导航:首页 > 网络问题 > 神经网络怎么导出模型

神经网络怎么导出模型

发布时间:2023-02-13 01:57:09

㈠ BP神经网络

神经网络能很好地解决不同的机器学习问题。神经网络模型是许多逻辑单元按照不同层级组织起来的网络,每一层的输出变量都是下一层的输入变量。

上图显示了人工神经网络是一个分层模型,逻辑上可以分为三层:

输入层 :输入层接收特征向量 x

输出层 :输出层产出最终的预测 h

隐含层 :隐含层介于输入层与输出层之间,之所以称之为隐含层,是因为当中产生的值并不像输入层使用的样本矩阵 X或者输出层用到的标签矩阵 y 那样直接可见。

下面引入一些标记法来帮助描述模型:

!$ a^{(j)}_{i} $ 代表第j层的第i个激活单元。 !$ heta^{(j)} $ 代表从第 j 层映射到第 j+1 层时的权重的矩阵,例如 !$ heta^{(1)} $ 代表从第一层映射到第二层的权重的矩阵。其尺寸为:以第 j+1层的激活单元数量为行数,以第 j 层的激活单元数加一为列数的矩阵。例如:上图所示的神经网络中 !$ heta^{(1)} $ 的尺寸为 3*4。

对于上图所示的模型,激活单元和输出分别表达为:

!$ a^{(2)}_{1} = g( heta^{(1)}_{10}x_0 + heta^{(1)}_{11}x_1 + heta^{(1)}_{12}x_2 + heta^{(1)}_{13}x_3 ) $

!$a^{(2)}_{2} = g( heta^{(1)}_{20}x_0 + heta^{(1)}_{21}x_1 + heta^{(1)}_{22}x_2 + heta^{(1)}_{23}x_3 ) $

!$a^{(2)}_{3} = g( heta^{(1)}_{30}x_0 + heta^{(1)}_{31}x_1 + heta^{(1)}_{32}x_2 + heta^{(1)}_{33}x_3 ) $

!$h_{ heta}{(x)} = g( heta^{(2)}_{10}a^{2}_{0} + heta^{(2)}_{11}a^{2}_{1} + heta^{(2)}_{12}a^{2}_{2} + heta^{(2)}_{13}a^{2}_{3} ) $

下面用向量化的方法以上面的神经网络为例,试着计算第二层的值:

对于多类分类问题来说:

我们可将神经网络的分类定义为两种情况:二类分类和多类分类。

二类分类: !$ S_{L} = 0,y = 0,y = 1$

多类分类: !$ S_{L} = k, y_{i} = 1表示分到第i类;(k>2)$

在神经网络中,我们可以有很多输出变量,我们的 !$h_{ heta}{(x)} $ 是一个维度为K的向量,并且我们训练集中的因变量也是同样维度的一个向量,因此我们的代价函数会比逻辑回归更加复杂一些,为: !$ h_{ heta}{(x)} in R^{K}(h_{ heta}{(x)})_{i} = i^{th} output$

我们希望通过代价函数来观察算法预测的结果与真实情况的误差有多大,唯一不同的是,对于每一行特征,我们都会给出K个预测,基本上我们可以利用循环,对每一行特征都预测K个不同结果,然后在利用循环在K个预测中选择可能性最高的一个,将其与y中的实际数据进行比较。

正则化的那一项只是排除了每一层 !$ heta_0$ 后,每一层的 矩阵的和。最里层的循环j循环所有的行(由 +1 层的激活单元数决定),循环i则循环所有的列,由该层( !$ s_l$ 层)的激活单元数所决定。即: !$h_{ heta}{(x)}$ 与真实值之间的距离为每个样本-每个类输出的加和,对参数进行 regularization bias 项处理所有参数的平方和。

由于神经网络允许多个隐含层,即各层的神经元都会产出预测,因此,就不能直接利用传统回归问题的梯度下降法来最小化 !$J( heta)$ ,而需要逐层考虑预测误差,并且逐层优化。为此,在多层神经网络中,使用反向传播算法(Backpropagation Algorithm)来优化预测,首先定义各层的预测误差为向量 !$ δ^{(l)} $

