❶ 一文看懂四种基本的神经网络架构
原文链接:
http://blackblog.tech/2018/02/23/Eight-Neural-Network/
更多干货就在我的个人博客 http://blackblog.tech 欢迎关注
刚刚入门神经网络,往往会对众多的神经网络架构感到困惑,神经网络看起来复杂多样,但是这么多架构无非也就是三类,前馈神经网络,循环网络,对称连接网络,本文将介绍四种常见的神经网络,分别是CNN,RNN,DBN,GAN。通过这四种基本的神经网络架构,我们来对神经网络进行一定的了解。
神经网络是机器学习中的一种模型,是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
一般来说,神经网络的架构可以分为三类:
前馈神经网络:
这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。如果有多个隐藏层,我们称之为“深度”神经网络。他们计算出一系列改变样本相似性的变换。各层神经元的活动是前一层活动的非线性函数。
循环网络:
循环网络在他们的连接图中定向了循环,这意味着你可以按照箭头回到你开始的地方。他们可以有复杂的动态,使其很难训练。他们更具有生物真实性。
循环网络的目的使用来处理序列数据。在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多问题却无能无力。例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。
循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。
对称连接网络:
对称连接网络有点像循环网络,但是单元之间的连接是对称的(它们在两个方向上权重相同)。比起循环网络,对称连接网络更容易分析。这个网络中有更多的限制,因为它们遵守能量函数定律。没有隐藏单元的对称连接网络被称为“Hopfield 网络”。有隐藏单元的对称连接的网络被称为玻尔兹曼机。
其实之前的帖子讲过一些关于感知机的内容,这里再复述一下。
首先还是这张图
这是一个M-P神经元
一个神经元有n个输入,每一个输入对应一个权值w,神经元内会对输入与权重做乘法后求和,求和的结果与偏置做差,最终将结果放入激活函数中,由激活函数给出最后的输出,输出往往是二进制的,0 状态代表抑制,1 状态代表激活。
可以把感知机看作是 n 维实例空间中的超平面决策面,对于超平面一侧的样本,感知器输出 1,对于另一侧的实例输出 0,这个决策超平面方程是 w⋅x=0。 那些可以被某一个超平面分割的正反样例集合称为线性可分(linearly separable)样例集合,它们就可以使用图中的感知机表示。
与、或、非问题都是线性可分的问题,使用一个有两输入的感知机能容易地表示,而异或并不是一个线性可分的问题,所以使用单层感知机是不行的,这时候就要使用多层感知机来解决疑惑问题了。
如果我们要训练一个感知机,应该怎么办呢?
我们会从随机的权值开始,反复地应用这个感知机到每个训练样例,只要它误分类样例就修改感知机的权值。重复这个过程,直到感知机正确分类所有的样例。每一步根据感知机训练法则来修改权值,也就是修改与输入 xi 对应的权 wi,法则如下:
这里 t 是当前训练样例的目标输出,o 是感知机的输出,η 是一个正的常数称为学习速率。学习速率的作用是缓和每一步调整权的程度,它通常被设为一个小的数值(例如 0.1),而且有时会使其随着权调整次数的增加而衰减。
多层感知机,或者说是多层神经网络无非就是在输入层与输出层之间加了多个隐藏层而已,后续的CNN,DBN等神经网络只不过是将重新设计了每一层的类型。感知机可以说是神经网络的基础,后续更为复杂的神经网络都离不开最简单的感知机的模型,
谈到机器学习,我们往往还会跟上一个词语,叫做模式识别,但是真实环境中的模式识别往往会出现各种问题。比如:
图像分割:真实场景中总是掺杂着其它物体。很难判断哪些部分属于同一个对象。对象的某些部分可以隐藏在其他对象的后面。
物体光照:像素的强度被光照强烈影响。
图像变形:物体可以以各种非仿射方式变形。例如,手写也可以有一个大的圆圈或只是一个尖头。
情景支持:物体所属类别通常由它们的使用方式来定义。例如,椅子是为了让人们坐在上面而设计的,因此它们具有各种各样的物理形状。
卷积神经网络与普通神经网络的区别在于,卷积神经网络包含了一个由卷积层和子采样层构成的特征抽取器。在卷积神经网络的卷积层中,一个神经元只与部分邻层神经元连接。在CNN的一个卷积层中,通常包含若干个特征平面(featureMap),每个特征平面由一些矩形排列的的神经元组成,同一特征平面的神经元共享权值,这里共享的权值就是卷积核。卷积核一般以随机小数矩阵的形式初始化,在网络的训练过程中卷积核将学习得到合理的权值。共享权值(卷积核)带来的直接好处是减少网络各层之间的连接,同时又降低了过拟合的风险。子采样也叫做池化(pooling),通常有均值子采样(mean pooling)和最大值子采样(max pooling)两种形式。子采样可以看作一种特殊的卷积过程。卷积和子采样大大简化了模型复杂度,减少了模型的参数。
卷积神经网络由三部分构成。第一部分是输入层。第二部分由n个卷积层和池化层的组合组成。第三部分由一个全连结的多层感知机分类器构成。
这里举AlexNet为例:
·输入:224×224大小的图片,3通道
·第一层卷积:11×11大小的卷积核96个,每个GPU上48个。
·第一层max-pooling:2×2的核。
·第二层卷积:5×5卷积核256个,每个GPU上128个。
·第二层max-pooling:2×2的核。
·第三层卷积:与上一层是全连接,3*3的卷积核384个。分到两个GPU上个192个。
·第四层卷积:3×3的卷积核384个,两个GPU各192个。该层与上一层连接没有经过pooling层。
·第五层卷积:3×3的卷积核256个,两个GPU上个128个。
·第五层max-pooling:2×2的核。
·第一层全连接:4096维,将第五层max-pooling的输出连接成为一个一维向量,作为该层的输入。
·第二层全连接:4096维
·Softmax层:输出为1000,输出的每一维都是图片属于该类别的概率。
卷积神经网络在模式识别领域有着重要应用,当然这里只是对卷积神经网络做了最简单的讲解,卷积神经网络中仍然有很多知识,比如局部感受野,权值共享,多卷积核等内容,后续有机会再进行讲解。
传统的神经网络对于很多问题难以处理,比如你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。RNN之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。理论上,RNN能够对任何长度的序列数据进行处理。
这是一个简单的RNN的结构,可以看到隐藏层自己是可以跟自己进行连接的。
那么RNN为什么隐藏层能够看到上一刻的隐藏层的输出呢,其实我们把这个网络展开来开就很清晰了。
从上面的公式我们可以看出,循环层和全连接层的区别就是循环层多了一个权重矩阵 W。
如果反复把式2带入到式1,我们将得到:
在讲DBN之前,我们需要对DBN的基本组成单位有一定的了解,那就是RBM,受限玻尔兹曼机。
首先什么是玻尔兹曼机?
[图片上传失败...(image-d36b31-1519636788074)]
如图所示为一个玻尔兹曼机,其蓝色节点为隐层,白色节点为输入层。
玻尔兹曼机和递归神经网络相比,区别体现在以下几点:
1、递归神经网络本质是学习一个函数,因此有输入和输出层的概念,而玻尔兹曼机的用处在于学习一组数据的“内在表示”,因此其没有输出层的概念。
2、递归神经网络各节点链接为有向环,而玻尔兹曼机各节点连接成无向完全图。
而受限玻尔兹曼机是什么呢?
