用的14个特征构成的分析矩阵具有较好的识别准确率和分析效率,我们接下来将会继续寻找更具有代表性的特征来构成数据矩阵,并研究更好的特征矩阵构造方法来进一步提高此方法的识别率,并将本方法推广到短时分析中。6 参考文献[1] XU K, ZHANG Z L, BHATTACHARYYA S. Profiling Internet backbone traffic: Behavior models and applications [C]// Proceedings of ACM SIGCOMM, Aug 22- 25, 2005, Philadelphia, PA, USA. New York, NY,USA:ACM,2005:169-180.[2] HAWKINS D M, QQUI P, KANG C W. The change point model for statistical process control [J]. Journal of Quality Technology,2003, 35(4).[3] THOTTAN M, JI C. Anomaly detection in IP networks [J]. IEEE Transactions on Signal Processing, 2003, 51 )8):2191-2204.[4] BARFORD P, KLINE J, PLONKA D, et al. A signal analysis of network traffic anomalies [C]//Proceedings of ACM SIGCOMM Intemet Measurement Workshop (IMW 2002), Nov 6-8, 2002, Marseilles, France. New York, NY,USA:ACM, 2002:71-82.[5] LAKHINA A, CROVELLA M, DIOT C. Mining anomalies using traffic feature distributions [C]// Proceedings of SIGCOMM, Aug 22-25, 2005, Philadelphia, PA, USA. New York, NY,USA: ACM, 2005: 217-228.[6] LAKHINA A, CROVELLA M, DIOT C. Diagnosing network-wide traffic anomalies [C]// Proceedings of ACM SIGCOMM, Aug 30 - Sep 3, 2004, Portland, OR, USA. New York, NY,USA: ACM, 2004: 219-230.[7] SCHWELLER R, GUPTA A, PARSONS E, et al. Reversible sketches for efficient and accurate change detection over network data streams [C]//Proceedings of ACM SIGCOMM Internet Measurement Conference (IMC’04), Oct 25-27, 2004, Taormina, Sicily, Italy. New York, NY,USA: ACM, 2004:207-212.[8] MAHONEY M V, CHAN P K. Learning rules for anomaly detection of hostile network traffic [C]// Proceedings of International Conference on Data Mining (ICDM’03), Nov 19-22, Melbourne, FL, USA . Los Alamitos, CA, USA: IEEE Computer Society, 2003:601-604.
⑶ 如何检测Web系统里的安全漏洞
