① 入门 | 一文简述循环神经网络
入门 | 一文简述循环神经网络
本文简要介绍了什么是循环神经网络及其运行原理,并给出了一个 RNN 实现示例。
什么是循环神经网络(RNN)?它们如何运行?可以用在哪里呢?本文试图回答上述这些问题,还展示了一个 RNN 实现 demo,你可以根据自己的需要进行扩展。
循环神经网络架构
基础知识。Python、CNN 知识是必备的。了解 CNN 的相关知识,是为了与 RNN 进行对比:RNN 为什么以及在哪些地方比 CNN 更好。
我们首先从“循环”(Recurrent)这个词说起。为什么将其称为循环?循环的意思是:
经常或重复出现
将这类神经网络称为循环神经网络是因为它对一组序列输入重复进行同样的操作。本文后续部分将讨论这种操作的意义。
我们为什么需要 RNN?
也许你现在想的是,已经有像卷积网络这样表现非常出色的网络了,为什么还需要其他类型的网络呢?有一个需要用到 RNN 的特殊例子。为了解释 RNN,你首先需要了解序列的相关知识,我们先来讲一下序列。
序列是相互依赖的(有限或无限)数据流,比如时间序列数据、信息性的字符串、对话等。在对话中,一个句子可能有一个意思,但是整体的对话可能又是完全不同的意思。股市数据这样的时间序列数据也是,单个数据表示当前价格,但是全天的数据会有不一样的变化,促使我们作出买进或卖出的决定。
当输入数据具有依赖性且是序列模式时,CNN 的结果一般都不太好。CNN 的前一个输入和下一个输入之间没有任何关联。所以所有的输出都是独立的。CNN 接受输入,然后基于训练好的模型输出。如果你运行了 100 个不同的输入,它们中的任何一个输出都不会受之前输出的影响。但想一下如果是文本生成或文本翻译呢?所有生成的单词与之前生成的单词都是独立的(有些情况下与之后的单词也是独立的,这里暂不讨论)。所以你需要有一些基于之前输出的偏向。这就是需要 RNN 的地方。RNN 对之前发生在数据序列中的事是有一定记忆的。这有助于系统获取上下文。理论上讲,RNN 有无限的记忆,这意味着它们有无限回顾的能力。通过回顾可以了解所有之前的输入。但从实际操作中看,它只能回顾最后几步。
本文仅为了与人类大体相关联,而不会做任何决定。本文只是基于之前关于该项目的知识做出了自己的判断(我甚至尚未理解人类大脑的 0.1%)。
何时使用 RNN?
RNN 可用于许多不同的地方。下面是 RNN 应用最多的领域。
1. 语言建模和文本生成
给出一个词语序列,试着预测下一个词语的可能性。这在翻译任务中是很有用的,因为最有可能的句子将是可能性最高的单词组成的句子。
2. 机器翻译
将文本内容从一种语言翻译成其他语言使用了一种或几种形式的 RNN。所有日常使用的实用系统都用了某种高级版本的 RNN。
3. 语音识别
基于输入的声波预测语音片段,从而确定词语。
4. 生成图像描述
RNN 一个非常广泛的应用是理解图像中发生了什么,从而做出合理的描述。这是 CNN 和 RNN 相结合的作用。CNN 做图像分割,RNN 用分割后的数据重建描述。这种应用虽然基本,但可能性是无穷的。
5. 视频标记
可以通过一帧一帧地标记视频进行视频搜索。
深入挖掘
本文按照以下主题进行。每一部分都是基于之前的部分进行的,所以不要跳着读。
前馈网络循环网络循环神经元基于时间的反向传播(BPTT)RNN 实现
前馈网络入门
前馈网络通过在网络的每个节点上做出的一系列操作传递信息。前馈网络每次通过每个层直接向后传递信息。这与其他循环神经网络不同。一般而言,前馈网络接受一个输入并据此产生输出,这也是大多数监督学习的步骤,输出结果可能是一个分类结果。它的行为与 CNN 类似。输出可以是以猫狗等作为标签的类别。
前馈网络是基于一系列预先标注过的数据训练的。训练阶段的目的是减少前馈网络猜类别时的误差。一旦训练完成,我们就可以用训练后的权重对新批次的数据进行分类。
一个典型的前馈网络架构
还有一件事要注意。在前馈网络中,无论在测试阶段展示给分类器的图像是什么,都不会改变权重,所以也不会影响第二个决策。这是前馈网络和循环网络之间一个非常大的不同。
与循环网络不同,前馈网络在测试时不会记得之前的输入数据。它们始终是取决于时间点的。它们只会在训练阶段记得历史输入数据。
循环网络
也就是说,循环网络不仅将当前的输入样例作为网络输入,还将它们之前感知到的一并作为输入。
我们试着建立了一个多层感知器。从简单的角度讲,它有一个输入层、一个具备特定激活函数的隐藏层,最终可以得到输出。
多层感知器架构示例
如果在上述示例中的层数增加了,输入层也接收输入。那么第一个隐藏层将激活传递到下一个隐藏层上,依此类推。最后到达输出层。每一个隐藏层都有自己的权重和偏置项。现在问题变成了我们可以输入到隐藏层吗?