训练过程:

当我们对一个较为复杂的模型(例如神经网络)使用梯度下降算法时,可能会存在一些不容易察觉的错误,意味着,虽然代价看上去在不断减小,但最终的结果可能并不是最优解。

为了避免这样的问题,我们采取一种叫做梯度的数值检验( Numerical Gradient Checking )方法。这种方法的思想是通过估计梯度值来检验我们计算的导数值是否真的是我们要求的。

对梯度的估计采用的方法是在代价函数上沿着切线的方向选择离两个非常近的点然后计算两个点的平均值用以估计梯度。即对于某个特定的 ,我们计算出在 !$ heta - epsilon$ 处和 !$ heta + epsilon$ 的代价值(是一个非常小的值,通常选取 0.001),然后求两个代价的平均,用以估计在 !$ heta$ 处的代价值。

当 !$ heta$ 是一个向量时,我们则需要对偏导数进行检验。因为代价函数的偏导数检验只针对一个参数的改变进行检验,下面是一个只针对 !$ heta_1$ 进行检验的示例:

如果上式成立,则证明网络中BP算法有效,此时关闭梯度校验算法(因为梯度的近似计算效率很慢),继续网络的训练过程。

㈡ 急问求助。用spss我已经分析好了神经网络模型。如何调用它,输如其他因变量,输出自变量的值

  1. 你说错了吧? 应该是输入自变量,输出因变量。

  2. 如果你想在当前打开的文件中,再输入数据,进行预测值的输出,应该先输入好自变量,保持因变量字段空缺,再进行一次分析模型(参数不要做任何改变)。

  3. 如果你是想在新的文件中进行预测,那就先把模型导出为xml文件。然后打开新数据,然后在‘实用程序’下的菜单栏里点击'评分向导',把原先保存下来的xml文件导入进来,进行预测。--这个做法和其他模型的使用是一样的。

㈢ matlab神经网络工具箱训练出来的函数,怎么输出得到函数代码段

这样:

clear;

%输入数据矩阵

p1=zeros(1,1000);

p2=zeros(1,1000);

%填充数据

for i=1:1000

p1(i)=rand;

p2(i)=rand;

end

%输入层有两个,样本数为1000

p=[p1;p2];

%目标(输出)数据矩阵,待拟合的关系为简单的三角函数

t = cos(pi*p1)+sin(pi*p2);

%对训练集中的输入数据矩阵和目标数据矩阵进行归一化处理

[pn, inputStr] = mapminmax(p);

[tn, outputStr] = mapminmax(t);

%建立BP神经网络

net = newff(pn, tn, [200,10]);

%每10轮回显示一次结果

net.trainParam.show = 10;

%最大训练次数

net.trainParam.epochs = 5000;

%网络的学习速率

net.trainParam.lr = 0.05;

%训练网络所要达到的目标误差

net.trainParam.goal = 10^(-8);

%网络误差如果连续6次迭代都没变化,则matlab会默认终止训练。为了让程序继续运行,用以下命令取消这条设置

net.divideFcn = '';

%开始训练网络

net = train(net, pn, tn);

%训练完网络后要求网络的权值w和阈值b

%获取网络权值、阈值

netiw = net.iw;

netlw = net.lw;

netb = net.b;

w1 = net.iw{1,1}; %输入层到隐层1的权值

b1 = net.b{1} ; %输入层到隐层1的阈值

w2 = net.lw{2,1}; %隐层1到隐层2的权值

b2 = net.b{2} ; %隐层1到隐层2的阈值

w3 = net.lw{3,2}; %隐层2到输出层的权值

b3 = net.b{3} ;%隐层2到输出层的阈值

%在默认的训练函数下,拟合公式为,y=w3*tansig(w2*tansig(w1*in+b1)+b2)+b3;

%用公式计算测试数据[x1;x2]的输出,输入要归一化,输出反归一化

in = mapminmax('apply',[x1;x2],inputStr);

y=w3*tansig(w2*tansig(w1*in+b1)+b2)+b3;

y1=mapminmax('reverse',y,outputStr);

%用bp神经网络验证计算结果

out = sim(net,in);

out1=mapminmax('reverse',out,outputStr);

(3)神经网络怎么导出模型扩展阅读:

注意事项

一、训练函数

1、traingd

Name:Gradient descent backpropagation (梯度下降反向传播算法 )

Description:triangd is a network training function that updates weight and bias values according to gradient descent.