Internet的开放性使得Web系统面临入侵攻击的威胁,而建立一个安全的Web系统一直是人们的目标。一个实用的方法是,建立比较容易实现的相对安全的系统,同时按照一定的安全策略建立相应的安全辅助系统,漏洞扫描器就是这样一类安全辅助系统。 漏洞扫描就是对计算机系统或者其他网络设备进行安全相关的检测,以找出安全隐患和可被黑客利用的漏洞。作为一种保证Web信息系统和网络安全必不可少的手段,我们有必要仔细研究利用。值得注意的是,漏洞扫描软件是把双刃剑,黑客利用它入侵系统,而系统管理员掌握它以后又可以有效的防范黑客入侵。 四种漏洞扫描技术 漏洞扫描通常采用两种策略,第一种是被动式策略,第二种是主动式策略。所谓被动式策略就是基于主机之上,对系统中不合适的设置、脆弱的口令以及其他与安全规则抵触的对象进行检查;而主动式策略是基于网络的,它通过执行一些脚本文件模拟对系统进行攻击的行为并记录系统的反应,从而发现其中的漏洞。利用被动式策略的扫描称为系统安全扫描,利用主动式的策略扫描称为网络安全扫描。 漏洞扫描有以下四种检测技术: 1.基于应用的检测技术。它采用被动的、非破坏性的办法检查应用软件包的设置,发现安全漏洞。 2.基于主机的检测技术。它采用被动的、非破坏性的办法对系统进行检测。通常,它涉及到系统的内核、文件的属性、操作系统的补丁等。这种技术还包括口令解密、把一些简单的口令剔除。因此,这种技术可以非常准确地定位系统的问题,发现系统的漏洞。它的缺点是与平台相关,升级复杂。 3.基于目标的漏洞检测技术。它采用被动的、非破坏性的办法检查系统属性和文件属性,如数据库、注册号等。通过消息文摘算法,对文件的加密数进行检验。这种技术的实现是运行在一个闭环上,不断地处理文件、系统目标、系统目标属性,然后产生检验数,把这些检验数同原来的检验数相比较。一旦发现改变就通知管理员。 4. 基于网络的检测技术。它采用积极的、非破坏性的办法来检验系统是否有可能被攻击崩溃。它利用了一系列的脚本模拟对系统进行攻击的行为,然后对结果进行分析。它还针对已知的网络漏洞进行检验。网络检测技术常被用来进行穿透实验和安全审记。这种技术可以发现一系列平台的漏洞,也容易安装。但是,它可能会影响网络的性能。 网络漏洞扫描 在上述四种方式当中,网络漏洞扫描最为适合我们的Web信息系统的风险评估工作,其扫描原理和工作原理为:通过远程检测目标主机TCP/IP不同端口的服务,记录目标的回答。通过这种方法,可以搜集到很多目标主机的各种信息(例如:是否能用匿名登录,是否有可写的FTP目录,是否能用Telnet,httpd是否是用root在运行)。 在获得目标主机TCP/IP端口和其对应的网络访问服务的相关信息后,与网络漏洞扫描系统提供的漏洞库进行匹配,如果满足匹配条件,则视为漏洞存在。此外,通过模拟黑客的进攻手法,对目标主机系统进行攻击性的安全漏洞扫描,如测试弱势口令等,也是扫描模块的实现方法之一。如果模拟攻击成功,则视为漏洞存在。 在匹配原理上,网络漏洞扫描器采用的是基于规则的匹配技术,即根据安全专家对网络系统安全漏洞、黑客攻击案例的分析和系统管理员关于网络系统安全配置的实际经验,形成一套标准的系统漏洞库,然后再在此基础之上构成相应的匹配规则,由程序自动进行系统漏洞扫描的分析工作。 所谓基于规则是基于一套由专家经验事先定义的规则的匹配系统。例如,在对TCP80端口的扫描中,如果发现/cgi-bin/phf/cgi-bin/Count.cgi,根据专家经验以及CGI程序的共享性和标准化,可以推知该WWW服务存在两个CGI漏洞。同时应当说明的是,基于规则的匹配系统有其局限性,因为作为这类系统的基础的推理规则一般都是根据已知的安全漏洞进行安排和策划的,而对网络系统的很多危险的威胁是来自未知的安全漏洞,这一点和PC杀毒很相似。 这种漏洞扫描器是基于浏览器/服务器(B/S)结构。它的工作原理是:当用户通过控制平台发出了扫描命令之后,控制平台即向扫描模块发出相应的扫描请求,扫描模块在接到请求之后立即启动相应的子功能模块,对被扫描主机进行扫描。通过分析被扫描主机返回的信息进行判断,扫描模块将扫描结果返回给控制平台,再由控制平台最终呈现给用户。 另一种结构的扫描器是采用插件程序结构。可以针对某一具体漏洞,编写对应的外部测试脚本。