Ⅰ 神经网络计算机有哪些特点
传统的计算机在进行繁琐、复杂的数值运算时,例如,计算圆周率π,就显得十分有能耐,比人高强;然而,面对人类认为比较容易的有关识别、判断方面的问题时,就显得笨手笨脚,力不从心。
为了解决这个问题,科学家们一心想发明神经计算机,或叫神经元网络计算机。
神经网络计算机的工作原理类似人脑。人脑由100亿~150亿个神经元组成,而每个神经元又和数千到数万个神经元相连接。神经网络计算机正是利用与人脑非常相似的神经网络进行信息处理的。
神经网络计算机有着许多特点:第一,有着极强的自学能力。人们利用神经网络计算机的自学特点,可以方便地“教”会它认读自然语言文字。
第二,神经元网络计算机的“智能”好像是自发产生的,不是严格设计出来的,这是各个神经元所做的简单事情集合起来的结果。这一点同人的大脑的工作原理极相似。
第三,神经元网络计算机的资料不是贮存在存储器中,而是贮存在神经元之间的网络中。这就是说,即使个别神经网络断裂、破坏,也并不影响整体的运算能力,即它具有重建资料的能力。
现在,人工神经网络技术的研究,已在许多部门获得了实际应用。例如,信息识别、系统控制、检测与监测智能化等。
可以预计,在21世纪,人工神经网络的研究将会有新的突破。虽然用无生命的元器件实现人脑的所有功能是不可能的,但在某些特定的智能方面,接近或达到人脑水平的神经网络计算机将会十分普遍,届时,神经网络计算机将渗透到人类生活的各个领域。
神经计算机是按照一种仿效人脑的神经网络模型工作的。由于这种模型能通过电路予以实现,因此人们不仅可以通过这一模型了解人的神经细胞是怎样工作的,而且还能把它制成集成电路的芯片,使计算机仿效神经系统工作。于是,便出现了利用神经网络工作原理的神经计算机。
神经计算机不仅能够进行并行处理,而且还具有以下两种能力:第一,具有联想能力,例如见到红的、圆的、有芬香味的东西,便会联想起这是苹果。第二,具有自我组织能力,神经计算机通过多次处理同类问题,能够把各神经元连接成最适于处理该问题的网络,通过做同类工作而有所改进便是具有学习功能。
最能发挥神经计算机长处的工作有图像识别、声音识别、运动控制等。
由于神经计算机采用并行处理方式,很适合用光计算机来实现。今后,光计算机得到实用时,光神经计算机将会有更诱人的前景。
Ⅱ 什么是神经网络计算机
这个其实你安静下来查查网络也挺快的,人讲的话漏洞还是蛮多的。神经网络可以想象成机器人脑。
尽量简单讲吧,神经网络的初衷是人希望计算机能模拟人的思维方式解决这些问题:
识别物体,识别数据类型——》进而做到预测物体发展,预测数据变化。比如预测股票,电影票房等等。
那人的思维方式是怎样的呢?是多维的网状的。比如,识别一个杯子只需要一瞬间,但你判断的过程是通过杯子的各种特征综合反映出来是一个杯子的。这种各种特征的综合反映就是神经网络的基本特点。
抽象一点,你输入一组能代表杯子的特征,经过神经网络的处理,它能告诉你这是一个杯子。神经网络就算成了。
其中,你输入的一组特征就是输入向量;
神经网络是由你自己设计的,包括层数和节点数,都是模拟人脑复杂程度的。解决什么样的问题,就用适当的复杂程度。
处理指的是各种函数。
最后能告诉你是个杯子,就算是输出了。
当然,神经网络并不是很准确的网络,因为这是和人自己对大脑的研究成正比的。但因为兼容性强,建模方便的特征,使神经网络的使用范围还是相当广的。希望没有误导你。
Ⅲ 什么是神经网络计算机
许多新型电子计算机不仅拥有高速的计算功能,而且还能模拟人脑的某种思维活动,就是说,拥有某些智能化的功能。然后,如果严格来鉴定一下,它们离真正的人脑思维功能实在差得太远了,而且有许多本质的差异。主要表现在人脑拥有高度的自我学习和联想、创造的能力,以及更高级的寻找最优方案和各种理性的、情感的功能。
神经网络计算机就是通过人工神经网络,模仿人的大脑判断能力和适应能力、可并行处理多种数据功能的计算机。它可以判断对象的性质与状态,并能采取相应的行动,而且可同时并行处理实时变化的大量数据,并引出结论。