2、traingda

Name:Gradient descentwith adaptive learning rate backpropagation(自适应学习率的t梯度下降反向传播算法)

Description:triangd is a network training function that updates weight and bias values according to gradient descent with adaptive learning rate.it will return a trained net (net) and the trianing record (tr).

3、traingdx (newelm函数默认的训练函数)

name:Gradient descent with momentum and adaptive learning rate backpropagation(带动量的梯度下降的自适应学习率的反向传播算法)

Description:triangdx is a network training function that updates weight and bias values according to gradient descent momentumand an adaptive learning rate.it will return a trained net (net) and the trianing record (tr).

4、trainlm

Name:Levenberg-Marquardtbackpropagation(L-M反向传播算法)

Description:triangd is a network training function that updates weight and bias values according toLevenberg-Marquardt optimization.it will return a trained net (net) and the trianing record (tr).

注:更多的训练算法请用matlab的help命令查看。

二、学习函数

1、learngd

Name:Gradient descent weight and bias learning function(梯度下降的权值和阈值学习函数)

Description:learngd is the gradient descentweight and bias learning function, it willreturn theweight change dWand a new learning state.

2、learngdm

Name:Gradient descentwith momentumweight and bias learning function(带动量的梯度下降的权值和阈值学习函数)

Description:learngd is the gradient descentwith momentumweight and bias learning function, it willreturn the weight change dW and a new learning state.

注:更多的学习函数用matlab的help命令查看。

三、训练函数与学习函数的区别

函数的输出是权值和阈值的增量,训练函数的输出是训练好的网络和训练记录,在训练过程中训练函数不断调用学习函数修正权值和阈值,通过检测设定的训练步数或性能函数计算出的误差小于设定误差,来结束训练。

或者这么说:训练函数是全局调整权值和阈值,考虑的是整体误差的最小。学习函数是局部调整权值和阈值,考虑的是单个神经元误差的最小。

它的基本思想是学习过程由信号的正向传播与误差的反向传播两个过程组成。

正向传播时,输入样本从输入层传入,经各隐层逐层处理后,传向输出层。若输出层的实际输出与期望的输出(教师信号)不符,则转入误差的反向传播阶段。

反向传播时,将输出以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号即作为修正各单元权值的依据。

㈣ 使用神经网络用matlab进行建模,最后的权重值要输出么,怎么输出得出的模型怎么用来验证和预测

得出的权值要回赋给这个神经网络,权值就好像黑匣子里边的未知的东西,你通过训练数据得到最佳权值后把它赋给这个黑匣子,黑匣子就成了已知得了,给它一组输入运行就会有相应的输出y,这个输出是我们预测的,需要跟实际的输出比较得出误差,误差大证明系统模型不好,误差小说明系统模型更接近真实的系统,至于权值怎么赋给模型,网上有代码,粒子群优化bp神经网络,遗传算法优化神经网络的都有,我也是看了一段时间,理解的不深刻,建模主要是通过已知的输入输出数据训练网络的权值和阈值,我现在在学习锅炉系统建模和优化,大家可以一起交流学习qq191991427

㈤ 利用人工神经网络建立模型的步骤

人工神经网络有很多种,我只会最常用的BP神经网络。不同的网络有不同的结构和不同的学习算法。

简单点说,人工神经网络就是一个函数。只是这个函数有别于一般的函数。它比普通的函数多了一个学习的过程。

在学习的过程中,它根据正确结果不停地校正自己的网络结构,最后达到一个满意的精度。这时,它才开始真正的工作阶段。

学习人工神经网络最好先安装MathWords公司出的MatLab软件。利用该软件,你可以在一周之内就学会建立你自己的人工神经网络解题模型。

如果你想自己编程实现人工神经网络,那就需要找一本有关的书籍,专门看神经网络学习算法的那部分内容。因为“学习算法”是人工神经网络的核心。最常用的BP人工神经网络,使用的就是BP学习算法。

㈥ torchsummary:计算神经网络模型各层输出特征图尺寸及参数量

【注意】:此工具是针对PyTorch的,需配合PyTorch使用!
使用顺序可概括如下:
(1)导入torchsummary中的summary对象;
(2)建立神经网络模型;
(3)输入 模型(model)、输入尺寸(input_size)、批次大小(batch_size)、运行平台(device) 信息,运行后即可得到summary函数的返回值。

4个参数在(3)中已进行了解释, 其中device是指cpu或gpu .