通过调用服务检测插件,检测目标主机TCP/IP不同端口的服务,并将结果保存在信息库中,然后调用相应的插件程序,向远程主机发送构造好的数据,检测结果同样保存于信息库,以给其他的脚本运行提供所需的信息,这样可提高检测效率。如,在针对某FTP服务的攻击中,可以首先查看服务检测插件的返回结果,只有在确认目标主机服务器开启FTP服务时,对应的针对某FTP服务的攻击脚本才能被执行。采用这种插件结构的扫描器,可以让任何人构造自己的攻击测试脚本,而不用去了解太多扫描器的原理。这种扫描器也可以用做模拟黑客攻击的平台。采用这种结构的扫描器具有很强的生命力,如着名的Nessus就是采用这种结构。这种网络漏洞扫描器的结构如图2所示,它是基于客户端/服务器(C/S)结构,其中客户端主要设置服务器端的扫描参数及收集扫描信息。具体扫描工作由服务器来完成。
记得采纳啊
⑷ 1.什么是误用入侵检测
入侵检测(Intrusion Detection),顾名思义,就是对入侵行为的发觉。他通过对计算机网络或计算机系统中若干关键点收集信息并对其进行分析,从中发现网络或系统中是否有违反安全策略的行为和被攻击的迹象。
入侵检测系统(intrusion detection system,简称“IDS”)是一种对网络传输进行即时监视,在发现可疑传输时发出警报或者采取主动反应措施的网络安全设备。它与其他网络安全设备的不同之处便在于,IDS是一种积极主动的安全防护技术。 IDS最早出现在1980年4月。 1980年代中期,IDS逐渐发展成为入侵检测专家系统(IDES)。 1990年,IDS分化为基于网络的IDS和基于主机的IDS。后又出现分布式IDS。目前,IDS发展迅速,已有人宣称IDS可以完全取代防火墙。
入侵检测系统检测方法
异常检测方法
在异常入侵检测系统中常常采用以下几种检测方法:
基于贝叶斯推理检测法:是通过在任何给定的时刻,测量变量值,推理判断系统是否发生入侵事件。基于特征选择检测法:指从一组度量中挑选出能检测入侵的度量,用它来对入侵行为进行预测或分类。基于贝叶斯网络检测法:用图形方式表示随机变量之间的关系。通过指定的与邻接节点相关一个小的概率集来计算随机变量的联接概率分布。按给定全部节点组合,所有根节点的先验概率和非根节点概率构成这个集。贝叶斯网络是一个有向图,弧表示父、子结点之间的依赖关系。当随机变量的值变为已知时,就允许将它吸收为证据,为其他的剩余随机变量条件值判断提供计算框架。
基于模式预测的检测法:事件序列不是随机发生的而是遵循某种可辨别的模式是基于模式预测的异常检测法的假设条件,其特点是事件序列及相互联系被考虑到了,只关心少数相关安全事件是该检测法的最大优点。
基于统计的异常检测法:是根据用户对象的活动为每个用户都建立一个特征轮廓表,通过对当前特征与以前已经建立的特征进行比较,来判断当前行为的异常性。用户特征轮廓表要根据审计记录情况不断更新,其保护去多衡量指标,这些指标值要根据经验值或一段时间内的统计而得到。
基于机器学习检测法:是根据离散数据临时序列学习获得网络、系统和个体的行为特征,并提出了一个实例学习法IBL,IBL是基于相似度,该方法通过新的序列相似度计算将原始数据(如离散事件流和无序的记录)转化成可度量的空间。然后,应用IBL学习技术和一种新的基于序列的分类方法,发现异常类型事件,从而检测入侵行为。其中,成员分类的概率由阈值的选取来决定。
数据挖掘检测法:数据挖掘的目的是要从海量的数据中提取出有用的数据信息。网络中会有大量的审计记录存在,审计记录大多都是以文件形式存放的。如果靠手工方法来发现记录中的异常现象是远远不够的,所以将数据挖掘技术应用于入侵检测中,可以从审计数据中提取有用的知识,然后用这些知识区检测异常入侵和已知的入侵。采用的方法有KDD算法,其优点是善于处理大量数据的能力与数据关联分析的能力,但是实时性较差。
基于应用模式的异常检测法:该方法是根据服务请求类型、服务请求长度、服务请求包大小分布计算网络服务的异常值。通过实时计算的异常值和所训练的阈值比较,从而发现异常行为。
基于文本分类的异常检测法:该方法是将系统产生的进程调用集合转换为“文档”。利用K邻聚类文本分类算法,计算文档的相似性。
误用检测方法
误用入侵检测系统中常用的检测方法有:
