导航:首页 > 网络问题 > 什么是人工神经网络

什么是人工神经网络

发布时间:2022-01-11 12:02:24

Ⅰ 人工神经网络的分类

人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。
ann:人工神经网络(Artificial Neural Networks)
bp:Back Propagation网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

什么是人工神经网络计算机

我们知道,人脑神经系统是由数以十亿计的神经元相互连接而成的、极其复杂的信息处理网络,科学家认为它是处理复杂信息的最好结构。人工神经网络计算机就是模仿人脑神经系统的计算机,它同样是目前世界各国专家正在大力研究开发的下一代计算机。

人工神经网络计算机不仅能够高速处理信息,还能够像人一样具有学习功能和联想功能。现有的计算机的所有工作都是依靠人们预先给出的指令。从这一意义上说,它的能力还不如一个两三岁的幼儿。

人工神经网络计算机不一样,你只要反复把例题和答案输入,它便能自己学会解题的方法,这就是学习功能。

世界各国目前的研究主要集中在两个方面:一是通过在软件上下功夫,使通常的电子计算机也具有学习功能,可以用于生产控制;二是开发专门的神经芯片,通过硬件实现神经网络计算机的功能。

Ⅲ 深度学习中什么是人工神经网络

人工神经网络(Artificial Neural Network,即ANN )是从信息处理角度对人脑神经元网络进行抽象,是20世纪80年代以来人工智能领域兴起的研究热点,其本质是一种运算模型,由大量的节点(或称神经元)之间相互联接构成,在模式识别、智能机器人、自动控制、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。

人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统,它是在现代 神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。人工神经网络具有四个基本特征:

(1)非线性– 非线性关系是自然界的普遍特性,人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性

人工神经网络

由系统外部观察的单元。神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。

总结:人工神经网络是一种非程序化、 适应性、大脑风格的信息处理 ,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。

Ⅳ 什么是人工神经网络 人工神经网络的介绍

人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。

Ⅳ 什么是人工神经网络

人工神经网络就是,人工智能模拟人体内的神经系统的工作原理和工作结构进行模拟的一套人工系统网络快速有效的传递信息

Ⅵ 什么是人工神经网络

一.一些基本常识和原理
[什么叫神经网络?]
人的思维有逻辑性和直观性两种不同的基本方式。逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

[人工神经网络的工作原理]

人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。
所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。
如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。
=================================================

关于一个神经网络模拟程序的下载
人工神经网络实验系统(BP网络) V1.0 Beta 作者:沈琦
http://emuch.net/html/200506/de24132.html

作者关于此程序的说明:
从输出结果可以看到,前3条"学习"指令,使"输出"神经元收敛到了值 0.515974。而后3条"学习"指令,其收敛到了值0.520051。再看看处理4和11的指令结果 P *Out1: 0.520051看到了吗? "大脑"识别出了4和11是属于第二类的!怎么样?很神奇吧?再打show指令看看吧!"神经网络"已经形成了!你可以自己任意的设"模式"让这个"大脑"学习分辩哦!只要样本数据量充分(可含有误差的样本),如果能够在out数据上收敛地话,那它就能分辨地很准哦!有时不是绝对精确,因为它具有"模糊处理"的特性.看Process输出的值接近哪个Learning的值就是"大脑"作出的"模糊性"判别!
=================================================

人工神经网络论坛
http://www.youngfan.com/forum/index.php
http://www.youngfan.com/nn/index.html(旧版,枫舞推荐)
国际神经网络学会(INNS)(英文)
http://www.inns.org/
欧洲神经网络学会(ENNS)(英文)
http://www.snn.kun.nl/enns/
亚太神经网络学会(APNNA)(英文)
http://www.cse.cuhk.e.hk/~apnna
日本神经网络学会(JNNS)(日文)
http://www.jnns.org
国际电气工程师协会神经网络分会
http://www.ieee-nns.org/
研学论坛神经网络
http://bbs.matwav.com/post/page?bid=8&sty=1&age=0
人工智能研究者俱乐部
http://www.souwu.com/
2nsoft人工神经网络中文站
http://211.156.161.210:8888/2nsoft/index.jsp
=================================================

推荐部分书籍:
人工神经网络技术入门讲稿(PDF)
http://www.youngfan.com/nn/ann.pdf
神经网络FAQ(英文)
http://www.youngfan.com/nn/FAQ/FAQ.html
数字神经网络系统(电子图书)
http://www.youngfan.com/nn/nnbook/director.htm
神经网络导论(英文)
http://www.shef.ac.uk/psychology/gurney/notes/contents.html
===============================================
一份很有参考价值的讲座
<前向网络的敏感性研究>
http://www.youngfan.com/nn/mgx.ppt
是Powerpoint文件,比较大,如果网速不够最好用鼠标右键下载另存.

Ⅶ 什么是人工神经网络的学习它可以通过哪些途径来实现

早在1943 年,神经科学家和控制论专家Warren McCulloch 与逻辑学家Walter Pitts就基于数学和阈值逻辑算法创造了一种神经网络计算模型。其中最基本的组成成分是神经元(Neuron)模型,即上述定义中的“简单单元”(Neuron 也可以被称为Unit)。在生物学所定义的神经网络中(如图1所示),每个神经元与其他神经元相连,并且当某个神经元处于兴奋状态时,它就会向其他相连的神经元传输化学物质,这些化学物质会改变与之相连的神经元的电位,当某个神经元的电位超过一个阈值后,此神经元即被激活并开始向其他神经元发送化学物质。Warren McCulloch 和Walter Pitts 将上述生物学中所描述的神经网络抽象为一个简单的线性模型(如图2所示),这就是一直沿用至今的“McCulloch-Pitts 神经元模型”,或简称为“MP 模型”。

在MP 模型中,某个神经元接收到来自n 个其他神经元传递过来的输入信号(好比生物学中定义的神经元传输的化学物质),这些输入信号通过带权重的连接进行传递,某个神经元接收到的总输入值将与它的阈值进行比较,然后通过“激活函数”(亦称响应函数)处理以产生此神经元的输出。如果把许多个这样的神经元按照一定的层次结构连接起来,就可以得到相对复杂的多层人工神经网络。

Ⅷ 化学实验中,什么是人工神经网络

人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。

Ⅸ 人工神经网络技术是什么

人工神经网络:指模拟人脑神经系统的结构和功能,运用大量的处理部件,由人工方式构造的网络系统。

阅读全文

与什么是人工神经网络相关的资料

热点内容
路由能ping通但是电脑无网络 浏览:635
网络安全者不履行网络安全义务的 浏览:905
如何调整移动数据网络连接 浏览:174
网络营销对传统营销具有哪些挑战 浏览:779
佳的美tv5821怎么连接网络 浏览:103
电信网络一年能用多少年 浏览:487
明日之后交易一直网络异常 浏览:833
网络组建用什么软件 浏览:206
网络阅读要多少钱投资 浏览:112
网络突然间没网了如何办 浏览:23
公共网络怎么解决竞争 浏览:499
斐讯路由器亮红灯有网络 浏览:22
网络流行语柠檬精一词最贴近于以下哪个俗语 浏览:629
网络上的ryo什么意思 浏览:841
如何发展校园网络 浏览:68
美国电商网络安全事故 浏览:87
手机网络通话系统故障 浏览:433
手机怎么连接拒绝接入的网络 浏览:117
数据网络时有时无什么原因 浏览:495
米家电磁炉无线网络怎么连接 浏览:276

友情链接