Ⅳ 神经网络简述
机器学习中谈论的神经网络是指“神经网络学习”,或者说,是机器学习和神经网络这两个学科领域的交叉部分[1]。
在这里,神经网络更多的是指计算机科学家模拟人类大脑结构和智能行为,发明的一类算法的统称。
神经网络是众多优秀仿生算法中的一种,读书时曾接触过蚁群优化算法,曾惊讶于其强大之处,但神经网络的强大,显然蚁群优化还不能望其项背。
A、起源与第一次高潮。有人认为,神经网络的最早讨论,源于现代计算机科学的先驱——阿兰.图灵在1948年的论文中描述的“B型组织机器”[2]。二十世纪50年代出现了以感知机、Adaling为代表的一系列成功,这是神经网络发展的第一个高潮[1]。
B、第一次低谷。1969年,马文.明斯基出版《感知机》一书,书中论断直接将神经网络打入冷宫,导致神经网络十多年的“冰河期”。值得一提的是,在这期间的1974年,哈佛大学Paul Webos发明BP算法,但当时未受到应有的重视[1]。
C、第二次高潮。1983年,加州理工学院的物理学家John Hopfield利用神经网络,在旅行商问题上获得当时最好结果,引起轰动;Rumelhart等人重新发明了BP算法,BP算法迅速走红,掀起神经网络第二次高潮[1]。
D、第二次低谷。二十世纪90年代中期,统计学习理论和支持向量机兴起,较之于这些算法,神经网络的理论基础不清晰等缺点更加凸显,神经网络研究进入第二次低谷[1]。
E、深度学习的崛起。2010年前后,随着计算能力的提升和大数据的涌现,以神经网络为基础的“深度学习”崛起,科技巨头公司谷歌、Facebook、网络投入巨资研发,神经网络迎来第三次高潮[1]。2016年3月9日至15日,Google人工智能程序AlphaGo对阵韩国围棋世界冠军李世乭,以4:1大比分获胜,比众多专家预言早了十年。这次比赛,迅速在全世界经济、科研、计算机产业各领域掀起人工智能和深度学习的热烈讨论。
F、展望。从几个方面讨论一下。
1)、近期在Google AlphaGo掀起的热潮中,民众的热情与期待最大,甚至有少许恐慌情绪;计算机产业和互联网产业热情也非常巨大,对未来充满期待,各大巨头公司对其投入大量资源;学术界的反应倒是比较冷静的。学术界的冷静,是因为神经网络和深度神经网络的理论基础还没有出现长足的进步,其缺点还没有根本改善。这也从另一个角度说明了深度神经网络理论进步的空间很大。
2)、"当代神经网络是基于我们上世纪六十年代掌握的脑知识。"关于人类大脑的科学与知识正在爆炸式增长。[3]世界上很多学术团队正在基于大脑机制新的认知建立新的模型[3]。我个人对此报乐观态度,从以往的仿生算法来看,经过亿万年进化的自然界对科技发展的促进从来没有停止过。
3)、还说AlphaGo,它并不是理论和算法的突破,而是基于已有算法的工程精品。AlhphaGo的工作,为深度学习的应用提供了非常广阔的想象空间。分布式技术提供了巨大而廉价的计算能力,巨量数据的积累提供了丰富的训练样本,深度学习开始腾飞,这才刚刚开始。
一直沿用至今的,是McChlloch和Pitts在1943年依据脑神经信号传输结构抽象出的简单模型,所以也被称作”M-P神经元模型“。
其中,
f函数像一般形如下图的函数,既考虑阶跃性,又考虑光滑可导性。
实际常用如下公式,因形如S,故被称作sigmoid函数。
把很多个这样的神经元按一定层次连接起来,就得到了神经网络。
两层神经元组成,输入层接收外界输入信号,输出层是M-P神经元(只有输出层是)。
感知机的数学模型和单个M-P神经元的数学模型是一样的,如因为输入层只需接收输入信号,不是M-P神经元。
感知机只有输出层神经元是B-P神经元,学习能力非常有限。对于现行可分问题,可以证明学习过程一定会收敛。而对于非线性问题,感知机是无能为力的。
BP神经网络全称叫作误差逆传播(Error Propagation)神经网络,一般是指基于误差逆传播算法的多层前馈神经网络。这里为了不占篇幅,BP神经网络将起篇另述。