模式匹配法:是常常被用于入侵检测技术中。它是通过把收集到的信息与网络入侵和系统误用模式数据库中的已知信息进行比较,从而对违背安全策略的行为进行发现。模式匹配法可以显着地减少系统负担,有较高的检测率和准确率。
专家系统法:这个方法的思想是把安全专家的知识表示成规则知识库,再用推理算法检测入侵。主要是针对有特征的入侵行为。
基于状态转移分析的检测法:该方法的基本思想是将攻击看成一个连续的、分步骤的并且各个步骤之间有一定的关联的过程。在网络中发生入侵时及时阻断入侵行为,防止可能还会进一步发生的类似攻击行为。在状态转移分析方法中,一个渗透过程可以看作是由攻击者做出的一系列的行为而导致系统从某个初始状态变为最终某个被危害的状态。
⑸ 什么是入侵检测,以及入侵检测的系统结构组成
入侵检测是防火墙的合理补充。
入侵检测的系统结构组成:
1、事件产生器:它的目的是从整个计算环境中获得事件,并向系统的其他部分提供此事件。
2、事件分析器:它经过分析得到数据,并产生分析结果。
3、响应单元:它是对分析结果作出反应的功能单元,它可以作出切断连接、改变文件属性等强烈反应,也可以只是简单的报警。
4、事件数据库:事件数据库是存放各种中间和最终数据的地方的统称,它可以是复杂的数据库,也可以是简单的文本文件。
(5)网络安全异常检测算法扩展阅读:
入侵检测系统根据入侵检测的行为分为两种模式:异常检测和误用检测。前者先要建立一个系统访问正常行为的模型,凡是访问者不符合这个模型的行为将被断定为入侵。
后者则相反,先要将所有可能发生的不利的不可接受的行为归纳建立一个模型,凡是访问者符合这个模型的行为将被断定为入侵。
这两种模式的安全策略是完全不同的,而且,它们各有长处和短处:异常检测的漏报率很低,但是不符合正常行为模式的行为并不见得就是恶意攻击,因此这种策略误报率较高。
误用检测由于直接匹配比对异常的不可接受的行为模式,因此误报率较低。但恶意行为千变万化,可能没有被收集在行为模式库中,因此漏报率就很高。
这就要求用户必须根据本系统的特点和安全要求来制定策略,选择行为检测模式。现在用户都采取两种模式相结合的策略。
⑹ 入侵检测系统异常检测方法有什么
入侵检测技术基础 1. IDS(入侵检测系统)存在与发展的必然性 (1)网络安全本身的复杂性,被动式的防御方式显得力不从心。(2)有关供触垛吠艹杜讹森番缉防火墙:网络边界的设备;自身可以被攻破;对某些攻击保护很弱;并非所有威胁均来自防火墙外部。(3)入侵很容易:入侵教程随处可见;各种工具唾手可得 2. 入侵检测(Intrusion Detection) ●定义:通过从计算机网络或计算机系统中的若干关键点收集信息并对其进行分析,从中发现网络或系统中是否有违反安全策略的行为和遭到袭击的迹象的一种安全技术。入侵检测的分类(1)按照分析方法/检测原理分类 ●异常检测(Anomaly Detection):基于统计分析原理。首先总结正常操作应该具有的特征(用户轮廓),试图用定量的方式加以描述,当用户活动与正常行为有重大偏离时即被认为是入侵。前提:入侵是异常活动的子集。指标:漏报率低,误报率高。用户轮廓(Profile):通常定义为各种行为参数及其阀值的集合,用于描述正常行为范围。特点:异常检测系统的效率取决于用户轮廓的完备性和监控的频率;不需要对每种入侵行为进行定义,因此能有效检测未知的入侵;系统能针对用户行为的改变进行自我调整和优化,但随着检测模型的逐步精确,异常检测会消耗更多的系统资源 ●误用检测(Misuse Detection):基于模式匹配原理。收集非正常操作的行为特征,建立相关的特征库,当监测的用户或系统行为与库中的记录相匹配时,系统就认为这种行为是入侵。前提:所有的入侵行为都有可被检测到的特征。指标:误报低、漏报高。攻击特征库:当监测的用户或系统行为与库中的记录相匹配时,系统就认为这种行为是入侵。特点:采用模式匹配,误用模式能明显降低误报率,但漏报率随之增加。攻击特征的细微变化,会使得误用检测无能为力。
⑺ 基于隐马尔可夫模型的网络安全态势预测方法
论文:文志诚,陈志刚.基于隐马尔可夫模型的网络安全态势预测方法[J].中南大学学报(自然科学版),2015,46(10):3689-3695.
