1. 什么是BP神经网络
BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。经反复学习,最终使误差减小到可接受的范围。具体步骤如下:
1、从训练集中取出某一样本,把信息输入网络中。
2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。
3、计算网络实际输出与期望输出的误差。
4、将误差逐层反向回传至之前各层,并按一定原则将误差信号加载到连接权值上,使整个神经网络的连接权值向误差减小的方向转化。
5、対训练集中每一个输入—输出样本对重复以上步骤,直到整个训练样本集的误差减小到符合要求为止。
2. 求教:基于BP神经网络的Matlab故障诊断代码总是显示错误,哪位大哥帮忙给改一下吧代码在下面
P=[2.50 0.11 10.40 12.60 45.5;
0.24 0.36 10.30 0.30 48.2;
1.81 0.27 11.72 11.50 46.3;
1.77 0.22 10.33 14.43 50.0;
1.75 0.23 10.40 9.80 49.9;
1.82 0.25 10.33 12.50 72.2;
1.84 0.26 10.10 11.20 18.5];
P=P'; %转置矩阵格式就对了
T=[0.9 0.1 0.1 0.1 0.1 0.1 0.1;
0.1 0.9 0.1 0.1 0.1 0.1 0.1;
0.1 0.1 0.9 0.1 0.1 0.1 0.1;
0.1 0.1 0.1 0.9 0.1 0.1 0.1;
0.1 0.1 0.1 0.1 0.9 0.1 0.1;
0.1 0.1 0.1 0.1 0.1 0.9 0.1;
0.1 0.1 0.1 0.1 0.1 0.1 0.9];
net=newff(minmax(P),[11 7],{'tansig','logsig'},'trainlm');%这里的矩阵大小范围可用minmax
net.trainParam.epochs=15;
net.trainParam.goal=0.01;
LP.lr=0.1;
net=train(net,P,T);
3. BP神经网络 检验误差不行
我觉得有可能是陷入局部最优解了,步数再多也没用。
4. 大数据科学家需要掌握的几种异常值检测方法
引言
异常值检测与告警一直是工业界非常关注的问题,自动准确地检测出系统的异常值,不仅可以节约大量的人力物力,还能尽早发现系统的异常情况,挽回不必要的损失。个推也非常重视大数据中的异常值检测,例如在运维部门的流量管理业务中,个推很早便展开了对异常值检测的实践,也因此积累了较为丰富的经验。本文将从以下几个方面介绍异常值检测。
1、异常值检测研究背景
2、异常值检测方法原理
3、异常值检测应用实践
异常值检测研究背景
异常值,故名思议就是不同于正常值的值。 在数学上,可以用离群点来表述,这样便可以将异常值检测问题转化为数学问题来求解。
异常值检测在很多场景都有广泛的应用,比如:
1、流量监测
互联网上某些服务器的访问量,可能具有周期性或趋势性:一般情况下都是相对平稳的,但是当受到某些黑客攻击后,其访问量可能发生显着的变化,及早发现这些异常变化对企业而言有着很好的预防告警作用。
2、金融风控
正常账户中,用户的转账行为一般属于低频事件,但在某些金融诈骗案中,一些嫌犯的账户就可能会出现高频的转账行为,异常检测系统如果能发现这些异常行为,及时采取相关措施,则会规避不少损失。
3、机器故障检测
一个运行中的流水线,可能会装有不同的传感器用来监测运行中的机器,这些传感器数据就反应了机器运行的状态,这些实时的监测数据具有数据量大、维度广的特点,用人工盯着看的话成本会非常高,高效的自动异常检测算法将能很好地解决这一问题。
异常值检测方法原理
本文主要将异常值检测方法分为两大类:一类是基于统计的异常值检测,另一类是基于模型的异常值检测。
基于统计的方法
基于模型的方法
1、基于统计的异常值检测方法
常见的基于统计的异常值检测方法有以下2种,一种是基于3σ法则,一种是基于箱体图。
3σ法则
箱体图
3σ法则是指在样本服从正态分布时,一般可认为小于μ-3σ或者大于μ+3σ的样本值为异常样本,其中μ为样本均值,σ为样本标准差。在实际使用中,我们虽然不知道样本的真实分布,但只要真实分布与正太分布相差不是太大,该经验法则在大部分情况下便是适用的。