每一层都有自己的权重(W)、偏置项(B)和激活函数(F)。这些层的行为不同,合并它们从技术层面上讲也极具挑战性。为了合并它们,我们将所有层的权重和偏置项替换成相同的值。如下图所示:
现在我们就可以将所有层合并在一起了。所有的隐藏层都可以结合在一个循环层中。所以看起来就像下图:
我们在每一步都会向隐藏层提供输入。现在一个循环神经元存储了所有之前步的输入,并将这些信息和当前步的输入合并。因此,它还捕获到一些当前数据步和之前步的相关性信息。t-1 步的决策影响到第 t 步做的决策。这很像人类在生活中做决策的方式。我们将当前数据和近期数据结合起来,帮助解决手头的特定问题。这个例子很简单,但从原则上讲这与人类的决策能力是一致的。这让我非常想知道我们作为人类是否真的很智能,或者说我们是否有非常高级的神经网络模型。我们做出的决策只是对生活中收集到的数据进行训练。那么一旦有了能够在合理时间段内存储和计算数据的先进模型和系统时,是否可以数字化大脑呢?所以当我们有了比大脑更好更快的模型(基于数百万人的数据训练出的)时,会发生什么?
另一篇文章(https://deeplearning4j.org/lstm.html)的有趣观点:人总是被自己的行为所困扰。
我们用一个例子来阐述上面的解释,这个例子是预测一系列字母后的下一个字母。想象一个有 8 个字母的单词 namaskar。
namaskar(合十礼):印度表示尊重的传统问候或姿势,将手掌合起置于面前或胸前鞠躬。
如果我们在向网络输入 7 个字母后试着找出第 8 个字母,会发生什么呢?隐藏层会经历 8 次迭代。如果展开网络的话就是一个 8 层的网络,每一层对应一个字母。所以你可以想象一个普通的神经网络被重复了多次。展开的次数与它记得多久之前的数据是直接相关的。
循环神经网络的运作原理
循环神经元
这里我们将更深入地了解负责决策的实际神经元。以之前提到的 namaskar 为例,在给出前 7 个字母后,试着找出第 8 个字母。输入数据的完整词汇表是 {n,a,m,s,k,r}。在真实世界中单词或句子都会更复杂。为了简化问题,我们用的是下面这个简单的词汇表。
在上图中,隐藏层或 RNN 块在当前输入和之前的状态中应用了公式。在本例中,namaste 的字母 n 前面什么都没有。所以我们直接使用当前信息推断,并移动到下一个字母 a。在推断字母 a 的过程中,隐藏层应用了上述公式结合当前推断 a 的信息与前面推断 n 的信息。输入在网络中传递的每一个状态都是一个时间步或一步,所以时间步 t 的输入是 a,时间步 t-1 的输入就是 n。将公式同时应用于 n 和 a 后,就得到了一个新状态。
用于当前状态的公式如下所示:
h_t 是新状态,h_t-1 是前一个状态。x_t 是时间 t 时的输入。在对之前的时间步应用了相同的公式后,我们已经能感知到之前的输入了。我们将检查 7 个这样的输入,它们在每一步的权重和函数都是相同的。
现在试着以简单的方式定义 f()。我们使用 tanh 激活函数。通过矩阵 W_hh 定义权重,通过矩阵 W_xh 定义输入。公式如下所示:
上例只将最后一步作为记忆,因此只与最后一步的数据合并。为了提升网络的记忆能力,并在记忆中保留较长的序列,我们必须在方程中添加更多的状态,如 h_t-2、h_t-3 等。最后输出可以按测试阶段的计算方式进行计算:
其中,y_t 是输出。对输出与实际输出进行对比,然后计算出误差值。网络通过反向传播误差来更新权重,进行学习。本文后续部分会对反向传播进行讨论。
基于时间的反向传播算法(BPTT)
本节默认你已经了解了反向传播概念。如果需要对反向传播进行深入了解,请参阅链接:?http://cs231n.github.io/optimization-2/?。