摘要
为了给网络管理员制定决策和防御措施提供可靠的依据,通过考察网络安全态势变化特点,提出构建隐马 尔可夫预测模型。利用时间序列分析方法刻画不同时刻安全态势的前后依赖关系,当安全态势处于亚状态或偏离 正常状态时,采用安全态势预测机制,分析其变化规律,预测系统的安全态势变化趋势。最后利用仿真数据,对 所提出的网络安全态势预测算法进行验证。访真结果验证了该方法的正确性。
隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,其难点是从可观察的参数中确定该过程的隐含参数。隐马尔可夫模型是关于时序的概率模型,描述由一个隐藏的马尔科夫链随机生成不可观测的状态随机序列,再由各个状态生成一个观测而产生观测随机序列的过程。如果要利用隐马尔可夫模型,模型的状态集合和观测集合应该事先给出。
举个例子:有个孩子叫小明,小明每天早起上学晚上放学。假设小明在学校里的状态有三种,分别是丢钱了,捡钱了,和没丢没捡钱,我们记作{q0,q1,q2}。
那么对于如何确定他的丢钱状态?如果小明丢钱了,那他今天应该心情不好,如果捡钱了,他回来肯定心情好,如果没丢没捡,那他肯定心情平淡。我们将他的心情状态记作{v0,v1v2}。我们这里观测了小明一周的心情状态,心情状态序列是{v0,v0,v1,v1,v2,v0,v1}。那么小明这一周的丢捡钱状态是什么呢?这里引入隐马尔科夫模型。
隐马尔科夫模型的形式定义如下:
一个HMM模型可以由状态转移矩阵A、观测概率矩阵B、以及初始状态概率π确定,因此一个HMM模型可以表示为λ(A,B,π)。
利用隐马尔可夫模型时,通常涉及三个问题,分别是:
后面的计算啥的和马尔科夫差不多我就不写了。。。。。。
2.1网络安全态势
在网络态势方面,国内外相关研究多见于军事战 场的态势获取,网络安全领域的态势获取研究尚处于 起步阶段,还未有普遍认可的解决方法。张海霞等[9] 提出了一种计算综合威胁值的网络安全分级量化方 法。该方法生成的态势值满足越危险的网络实体,威 胁值越高。本文定义网络安全态势由网络基础运行性 (runnability)、网络脆弱性(vulnerability)和网络威胁性 (threat)三维组成,从 3 个不同的维度(或称作分量)以 直观的形式向用户展示整个网络当前安全态势 SA=( runnability, vulnerability, threat)。每个维度可通过 网络安全态势感知,从网络上各运行组件经信息融合 而得到量化分级。为了方便计算实验与降低复杂度, 本文中,安全态势每个维度取“高、中、差”或“1,2, 3”共 3 个等级取值。本文主要进行网络安全态势预测
2.2构建预测模型
隐马尔可夫模型易解决一类对于给定的观测符号序列,预测新的观测符号序列出现概率的基本问题。 隐马尔可夫模型是一个关于可观测变量O与隐藏变量 S 之间关系的随机过程,与安全态势系统的内部状态 (隐状态)及外部状态(可观测状态)相比,具有很大的相 似性,因此,利用隐马尔可夫模型能很好地分析网络 安全态势问题。本文利用隐马尔可夫的时间序列分析 方法刻画不同时刻安全态势的前后依赖关系。