BP算法是迄今最为成功的神经网络学习算法,也是最有代表性的神经网络学习算法。BP算法不仅用于多层前馈神经网络,还用于其他类型神经网络的训练。
RBF网络全程径向基函数(Radial Basis Function)网络,是一种单隐层前馈神经网络,其与BP网络最大的不同是采用径向基函数作为隐层神经元激活函数。
卷积神经网络(Convolutional neural networks,简称CNNs)是一种深度学习的前馈神经网络,在大型图片处理中取得巨大成功。卷积神经网络将起篇另述。
循环神经网络(Recurrent Neural Networks,RNNs)与传统的FNNs不同,RNNs引入定向循环,能够处理那些输入之间前后关联的问题。RNNs已经在众多自然语言处理(Natural Language Processing, NLP)中取得了巨大成功以及广泛应用[5]。RNNs将起篇另述。[5]
[1]、《机器学习》,周志华着
[2]、《模式识别(第二版)》,Richard O.Duda等着,李宏东等译
[3]、《揭秘IARPA项目:解码大脑算法或将彻底改变机器学习》,Emily Singerz着,机器之心编译出品
[4]、图片来源于互联网
[5]、 循环神经网络(RNN, Recurrent Neural Networks)介绍
Ⅳ 连接不了网络怎么办
检查无线网卡的驱动是否安装正确。右键点击“我的电脑”-属性-硬件-设备管理器,查看是否存在标有问号或叹号的网络设备,如果有,则说明无线网卡驱动安装不正确。
计算机俗称电脑,是一种用于高速计算的电子计算机器,可以进行数值计算,又可以进行逻辑计算,还具有存储记忆功能。是能够按照程序运行,自动、高速处理海量数据的现代化智能电子设备。由硬件系统和软件系统所组成,没有安装任何软件的计算机称为裸机。
可分为超级计算机、工业控制计算机、网络计算机、个人计算机、嵌入式计算机五类,较先进的计算机有生物计算机、光子计算机、量子计算机、神经网络计算机。蛋白质计算机等。
当今计算机系统的运算速度已达到每秒万亿次,微机也可达每秒几亿次以上,使大量复杂的科学计算问题得以解决。例如:卫星轨道的计算、大型水坝的计算、24小时天气预报的计算等,过去人工计算需要几年、几十年,而现在用计算机只需几天甚至几分钟就可完成。
科学技术的发展特别是尖端科学技术的发展,需要高度精确的计算。计算机控制的导弹之所以能准确地击中预定的目标,是与计算机的精确计算分不开的。一般计算机可以有十几位甚至几十位(二进制)有效数字,计算精度可由千分之几到百万分之几,是任何计算工具所望尘莫及的。
随着计算机存储容量的不断增大,可存储记忆的信息越来越多。计算机不仅能进行计算,而且能把参加运算的数据、程序以及中间结果和最后结果保存起来,以供用户随时调用;还可以对各种信息(如视频、语言、文字、图形、图像、音乐等)通过编码技术进行算术运算和逻辑运算,甚至进行推理和证明。
计算机内部操作是根据人们事先编好的程序自动控制进行的。用户根据解题需要,事先设计好运行步骤与程序,计算机十分严格地按程序规定的步骤操作,整个过程不需人工干预,自动执行,已达到用户的预期结果。
超级计算机(supercomputers)通常是指由数百数千甚至更多的处理器(机)组成的、能计算普通PC机和服务器不能完成的大型复杂课题的计算机。超级计算机是计算机中功能最强、运算速度最快、存储容量最大的一类计算机,是国家科技发展水平和综合国力的重要标志。
超级计算机拥有最强的并行计算能力,主要用于科学计算。在气象、军事、能源、航天、探矿等领域承担大规模、高速度的计算任务。
在结构上,虽然超级计算机和服务器都可能是多处理器系统,二者并无实质区别,但是现代超级计算机较多采用集群系统,更注重浮点运算的性能,可看着是一种专注于科学计算的高性能服务器,而且价格非常昂贵。
一般的超级计算器耗电量相当大,一秒钟电费就要上千,超级计算器的CPU至少50核也就是说是家用电脑的10倍左右,处理速度也是相当的快,但是这种CPU是无法购买的,而且价格要上千万。