箱体图也是一种比较常见的异常值检测方法,一般取所有样本的25%分位点Q1和75%分位点Q3,两者之间的距离为箱体的长度IQR,可认为小于Q1-1.5IQR或者大于Q3+1.5IQR的样本值为异常样本。
基于统计的异常检测往往具有计算简单、有坚实的统计学基础等特点,但缺点也非常明显,例如需要大量的样本数据进行统计,难以对高维样本数据进行异常值检测等。
2、基于模型的异常值检测
通常可将异常值检测看作是一个二分类问题,即将所有样本分为正常样本和异常样本,但这和常规的二分类问题又有所区别,常规的二分类一般要求正负样本是均衡的,如果正负样本不均匀的话,训练结果往往会不太好。但在异常值检测问题中,往往面临着正(正常值)负(异常值)样本不均匀的问题,异常值通常比正常值要少得多,因此需要对常规的二分类模型做一些改进。
基于模型的异常值检测一般可分为有监督模型异常值检测和无监督模型异常值检测,比较典型的有监督模型如oneclassSVM、基于神经网络的自编码器等。 oneclassSVM就是在经典的SVM基础上改进而来,它用一个超球面替代了超平面,超球面以内的值为正常值,超球面以外的值为异常值。
经典的SVM
1
基于模型的方法
2
基于神经网络的自编码器结构如下图所示。
自编码器(AE)
将正常样本用于模型训练,输入与输出之间的损失函数可采用常见的均方误差,因此检测过程中,当正常样本输入时,均方误差会较小,当异常样本输入时,均方误差会较大,设置合适的阈值便可将异常样本检测出来。但该方法也有缺点,就是对于训练样本比较相近的正常样本判别较好,但若正常样本与训练样本相差较大,则可能会导致模型误判。
无监督模型的异常值检测是异常值检测中的主流方法,因为异常值的标注成本往往较高,另外异常值的产生往往无法预料,因此有些异常值可能在过去的样本中根本没有出现过, 这将导致某些异常样本无法标注,这也是有监督模型的局限性所在。 较为常见的无监督异常值检测模型有密度聚类(DBSCAN)、IsolationForest(IF)、RadomCutForest(RCF)等,其中DBSCAN是一种典型的无监督聚类方法,对某些类型的异常值检测也能起到不错的效果。该算法原理网上资料较多,本文不作详细介绍。
IF算法最早由南京大学人工智能学院院长周志华的团队提出,是一种非常高效的异常值检测方法,该方法不需要对样本数据做任何先验的假设,只需基于这样一个事实——异常值只是少数,并且它们具有与正常值非常不同的属性值。与随机森林由大量决策树组成一样,IsolationForest也由大量的树组成。IsolationForest中的树叫isolation tree,简称iTree。iTree树和决策树不太一样,其构建过程也比决策树简单,因为其中就是一个完全随机的过程。
假设数据集有N条数据,构建一颗iTree时,从N条数据中均匀抽样(一般是无放回抽样)出n个样本出来,作为这颗树的训练样本。
在样本中,随机选一个特征,并在这个特征的所有值范围内(最小值与最大值之间)随机选一个值,对样本进行二叉划分,将样本中小于该值的划分到节点的左边,大于等于该值的划分到节点的右边。
这样得到了一个分裂条件和左、右两边的数据集,然后分别在左右两边的数据集上重复上面的过程,直至达到终止条件。 终止条件有两个,一个是数据本身不可再分(只包括一个样本,或者全部样本相同),另外一个是树的高度达到log2(n)。 不同于决策树,iTree在算法里面已经限制了树的高度。不限制虽然也可行,但出于效率考虑,算法一般要求高度达到log2(n)深度即可。
把所有的iTree树构建好了,就可以对测试数据进行预测了。预测的过程就是把测试数据在iTree树上沿对应的条件分支往下走,直到达到叶子节点,并记录这过程中经过的路径长度h(x),即从根节点,穿过中间的节点,最后到达叶子节点,所走过的边的数量(path length)。最后,将h(x)带入公式,其中E(.)表示计算期望,c(n)表示当样本数量为n时,路径长度的平均值,从而便可计算出每条待测数据的异常分数s(Anomaly Score)。异常分数s具有如下性质:
1)如果分数s越接近1,则该样本是异常值的可能性越高;
2)如果分数s越接近0,则该样本是正常值的可能性越高;
RCF算法与IF算法思想上是比较类似的,前者可以看成是在IF算法上做了一些改进。针对IF算法中没有考虑到的时间序列因素,RCF算法考虑了该因素,并且在数据样本采样策略上作出了一些改进,使得异常值检测相对IF算法变得更加准确和高效,并能更好地应用于流式数据检测。