已知 T 时刻网络安全态势,预测 T+1,T+2,⋯, T+n 时刻可能的网络安全态势。以网络安全态势的网络基础运行性(runnability)、网络脆弱性(vulnerability) 和网络威胁性(threat)三维组成隐马尔可夫模型的外在表现特征,即可观测状态或外部状态,它们分别具有 “高、中、差” 或“1, 2,3”取值,则安全态势共有 33=27 种外部组合状态。模型的内部状态(隐状态)为安全态 势 SA的“高、中高、中、中差、差”取值。注意:在本 文中外部特征的 3 个维度,每个维度三等取值,而内部 状态 SA为五等取值。模型示例如图 1 所示。
网络安全态势SA一般以某个概率aij在“高、中高、 中、中差、差”这 5 个状态之间相互转换,从一个状态 向另一个状态迁移,这些状态称为内部状态或隐状态, 外界无法监测到。然而,可以通过监测工具监测到安 全态势外在的表现特征,如网络基础运行性 (runnability)、网络脆弱性(vulnerability)和网络威胁性 (threat)三维。监测到的这些参数值组合一个整体可以 认为是一个可观测状态(外部状态,此观测状态由 L 个 分量构成,是 1 个向量)。图 1 中,设状态 1 为安全态 势“高”状态,状态 5 为安全态势“差”状态。在实际应 用中,根据具体情况可自行设定,本文取安全态势每 维外在表现特征 L=3,则有 27 种安全态势可观测外部 状态,而其内部状态(隐状态)N 共为 5 种。
定义 1: 设网络安全态势 SA内部隐状态可表示为S1,S2,⋯,S5,则网络安全态势将在这 5 个隐状态之 间以某个概率 aij自由转移,其中 0≤aij≤1。
定义 2: 网络安全态势 SA外在表现特征可用 L 个 随机变量 xi(1≤i≤L, 本处 L=3)表示,令 v=(x1, x2,⋯, xL)构成 1 个 L 维随机变量 v;在时刻 I,1 次具体观测 oi的观测值表示为 vi,则经过 T 个时刻对 v 观测得到 1 个安全态势状态观测序列 O={o1,o2,⋯,oT}。
本文基本思路是:建立相应的隐马尔可夫模型, 收集内、外部状态总数训练隐马尔可夫模型;当网络安全态势异常时,通过监测器收集网络外在表现特征数据,利用已训练好 HMM 的模型对网络安全态势进行预测,为管理员提供决策服务。
基本步骤如下:首先,按引理 1 赋 给隐马尔可夫模型 λ=(π,A,B)这 3 个参数的先验值; 其次,按照一定规则随机采集样本训练 HMM 模型直 至收敛,获得 3 个参数的近似值;最后,由一组网络 安全态势样本观测序列预测下一阶段态势。
本实验采集一组 10 个观测样本数据为:
<高、高、 高>,<高、高、高>,<高、中、高>,
<高、中、中>, <中、中、中>,<中、中、中>,
<中、中、高>,<中、 高、高>,<高、高、高>和<高、高、高>。
输入到隐马尔可夫模型中,经解码为安全态势隐状态: “高、高、 中高、中高、中、中、中高、中高、高、高”。最后 1 个隐状态 qT=“高”。由于 a11=0.682 6(上一次为高,下一次为高的状态转移概率),在所有的隐状态 转移概率中为最高,所以,在 T+1 时刻的安全态势 SA 为 qT+1=“高”。网络安全态势预测对比图如图 4 所示, 其中,纵轴表示安全态势等级,“5”表示“高”,“0”表 示“低”;横轴表示时间,在采样序号 10 时,安全态势 为高,经预测下一个时刻 11 时,安全态势应该为高, 可信度达 68.26%。通过本实验,依据训练好的隐马尔 可夫预测模式可方便地预测下一时刻的网络安全态势 发展趋势。从图 4 可明显看出本文的 HMM 方法可信 度比贝叶斯预测方法的高。