输出如下:

可以看出, batch_size可以不指定,默认为-1 。summary函数会对模型中的每层输出特征图尺寸进行计算,并计算每层含有的参数量以及模型的参数总量等信息,对于逐层统计计算和分析非常直观和简洁。

㈦ matlab神经网络工具箱怎么效果好

导入数据:选择合适的数据,一定要选数值矩阵形式
在这里插入图片描述在这里插入图片描述

进行训练
在这里插入图片描述

接下来就点next,选择输入输出,Sample are是选择以行还是列放置矩阵的,注意调整

在这里插入图片描述

接下来一直next,在这儿点train

在这里插入图片描述

查看结果

在这里插入图片描述

导出代码:再点next,直到这个界面,先勾选下面的,再点Simple Script生成代码
在这里插入图片描述

使用训练好的神经网络进行预测
使用下方命令,z是需要预测的输入变量,net就是训练好的模型

在这里插入图片描述

再将结果输出成excel就行啦

在这里插入图片描述

打开CSDN,阅读体验更佳

使用MATLAB加载训练好的caffe模型进行识别分类_IT远征军的博客-CSDN...
在进行下面的实验前,需要先对数据进行训练得到caffemodel,然后再进行分类识别 c_demo.m function [scores, maxlabel] = c_demo(im, use_gpu) % Add caffe/matlab to you Matlab search PATH to use matcaffe if exist('/home/...
继续访问
MATLAB调用训练好的KERAS模型_LzQuarter的博客
下载了链接中的“kerasimporter.mlpkginstall”文件后,在matlab内用左侧的文件管理系统打开会进入一个页面,在该页面的右上角有安装的按钮,如果之前安装一直失败,可以通过这个安装按钮的下拉选项选择仅下载 下载还是有可能要用到VPN,但是相比...
继续访问
最新发布 matlab神经网络预测数据,matlab神经网络工具箱
Matlab语言是MathWorks公司推出的一套高性能计算机编程语言,集数学计算、图形显示、语言设计于一体,其强大的扩展功能为用户提供了广阔的应用空问。它附带有30多个工具箱,神经网络工具箱就是其中之一。谷歌人工智能写作项目:神经网络伪原创。
继续访问
matlab神经网络工具箱系统预测
matlab神经网络工具箱系统预测 有原始数据 根据原始数据预测未来十年内的数据
matlab预测控制工具箱
matlab预测控制工具箱,在学习预测控制的过程中翻译的matlab自带的示例,希望对大家有所帮助 matlab预测控制工具箱,在学习预测控制的过程中翻译的matlab自带的示例,希望对大家有所帮助
用matlab做bp神经网络预测,神经网络预测matlab代码
我觉得一个很大的原因是你预测给的输入范围(2014-)超出了训练数据的输入范围(2006-2013),神经网络好像是具有内插值特性,不能超出,你可以把输入变量-时间换成其他的变量,比如经过理论分析得出的某些影响因素,然后训练数据要包括大范围的情况,这样可以保证预测其他年份的运量的时候,输入变量不超出范围,最后预测的时候给出这几个影响因素的值,效果会好一点。输出层是个purelin,线性组合后的输出层输出当然也全是几乎相同的了。输出层是个purelin,线性组合后的输出层输出当然也全是几乎相同的了。
继续访问