最简单的来说就是加入了限制,这个限制就是将完全图变成了二分图。即由一个显层和一个隐层构成,显层与隐层的神经元之间为双向全连接。
h表示隐藏层,v表示显层
在RBM中,任意两个相连的神经元之间有一个权值w表示其连接强度,每个神经元自身有一个偏置系数b(对显层神经元)和c(对隐层神经元)来表示其自身权重。
具体的公式推导在这里就不展示了
DBN是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布,对P(Observation|Label)和 P(Label|Observation)都做了评估,而判别模型仅仅而已评估了后者,也就是P(Label|Observation)。
DBN由多个限制玻尔兹曼机(Restricted Boltzmann Machines)层组成,一个典型的神经网络类型如图所示。这些网络被“限制”为一个可视层和一个隐层,层间存在连接,但层内的单元间不存在连接。隐层单元被训练去捕捉在可视层表现出来的高阶数据的相关性。
生成对抗网络其实在之前的帖子中做过讲解,这里在说明一下。
生成对抗网络的目标在于生成,我们传统的网络结构往往都是判别模型,即判断一个样本的真实性。而生成模型能够根据所提供的样本生成类似的新样本,注意这些样本是由计算机学习而来的。
GAN一般由两个网络组成,生成模型网络,判别模型网络。
生成模型 G 捕捉样本数据的分布,用服从某一分布(均匀分布,高斯分布等)的噪声 z 生成一个类似真实训练数据的样本,追求效果是越像真实样本越好;判别模型 D 是一个二分类器,估计一个样本来自于训练数据(而非生成数据)的概率,如果样本来自于真实的训练数据,D 输出大概率,否则,D 输出小概率。
举个例子:生成网络 G 好比假币制造团伙,专门制造假币,判别网络 D 好比警察,专门检测使用的货币是真币还是假币,G 的目标是想方设法生成和真币一样的货币,使得 D 判别不出来,D 的目标是想方设法检测出来 G 生成的假币。
传统的判别网络:
生成对抗网络:
下面展示一个cDCGAN的例子(前面帖子中写过的)
生成网络
判别网络
最终结果,使用MNIST作为初始样本,通过学习后生成的数字,可以看到学习的效果还是不错的。
本文非常简单的介绍了四种神经网络的架构,CNN,RNN,DBN,GAN。当然也仅仅是简单的介绍,并没有深层次讲解其内涵。这四种神经网络的架构十分常见,应用也十分广泛。当然关于神经网络的知识,不可能几篇帖子就讲解完,这里知识讲解一些基础知识,帮助大家快速入(zhuang)门(bi)。后面的帖子将对深度自动编码器,Hopfield 网络长短期记忆网络(LSTM)进行讲解。
❷ 如何用代码编写一个神经网络异或运算器
配置环境、安装合适的库、下载数据集……有时候学习深度学习的前期工作很让人沮丧,如果只是为了试试现在人人都谈的深度学习,做这些麻烦事似乎很不值当。但好在我们也有一些更简单的方法可以体验深度学习。近日,编程学习平台 Scrimba 联合创始人 Per Harald Borgen 在 Medium 上发文介绍了一种仅用30行 JavaScript 代码就创建出了一个神经网络的教程,而且使用的工具也只有 Node.js、Synaptic.js 和浏览器而已。另外,作者还做了一个交互式 Scrimba 教程,也许能帮你理解其中的复杂概念。
Synaptic.js:http://synaptic.juancazala.com
Node.js:http://nodejs.org
Scrimba 教程:http://scrimba.com/casts/cast-1980
Synaptic.js 让你可以使用 Node.js 和浏览器做深度学习。在这篇文章中,我将介绍如何使用 Synaptic.js 创建和训练神经网络。
//创建网络const { Layer, Network }= window.synaptic;var inputLayer = new Layer(2);var hiddenLayer = new Layer(3);var outputLayer = new Layer(1);
inputLayer.project(hiddenLayer);
hiddenLayer.project(outputLayer);var myNetwork = new Network({
input: inputLayer,
hidden:[hiddenLayer],
output: outputLayer
});//训练网络——学习异或运算var learningRate =.3;for (var i =0; i <20000; i++)
{//0,0=>0
myNetwork.activate([0,0]);
myNetwork.propagate(learningRate,[0]);//0,1=>1
myNetwork.activate([0,1]);
myNetwork.propagate(learningRate,[1]);//1,0=>1
myNetwork.activate([1,0]);