IF算法
RCF算法
上图展示了IF算法和RCF算法对于异常值检测的异同。我们可以看出原始数据中有两个突变异常数据值,对于后一个较大的突变异常值,IF算法和RCF算法都检测了出来,但对于前一个较小的突变异常值,IF算法没有检测出来,而RCF算法依然检测了出来,这意味着RCF有更好的异常值检测性能。
异常值检测应用实践
理论还需结合实践,下面我们将以某应用从2016.08.16至2019.09.21的日活变化情况为例,对异常值检测的实际应用场景予以介绍:
从上图中可以看出该应用的日活存在着一些显着的异常值(比如红色圆圈部分),这些异常值可能由于活动促销或者更新迭代出现bug导致日活出现了比较明显的波动。下面分别用基于统计的方法和基于模型的方法对该日活序列数据进行异常值检测。
基于3σ法则(基于统计)
RCF算法(基于模型)
从图中可以看出,对于较大的突变异常值,3σ法则和RCF算法都能较好地检测出来, 但对于较小的突变异常值,RCF算法则要表现得更好。
总结
上文为大家讲解了异常值检测的方法原理以及应用实践。综合来看,异常值检测算法多种多样 ,每一种都有自己的优缺点和适用范围,很难直接判断哪一种异常检测算法是最佳的, 具体在实战中,我们需要根据自身业务的特点,比如对计算量的要求、对异常值的容忍度等,选择合适的异常值检测算法。
接下来,个推也会结合自身实践,在大数据异常检测方面不断深耕,继续优化算法模型在不同业务场景中的性能,持续为开发者们分享前沿的理念与最新的实践方案。
5. matlab BP神经网络在测试的时候总是显示有问题,求解答原因
第一句错误应该是你的输入向量维数不一致导致,也可能是别的原因,你没有贴出来我只能猜测,第二句你说是保存数据,我一般用的语句是,save ,由于你第一句错误导致仿真数据没保存所以fopen这句由于找不到数据也出错。
6. 神经网络异常检测方法和机器学习异常检测方法对于入侵检测的应用
神经网络异常检测方法神经网络入侵检测方法是通过训练神经网络连续的信息单元来进行异常检测,信息单元指的是命令。网络的输入为用户当前输入的命令和已执行过的W个命令;用户执行过的命令被神经网络用来预测用户输入的下一个命令,如下图。若神经网络被训练成预测用户输入命令的序列集合,则神经网络就构成用户的轮郭框架。当用这个神经网络预测不出某用户正确的后继命令,即在某种程度上表明了用户行为与其轮廓框架的偏离,这时表明有异常事件发生,以此就能作异常入侵检测。
上面式子用来分类识别,检测异常序列。实验结果表明这种方法检测迅速,而且误警率底。然而,此方法对于用户动态行为变化以及单独异常检测还有待改善。复杂的相似度量和先验知识加入到检测中可能会提高系统的准确性,但需要做进一步工作。
7. 关于BP神经网络出现的错误要怎么解决啊,急!急!急!
你在工作路径下也有个u.m的文件与系统冲突了
8. 神经网络以及小波分析法在汽车发动机故障检修中有什么应用
汽车是我们生活中常用的将交通工具,那么神经网络和小波分析法在汽车发动机故障检修中有什么应用呢?大家请看我接下来详细地讲解。
一,小波分析在故障检修中的应用
小波包分解与故障特征提取。缸盖表面的振动信号由一系列瞬态响应信号组成,分别代表气缸的振动源响应信号:1为气缸的燃烧激励响应;2是排气阀打开时的节流阀冲击。气门间隙异常时,振动信号的能量大于目前冲击力作用时,振动信号的主要组件目前离冲击力稳定的振动信号和噪声,信号能量相对较小。因此,可以利用每个频带的能量变化来提取故障特征,通过小波包分解系数{4]得到频带的能量。
9. BP神经网络的原理的BP什么意思
原文链接:http://tecdat.cn/?p=19936
在本教程中,您将学习如何在R语言中创建神经网络模型。
神经网络(或人工神经网络)具有通过样本进行学习的能力。人工神经网络是一种受生物神经元系统启发的信息处理模型。它由大量高度互连的处理元件(称为神经元)组成,以解决问题。它遵循非线性路径,并在整个节点中并行处理信息。神经网络是一个复杂的自适应系统。自适应意味着它可以通过调整输入权重来更改其内部结构。
该神经网络旨在解决人类容易遇到的问题和机器难以解决的问题,例如识别猫和狗的图片,识别编号的图片。这些问题通常称为模式识别。它的应用范围从光学字符识别到目标检测。
本教程将涵盖以下主题:
神经网络概论
正向传播和反向传播
激活函数
R中神经网络的实现
案例
利弊
结论
神经网络概论