⑻ ids入侵检测的方法包括异常检测和误用检测
正确。ids入侵检测不同于防火墙,入侵检测系统是一个监听设备,方法包括异常检测和误用检测。入侵检测即通过从网络系统中的若干关键节点收集并分析信息,监控网络中是否有违反安全策略的行为或者是否存在入侵行为。
⑼ 人工智能和网络安全选哪个好
我个人认为二者各有各的特点,主要看自己内心的想法,人工智能与网络安全的结合目前还是一个新兴产业,但具有发展前途,特别是计算安全领域还有很多尚未解决且具有挑战性的问题需要人们不断去探索和追寻答案。以下是我的个人看法,希望能够对大家有帮助。
生活中就比如说给自己的用户名设置足够长度的密码,最好使用大小写混合和特殊符号,不要为了贪图好记而使用纯数字密码,不要使用与自己相关的资料作为个人密码,如自己或男(女)朋友的生日,电话号码,身份证号码等等,这些对于网络安全都是至关重要的。在我们的日常生活中,难免会遇到大大小小的安全问题,安全知识大全可以帮助我们解决安全的一些小问题。所以,积极学习网络安全也是非常有必要的一件事情。
以上就是我的个人见解,希望能够对大家有用。
⑽ 如何理解异常入侵检测技术
入侵检测是用于检测任何损害或企图损害系统的机密性、完整性或可用性等行为的一种网络安全技术。它通过监视受保护系统的状态和活动,采用异常检测或误用检测的方式,发现非授权的或恶意的系统及网络行为,为防范入侵行为提供有效的手段。入侵检测系统(IDS)是由硬件和软件组成,用来检测系统或网络以发现可能的入侵或攻击的系统。IDS通过实时的检测,检查特定的攻击模式、系统配置、系统漏洞、存在缺陷的程序版本以及系统或用户的行为模式,监控与安全有关的活动。
入侵检测提供了用于发现入侵攻击与合法用户滥用特权的一种方法,它所基于的重要的前提是:非法行为和合法行为是可区分的,也就是说,可以通过提取行为的模式特征来分析判断该行为的性质。一个基本的入侵检测系统需要解决两个问题:
一是如何充分并可靠地提取描述行为特征的数据;
二是如何根据特征数据,高效并准确地判断行为的性质。
入侵检测系统主要包括三个基本模块:数据采集与预处理、数据分析检测和事件响应。系统体系结构如下图所示。
数据采集与预处理。该模块主要负责从网络或系统环境中采集数据,并作简单的预处理,使其便于检测模块分析,然后直接传送给检测模块。入侵检测系统的好坏很大程度上依赖于收集信息的可靠性和正确性。数据源的选择取决于所要检测的内容。
数据分析检测。该模块主要负责对采集的数据进行数据分析,确定是否有入侵行为发生。主要有误用检测和异常检测两种方法。
事件响应。该模块主要负责针对分析结果实施响应操作,采取必要和适当的措施,以阻止进一步的入侵行为或恢复受损害的系统。
异常入侵检测的主要前提条件是入侵性活动作为异常活动的子集。理想状况是异常活动集同入侵性活动集相等。在这种情况下,若能检测所有的异常活动,就能检测所有的入侵性活动。可是,入侵性活动集并不总是与异常活动集相符合。活动存在四种可能性:
异常入侵检测要解决的问题就是构造异常活动集并从中发现入侵性活动子集。异常入侵检测方法依赖于异常模型的建立,不同模型就构成不同的检测方法。异常入侵检测通过观测到的一组测量值偏离度来预测用户行为的变化,并作出决策判断。异常入侵检测技术的特点是对于未知的入侵行为的检测非常有效,但是由于系统需要实时地建立和更新正常行为特征轮廓,因而会消耗更多的系统资源。