myNetwork.propagate(learningRate,[1]);//1,1=>0
myNetwork.activate([1,1]);
myNetwork.propagate(learningRate,[0]);
}//测试网络console.log(myNetwork.activate([0,0]));//[0.0]console.log(myNetwork.activate([0,1]));//[0.]console.log(myNetwork.activate([1,0]));//[0.]console.log(myNetwork.activate([1,1]));//[0.0]
我们将创建一个最简单的神经网络:一个可以执行异或运算的网络。上面就是这个网络的全部代码,但在我们深入解读这些代码之前,首先我们先了解一下神经网络的基础知识。
神经元和突触
神经网络的基本构造模块是神经元。神经元就像是一个函数,有几个输入,然后可以得到一个输出。神经元的种类有很多。我们的网络将使用 sigmoid 神经元,它可以输入任何数字并将其压缩到0 到1 之间。下图就是一个 sigmoid 神经元。它的输入是5,输出是1。箭头被称为突触,可以将该神经元与网络中的其它层连接到一起。
现在训练这个网络:
// train the network - learn XORvar learningRate =.3;for (var i =0; i <20000; i++){ //0,0=>0
myNetwork.activate([0,0]);
myNetwork.propagate(learningRate,[0]);//0,1=>1
myNetwork.activate([0,1]);
myNetwork.propagate(learningRate,[1]);//1,0=>1
myNetwork.activate([1,0]);
myNetwork.propagate(learningRate,[1]);//1,1=>0
myNetwork.activate([1,1]);
myNetwork.propagate(learningRate,[0]);
}
这里我们运行该网络20000次。每一次我们都前向和反向传播4 次,为该网络输入4 组可能的输入:[0,0][0,1][1,0][1,1]。
首先我们执行 myNetwork.activate([0,0]),其中[0,0]是我们发送给该网络的数据点。这是前向传播,也称为激活这个网络。在每次前向传播之后,我们需要执行反向传播,这时候网络会更新自己的权重和偏置。
反向传播是通过这行代码完成的:myNetwork.propagate(learningRate,[0]),其中 learningRate 是一个常数,给出了网络每次应该调整的权重的量。第二个参数0 是给定输入[0,0]对应的正确输出。
然后,该网络将自己的预测与正确的标签进行比较,从而了解自己的正确程度有多少。
然后网络使用这个比较为基础来校正自己的权重和偏置值,这样让自己的下一次猜测更加正确一点。
这个过程如此反复20000次之后,我们可以使用所有四种可能的输入来检查网络的学习情况:
->[0.0]console.log(myNetwork.activate([0,1]));
->[0.]console.log(myNetwork.activate([1,0]));
->[0.]console.log(myNetwork.activate([1,1]));
->[0.0]
如果我们将这些值四舍五入到最近的整数,我们就得到了正确的异或运算结果。
这样就完成了。尽管这仅仅只碰到了神经网络的表皮,但也足以帮助你进一步探索 Synaptic 和继续学习了。http://github.com/cazala/synaptic/wiki 这里还包含了更多好教程。
❸ 神经网络原理及应用
神经网络原理及应用
1. 什么是神经网络?
神经网络是一种模拟动物神经网络行为特征,进行分布式并行信息处理的算法。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
人类的神经网络
2. 神经网络基础知识
构成:大量简单的基础元件——神经元相互连接
工作原理:模拟生物的神经处理信息的方式
功能:进行信息的并行处理和非线性转化
特点:比较轻松地实现非线性映射过程,具有大规模的计算能力
神经网络的本质:
神经网络的本质就是利用计算机语言模拟人类大脑做决定的过程。
3. 生物神经元结构
4. 神经元结构模型
xj为输入信号,θi为阈值,wij表示与神经元连接的权值,yi表示输出值
判断xjwij是否大于阈值θi
5. 什么是阈值?
临界值。
神经网络是模仿大脑的神经元,当外界刺激达到一定的阈值时,神经元才会受刺激,影响下一个神经元。
6. 几种代表性的网络模型
单层前向神经网络——线性网络
阶跃网络
多层前向神经网络(反推学习规则即BP神经网络)
Elman网络、Hopfield网络、双向联想记忆网络、自组织竞争网络等等
7. 神经网络能干什么?