BP神经网络预测实例(matlab代码,神经网络工具箱)
目录辛烷值的预测matlab代码实现工具箱实现 参考学习b站: 数学建模学习交流 bp神经网络预测matlab代码实现过程 辛烷值的预测 【改编】辛烷值是汽油最重要的品质指标,传统的实验室检测方法存在样品用量大,测试周期长和费用高等问题,不适用于生产控制,特别是在线测试。近年发展起来的近红外光谱分析方法(NIR),作为一种快速分析方法,已广泛应用于农业、制药、生物化工、石油产品等领域。其优越性是无损检测、低成本、无污染,能在线分析,更适合于生产和控制的需要。实验采集得到50组汽油样品(辛烷值已通过其他方法测
继续访问

用matlab做bp神经网络预测,matlab人工神经网络预测
ylabel('函数输出','fontsize',12);%画出预测结果误差图figureplot(error,'-*')title('BP网络预测误差','fontsize',12)ylabel('误差','fontsize',12)xlabel('样本','fontsize',12)。三、训练函数与学习函数的区别函数的输出是权值和阈值的增量,训练函数的输出是训练好的网络和训练记录,在训练过程中训练函数不断调用学习函数修正权值和阈值,通过检测设定的训练步数或性能函数计算出的误差小于设定误差,来结束训练。.
继续访问
matlab训练神经网络模型并导入simulink详细步骤
之前的神经网络相关文章: Matlab-RBF神经网络拟合数据 Matlab RBF神经网络及其实例 4.深度学习(1) --神经网络编程入门 本文介绍一下怎么把训练好的神经网络导入到simulink并使用,假定有两个变量,一个输出变量,随机生成一点数据 x1 = rand(1000,1);x2 = rand(1000,1);x = [x1 x2];y = rand(1000,1); 在App里面找到神经网络工具箱 点击Next 选择对应的数据,注意选择好对应的输入和输出,还
继续访问

用matlab做bp神经网络预测,matlab神经网络怎么预测
它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。Network可以看出,你的网络结构是两个隐含层,2-3-1-1结构的网络,算法是traindm,显示出来的误差变化为均方误差值mse。达到设定的网络精度0.001的时候,误差下降梯度为0.0046,远大于默认的1e-5,说明此时的网络误差仍在快速下降,所以可以把训练精度目标再提高一些,比如设为0.0001或者1e-5。如果你所选用的激活函数是线性函数,那么就可以先把输出的表达式写出来,即权向量和输入的矩阵乘积。
继续访问

matlab训练模型、导出模型及VC调用模型过程详解
MATLAB是美国MathWorks公司出品的商业数学软件,为算法开发、数据可视化、数据分析以及数值计算等提供了高级计算语言和交互式环境。随着人工智能的崛起,MATLAB也添加了自己的机器学习工具包,只需要很少的代码或命令就能完成模型训练和测试的过程,训练好的模型也能方便的导出,供VC等调用。本文主要介绍模型训练、导出和调用的整个过程。 软件版本: VC2015,matlab2018a ...
继续访问

matlab神经网络预测模型,matlab人工神经网络预测
谷歌人工智能写作项目:小发猫matlab带有神经网络工具箱,可直接调用,建议找本书看看,或者MATLAB论坛找例子常见的神经网络结构。核心调用语句如下:%数据输入%选连样本输入输出数据归一化[inputn,inputps]=mapminmax(input_train);[outputn,outputps]=mapminmax(output_train);%%BP网络训练%%初始化网络结构net=newff(inputn,outputn,[88]);net.trainParam.epochs=100;=0.0
继续访问

在Matlab中调用pytorch上训练好的网络模型
在Matlab中调用pytorch上训练好的网络模型
继续访问

MATLAB_第二篇神经网络学习_BP神经网络
BP神经网络代码实现1. BP神经网络的简介和结构参数1.1 BP神经网络的结构组成1.2 BP神经网络训练界面的参数解读 非常感谢博主wishes61的分享. 1. BP神经网络的简介和结构参数 一种按照误差逆向传播算法训练的多层前馈神经网络用于预测BP神经网络的计算过程:由正向计算过程和反向计算过程组成。 正向传播过程,输入模式从输入层经隐单元层逐层处理,并转向输出层,每一层神经元的状态只影响下一层神经元的状态。 如果在输出层不能得到期望的输出,则转入反向传播,将误差信号沿原来的连接通路返回,通过修改各
继续访问