神经网络是受人脑启发执行特定任务的算法。它是一组连接的输入/输出单元,其中每个连接都具有与之关联的权重。在学习阶段,网络通过调整权重进行学习,来预测给定输入的正确类别标签。
人脑由数十亿个处理信息的神经细胞组成。每个神经细胞都认为是一个简单的处理系统。被称为生物神经网络的神经元通过电信号传输信息。这种并行的交互系统使大脑能够思考和处理信息。一个神经元的树突接收来自另一个神经元的输入信号,并根据这些输入将输出响应到某个其他神经元的轴突。
创建测试数据集
创建测试数据集:专业知识得分和沟通技能得分
预测测试集的结果
使用计算函数预测测试数据的概率得分。
现在,将概率转换为二进制类。
预测结果为1,0和1。
利弊
神经网络更灵活,可以用于回归和分类问题。神经网络非常适合具有大量输入(例如图像)的非线性数据集,可以使用任意数量的输入和层,可以并行执行工作。
还有更多可供选择的算法,例如SVM,决策树和回归算法,这些算法简单,快速,易于训练并提供更好的性能。神经网络更多的是黑盒子,需要更多的开发时间和更多的计算能力。与其他机器学习算法相比,神经网络需要更多的数据。NN仅可用于数字输入和非缺失值数据集。一位着名的神经网络研究人员说:“神经网络是解决任何问题的第二好的方法。最好的方法是真正理解问题。”
神经网络的用途
神经网络的特性提供了许多应用方面,例如:
模式识别:神经网络非常适合模式识别问题,例如面部识别,物体检测,指纹识别等。
异常检测:神经网络擅长异常检测,它们可以轻松检测出不适合常规模式的异常模式。
时间序列预测:神经网络可用于预测时间序列问题,例如股票价格,天气预报。
自然语言处理:神经网络在自然语言处理任务中提供了广泛的应用,例如文本分类,命名实体识别(NER),词性标记,语音识别和拼写检查。
最受欢迎的见解
1.r语言用神经网络改进nelson-siegel模型拟合收益率曲线分析
2.r语言实现拟合神经网络预测和结果可视化
3.python用遗传算法-神经网络-模糊逻辑控制算法对乐透分析
4.用于nlp的python:使用keras的多标签文本lstm神经网络分类
5.用r语言实现神经网络预测股票实例
6.R语言基于Keras的小数据集深度学习图像分类
7.用于NLP的seq2seq模型实例用Keras实现神经机器翻译
8.python中基于网格搜索算法优化的深度学习模型分析糖
9.matlab使用贝叶斯优化的深度学习
10. 基于BP 神经网络的环境影响评价方法
基于BP神经网络的环境影响评价模型的建立过程如下:
(1)样本选择
根据表3.7、表3.8、表3.9提取建模所需的样本数据(表3.11)
表3.11 8组基坑环境影响工程数据
(2)BP神经网络结构设计
对于BP网络,对于任何在闭区间内的一个连续函数都可以用单隐层的BP网络逼近,因而一个三层BP网络就可以完成任意的n维到m维的映射。根据网络结构简单化的原则,确定采用三层BP网络结构,即输入层为支护刚度、岩土性质、降水方式、水文地质边界、基坑侧壁状态、边载分布、后续使用年限、基础型式和差异沉降δ九个参数,输出层为环境等影响级,隐层层数为1层。隐层的神经元数目选择是一个十分复杂的问题,往往需要根据设计者的经验和多次实验来确定,因而不存在一个理想的解析式来表示。隐单元的数目与问题的要求,与输入、输出单元的数目有直接的关系。隐单元数目太多会导致学习时间过长,误差不一定最佳,也会导致容错性差、不能识别以前没有看到的样本,因此一定存在一个最佳的隐单元数。研究通过一次编程比较了隐层神经元个数分别为5、10、15、20、25、30、40时训练速度及检验精度。
(3)网络训练及检验
BP网络采用梯度下降法来降低网络的训练误差,考虑到基坑降水地面沉降范围内沉降量变化幅度较小的特点,训练时以训练目标取0.001为控制条件,考虑到网络的结构比较复杂,神经元个数比较多,需要适当增加训练次数和学习速率,因此初始训练次数设为10000次,学习速率取0.1,中间层的神经元传递函数采用S型正切函数tansig,传输函数采用logsig,训练函数采用trainlm,分别抽取表3.11中的7组数据作为训练样本,剩余1组作为检验样本。使用MATLAB6.0编程建立基于BP神经网络的基坑降水环境影响评价模型,考虑到样本量较小,预测结果不稳定,取预测20次评价结果的平均值作为最终评价结果。经试算最终确定当隐层神经单元为10,结果如下:
表3.12 基坑降水环境影响评价模型检验结果
结果表明基于BP神经网络的基坑降水环境影响评价结果大部分与实际监测结果相符,部分结果偏于危险。