运用这些网络模型可实现函数逼近、数据聚类、模式分类、优化计算等功能。因此,神经网络广泛应用于人工智能、自动控制、机器人、统计学等领域的信息处理中。虽然神经网络的应用很广,但是在具体的使用过程中到底应当选择哪种网络结构比较合适是值得考虑的。这就需要我们对各种神经网络结构有一个较全面的认识。
8. 神经网络应用
❹ 可用来解决异或分类问题的神经网络叫什么
用bp神经网络就可以解决异或分类的问题。
❺ 为什么多层神经网络可以解决异或问题
BP神经网络,指的是用了“BP算法”进行训练的“多层感知器模型”。 多层感知器(MLP,Multilayer Perceptron)是一种前馈人工神经网络模型,其将输入的多个数据集映射到单一的输出的数据集上,可以解决任何线性不可分问题。 不要把算法和网络搞混了。
❻ 神经网络能实现异或运功能吗
NOT是很容易的。XOR加隐层就能实现。理论上已证明,对于只有一个隐层的感知器网络,只要隐层中的神经元个数足够多,就可以实现对任意函数的逼近。
❼ 人工智能时代,神经网络的原理及使用方法 | 微课堂
人工智能时代已经悄然来临,在计算机技术高速发展的未来,机器是否能代替人脑?也许有些读者会说,永远不可能,因为人脑的思考包含感性逻辑。事实上,神经网络算法正是在模仿人脑的思考方式。想不想知道神经网络是如何“思考”的呢?下面我向大家简单介绍一下神经网络的原理及使用方法。
所谓人工智能,就是让机器具备人的思维和意识。人工智能主要有三个学派——行为主义、符号主义和连接主义。
行为主义是基于控制论,是在构建感知动作的控制系统。理解行为主义有个很好的例子,就是让机器人单脚站立,通过感知要摔倒的方向控制两只手的动作,保持身体的平衡,这就构建了一个感知动作控制系统。
符号主义是基于算数逻辑和表达式。求解问题时,先把问题描述为表达式,再求解表达式。如果你在求解某个问题时,可以用if case这样的条件语句,和若干计算公式描述出来,这就使用了符号主义的方法,比如“专家系统”。符号主义可以认为是用公式描述的人工智能,它让计算机具备了理性思维。但是人类不仅具备理性思维,还具备无法用公式描述的感性思维。比如,如果你看过这篇推送,下回再见到“符号主义”几个字,你会觉得眼熟,会想到这是人工智能相关的知识,这是人的直觉,是感性的。
连接主义就是在模拟人的这种感性思维,是在仿造人脑内的神经元连接关系。这张图给出了人脑中的一根神经元,左侧是神经元的输入,“轴突”部分是神经元的输出。人脑就是由860亿个这样的神经元首尾相接组成的网络。
神经网络可以让计算机具备感性思维。我们首先理解一下基于连接主义的神经网络设计过程。这张图给出了人类从出生到24个月神经网络的变化:
随着我们的成长,大量的数据通过视觉、听觉涌入大脑,使我们的神经网络连接,也就是这些神经元连线上的权重发生了变化,有些线上的权重增强了,有些线上的权重减弱了。
我们要用计算机仿出这些神经网络连接关系,让计算机具备感性思维。
首先需要准备数据,数据量越大越好,以构成特征和标签对。如果想识别猫,就要有大量猫的图片和这张图片是猫的标签构成特征标签对,然后搭建神经网络的网络结构,再通过反向传播优化连接的权重,直到模型的识别准确率达到要求,得到最优的连线权重,把这个模型保存起来。最后用保存的模型输入从未见过的新数据,它会通过前向传播输出概率值,概率值最大的一个就是分类和预测的结果。
我们举个例子来感受一下神经网络的设计过程。鸢尾花可以分为三类:狗尾鸢尾、杂色鸢尾和佛吉尼亚鸢尾。我们拿出一张图,需要让计算机判断这是哪类鸢尾花。人们通过经验总结出了规律:通过测量花的花萼长、花萼宽、花瓣长、花瓣宽分辨出鸢尾花的类别,比如花萼长>花萼宽,并且花瓣长/花瓣宽>2,则可以判定为这是第一种,杂色鸢尾。看到这里,也许有些读者已经想到用if、case这样的条件语句来实现鸢尾花的分类。没错,条件语句根据这些信息可以判断鸢尾花分类,这是一个非常典型的专家系统,这个过程是理性计算。只要有了这些数据,就可以通过条件判定公式计算出是哪类鸢尾花。但是我们发现鸢尾花的种植者在识别鸢尾花的时候并不需要这么理性的计算,因为他们见识了太多的鸢尾花,一看就知道是哪种,而且随着经验的增加,识别的准确率会提高。这就是直觉,是感性思维,也是我们这篇文章想要和大家分享的神经网络方法。