MATLAB神经网络拟合回归工具箱Neural Net Fitting的使用方法
本文介绍MATLAB软件中神经网络拟合(Neural Net Fitting)工具箱的具体使用方法~
继续访问

灰色预测工具箱matlab,Matlab灰色预测工具箱——走过数模
2009-07-02 23:05灰色预测几乎是每年数模培训必不可少的内容,相对来说也是比较简单,这里写了四个函数,方便在Matlab里面调用,分别是GM(1,1),残差GM(1,1),新陈代谢GM(1,1),Verhust自己写得难免有所疏忽,需要的朋友自己找本书本来试验一下。。Gm(1,1)function [px0,ab,rel]=gm11(x0,number)%[px0,ab,rel]=gm...
继续访问
matlab利用训练好的BP神经网络来预测新数据(先保存网络,再使用网络)
1,保存网络。save ('net') % net为已训练好的网络,这里把他从workspace保存到工作目录,显示为net.mat文档。 2,使用网络。load ('net') % net为上面保存的网络,这里把他下载到workspace。y_predict = sim(...
继续访问
数学建模学习(79):Matlab神经网络工具箱使用,实现多输入多输出预测
Matlab神经网络工具箱实现,实现多输入多输出预测
继续访问

热门推荐 如何利用matlab做BP神经网络分析(包括利用matlab神经网络工具箱)
利用MATLAB 进行BP神经网络的预测(含有神经网络工具箱) 最近一段时间在研究如何利用预测其销量个数,在网上搜索了一下,发现了很多模型来预测,比如利用回归模型、时间序列模型,GM(1,1)模型,可是自己在结合实际的工作内容,发现这几种模型预测的精度不是很高,于是再在网上进行搜索,发现神经网络模型可以来预测,并且有很多是结合时间序列或者SVM(支持向量机)等组合模型来进...
继续访问
bp神经网络预测案例python_详细BP神经网络预测算法及实现过程实例
1.具体应用实例。根据表2,预测序号15的跳高成绩。表2国内男子跳高运动员各项素质指标序号跳高成绩()30行进跑(s)立定三级跳远()助跑摸高()助跑4—6步跳高()负重深蹲杠铃()杠铃半蹲系数100(s)抓举()12.243.29.63.452.151402.811.05022.333.210.33.752.21203.410.97032.243.09.03.52.21403.511.4504...
继续访问
如何调用MATLAB训练神经网络生成的网络进行预测
如何调用MATLAB训练神经网络生成的网络问题引出知识准备代码注解 问题引出 如何存储和调用已经训练好的神经网络。 本人前几天在智能控制学习的过程中也遇到了这样的问题,在论坛中看了大家的回复,虽然都提到了关键的两个函数“save”和“load”,但或多或少都简洁了些,让人摸不着头脑(呵呵,当然也可能是本人太菜)。通过不断调试,大致弄明白这两个函数对神经网络的存储。下面附上实例给大家做个说明,希望对跟我有一样问题的朋友有所帮助。 知识准备 如果只是需要在工作目录下保到当前训练好的网络,可以在命令窗口 输入:s
继续访问
matlab训练好的模型怎么用
神经网络

阅读全文

与神经网络怎么导出模型相关的资料

热点内容
计算机网络属性在哪查看 浏览:870
网络密码软件解锁全部都有的图片 浏览:300
如何防范网络伤害 浏览:962
附近的网络信号强怎么解决 浏览:714
猎杀对决网络正常连接错误 浏览:326
车场网络异常二维码扫码异常 浏览:994
为什么路由器有网没有网络 浏览:152
网络卫士软件下载 浏览:446
只有运营商怎么连接网络 浏览:46
新加坡手机网络频段 浏览:984
iphone允许自动网络连接网络连接网络 浏览:763
小度网络游戏机多少钱 浏览:117
山东虚拟网络电话软件 浏览:673
路由器网络扩大方法 浏览:121
车载qq音乐网络歌曲连接失败 浏览:51
网络安全等级保护制度发布 浏览:422
取消我的电脑局域网网络共享 浏览:22
浙江律师哪个网络好 浏览:731
网络连接不上密码也没错 浏览:507
网络连接后的路由器设置 浏览:541

友情链接