这种神经网络设计过程首先需要采集大量的花萼长、花萼宽、花瓣长、花瓣宽,和它们所对应的是哪种鸢尾花。花萼长、花萼宽、花瓣长、花瓣宽叫做输入特征,它们对应的分类叫做标签。大量的输入特征和标签对构建出数据集,再把这个数据集喂入搭建好的神经网络结构,网络通过反向传播优化参数,得到模型。当有新的、从未见过的输入特征,送入神经网络时,神经网络会输出识别的结果。
展望21世纪初,在近十年神经网络理论研究趋向的背景下,神经网络理论的主要前沿领域包括:
一、对智能和机器关系问题的认识进一步增长。
研究人类智力一直是科学发展中最有意义,也是空前困难的挑战性问题。人脑是我们所知道的唯一智能系统,具有感知识别、学习、联想、记忆、推理等智能。我们通过不断 探索 人类智能的本质以及联结机制,并用人工系统复现或部分复现,制造各种智能机器,这样可使人类有更多的时间和机会从事更为复杂、更富创造性的工作。
神经网络是由大量处理单元组成的非线性、自适应、自组织系统,是在现代神经科学研究成果的基础上提出的,试图模拟神经网络加工、记忆信息的方式,设计一种新的机器,使之具有人脑风格的信息处理能力。智能理论所面对的课题来自“环境——问题——目的”,有极大的诱惑力与压力,它的发展方向将是把基于连接主义的神经网络理论、基于符号主义的人工智能专家系统理论和基于进化论的人工生命这三大研究领域,在共同追求的总目标下,自发而有机地结合起来。
二、神经计算和进化计算的重大发展。
计算和算法是人类自古以来十分重视的研究领域,本世纪30年代,符号逻辑方面的研究非常活跃。近年来,神经计算和进化计算领域很活跃,有新的发展动向,在从系统层次向细胞层次转化里,正在建立数学理论基础。随着人们不断 探索 新的计算和算法,将推动计算理论向计算智能化方向发展,在21世纪人类将全面进入信息 社会 ,对信息的获取、处理和传输问题,对网络路由优化问题,对数据安全和保密问题等等将有新的要求,这些将成为 社会 运行的首要任务。因此,神经计算和进化计算与高速信息网络理论联系将更加密切,并在计算机网络领域中发挥巨大的作用,例如大范围计算机网络的自组织功能实现就要进行进化计算。
人类的思维方式正在转变,从线性思维转到非线性思维神经元,神经网络都有非线性、非局域性、非定常性、非凸性和混沌等特性。我们在计算智能的层次上研究非线性动力系统、混沌神经网络以及对神经网络的数理研究,进一步研究自适应性子波、非线性神经场的兴奋模式、神经集团的宏观力学等。因为,非线性问题的研究是神经网络理论发展的一个最大动力,也是它面临的最大挑战。
以上就是有关神经网络的相关内容,希望能为读者带来帮助。
以上内容由苏州空天信息研究院谢雨宏提供。
❽ 神经网络的历史是什么
沃伦·麦卡洛克和沃尔特·皮茨(1943)基于数学和一种称为阈值逻辑的算法创造了一种神经网络的计算模型。这种模型使得神经网络的研究分裂为两种不同研究思路。一种主要关注大脑中的生物学过程,另一种主要关注神经网络在人工智能里的应用。
一、赫布型学习
二十世纪40年代后期,心理学家唐纳德·赫布根据神经可塑性的机制创造了一种对学习的假说,现在称作赫布型学习。赫布型学习被认为是一种典型的非监督式学习规则,它后来的变种是长期增强作用的早期模型。从1948年开始,研究人员将这种计算模型的思想应用到B型图灵机上。
法利和韦斯利·A·克拉克(1954)首次使用计算机,当时称作计算器,在MIT模拟了一个赫布网络。纳撒尼尔·罗切斯特(1956)等人模拟了一台 IBM 704计算机上的抽象神经网络的行为。
弗兰克·罗森布拉特创造了感知机。这是一种模式识别算法,用简单的加减法实现了两层的计算机学习网络。罗森布拉特也用数学符号描述了基本感知机里没有的回路,例如异或回路。这种回路一直无法被神经网络处理,直到保罗·韦伯斯(1975)创造了反向传播算法。
在马文·明斯基和西摩尔·派普特(1969)发表了一项关于机器学习的研究以后,神经网络的研究停滞不前。他们发现了神经网络的两个关键问题。
第一是基本感知机无法处理异或回路。第二个重要的问题是电脑没有足够的能力来处理大型神经网络所需要的很长的计算时间。直到计算机具有更强的计算能力之前,神经网络的研究进展缓慢。
二、反向传播算法与复兴
后来出现的一个关键的进展是保罗·韦伯斯发明的反向传播算法(Werbos 1975)。这个算法有效地解决了异或的问题,还有更普遍的训练多层神经网络的问题。
在二十世纪80年代中期,分布式并行处理(当时称作联结主义)流行起来。戴维·鲁姆哈特和詹姆斯·麦克里兰德的教材对于联结主义在计算机模拟神经活动中的应用提供了全面的论述。
神经网络传统上被认为是大脑中的神经活动的简化模型,虽然这个模型和大脑的生理结构之间的关联存在争议。人们不清楚人工神经网络能多大程度地反映大脑的功能。
支持向量机和其他更简单的方法(例如线性分类器)在机器学习领域的流行度逐渐超过了神经网络,但是在2000年代后期出现的深度学习重新激发了人们对神经网络的兴趣。
三、2006年之后的进展
人们用CMOS创造了用于生物物理模拟和神经形态计算的计算设备。最新的研究显示了用于大型主成分分析和卷积神经网络的纳米设备具有良好的前景。
如果成功的话,这会创造出一种新的神经计算设备,因为它依赖于学习而不是编程,并且它从根本上就是模拟的而不是数字化的,虽然它的第一个实例可能是数字化的CMOS设备。
在2009到2012年之间,Jürgen Schmidhuber在Swiss AI Lab IDSIA的研究小组研发的循环神经网络和深前馈神经网络赢得了8项关于模式识别和机器学习的国际比赛。
例如,Alex Graves et al.的双向、多维的LSTM赢得了2009年ICDAR的3项关于连笔字识别的比赛,而且之前并不知道关于将要学习的3种语言的信息。
IDSIA的Dan Ciresan和同事根据这个方法编写的基于GPU的实现赢得了多项模式识别的比赛,包括IJCNN 2011交通标志识别比赛等等。
他们的神经网络也是第一个在重要的基准测试中(例如IJCNN 2012交通标志识别和NYU的扬·勒丘恩(Yann LeCun)的MNIST手写数字问题)能达到或超过人类水平的人工模式识别器。
类似1980年Kunihiko Fukushima发明的neocognitron和视觉标准结构(由David H. Hubel和Torsten Wiesel在初级视皮层中发现的那些简单而又复杂的细胞启发)那样有深度的、高度非线性的神经结构可以被多伦多大学杰弗里·辛顿实验室的非监督式学习方法所训练。
2012年,神经网络出现了快速的发展,主要原因在于计算技术的提高,使得很多复杂的运算变得成本低廉。以AlexNet为标志,大量的深度网络开始出现。
2014年出现了残差神经网络,该网络极大解放了神经网络的深度限制,出现了深度学习的概念。
构成
典型的人工神经网络具有以下三个部分:
1、结构(Architecture)结构指定了网络中的变量和它们的拓扑关系。例如,神经网络中的变量可以是神经元连接的权重(weights)和神经元的激励值(activities of the neurons)。
2、激励函数(Activation Rule)大部分神经网络模型具有一个短时间尺度的动力学规则,来定义神经元如何根据其他神经元的活动来改变自己的激励值。一般激励函数依赖于网络中的权重(即该网络的参数)。
3、学习规则(Learning Rule)学习规则指定了网络中的权重如何随着时间推进而调整。这一般被看做是一种长时间尺度的动力学规则。一般情况下,学习规则依赖于神经元的激励值。它也可能依赖于监督者提供的目标值和当前权重的值。
例如,用于手写识别的一个神经网络,有一组输入神经元。输入神经元会被输入图像的数据所激发。在激励值被加权并通过一个函数(由网络的设计者确定)后,这些神经元的激励值被传递到其他神经元。
这个过程不断重复,直到输出神经元被激发。最后,输出神经元的激励值决定了识别出来的是哪个字母。