现在我们了解了 RNN 是如何实际运作的,但是在实际工作中如何训练 RNN 呢?该如何决定每个连接的权重呢?如何初始化这些隐藏单元的权重呢?循环网络的目的是要准确地对序列输入进行分类。这要靠误差值的反向传播和梯度下降来实现。但是前馈网络中使用的标准反向传播无法在此应用。
与有向无环的前馈网络不同,RNN 是循环图,这也是问题所在。在前馈网络中可以计算出之前层的误差导数。但 RNN 的层级排列与前馈网络并不相同。
答案就在之前讨论过的内容中。我们需要展开网络。展开网络使其看起来像前馈网络就可以了。
展开 RNN
在每个时间步取出 RNN 的隐藏单元并复制。时间步中的每一次复制就像前馈网络中的一层。在时间步 t+1 中每个时间步 t 层与所有可能的层连接。因此我们对权重进行随机初始化,展开网络,然后在隐藏层中通过反向传播优化权重。通过向最低层传递参数完成初始化。这些参数作为反向传播的一部分也得到了优化。
展开网络的结果是,现在每一层的权重都不同,因此最终会得到不同程度的优化。无法保证基于权重计算出的误差是相等的。所以每一次运行结束时每一层的权重都不同。这是我们绝对不希望看到的。最简单的解决办法是以某种方式将所有层的误差合并到一起。可以对误差值取平均或者求和。通过这种方式,我们可以在所有时间步中使用一层来保持相同的权重。
RNN 实现
本文试着用 Keras 模型实现 RNN。我们试着根据给定的文本预测下一个序列。
代码地址:?https://gist.github.com/.git?
该模型是 Yash Katariya 建的。我对该模型做了一些细微的改动以适合本文的要求。
② BP神经网络回归的问题
是否过度训练与你网络的复杂度有关,你可以比较训练误差和验证误差,如果训练好的网络训练误差很小,而且验证误差增大,你可适当降低网络复杂度。
③ 为什么说Transformer的注意力机制是相对廉价的注意力机制相对更对于RNN系列及CNN系列算法有何优势
QA形式对自然语言处理中注意力机制(Attention)进行总结,并对Transformer进行深入解析。
二、Transformer(Attention Is All You Need)详解
1、Transformer的整体架构是怎样的?由哪些部分组成?
2、Transformer Encoder 与 Transformer Decoder 有哪些不同?
3、Encoder-Decoder attention 与self-attention mechanism有哪些不同?
4、multi-head self-attention mechanism具体的计算过程是怎样的?
5、Transformer在GPT和Bert等词向量预训练模型中具体是怎么应用的?有什么变化?
一、Attention机制剖析
1、为什么要引入Attention机制?
根据通用近似定理,前馈网络和循环网络都有很强的能力。但为什么还要引入注意力机制呢?
计算能力的限制:当要记住很多“信息“,模型就要变得更复杂,然而目前计算能力依然是限制神经网络发展的瓶颈。
优化算法的限制:虽然局部连接、权重共享以及pooling等优化操作可以让神经网络变得简单一些,有效缓解模型复杂度和表达能力之间的矛盾;但是,如循环神经网络中的长距离以来问题,信息“记忆”能力并不高。
可以借助人脑处理信息过载的方式,例如Attention机制可以提高神经网络处理信息的能力。
2、Attention机制有哪些?(怎么分类?)
当用神经网络来处理大量的输入信息时,也可以借鉴人脑的注意力机制,只 选择一些关键的信息输入进行处理,来提高神经网络的效率。按照认知神经学中的注意力,可以总体上分为两类:
聚焦式(focus)注意力:自上而下的有意识的注意力,主动注意——是指有预定目的、依赖任务的、主动有意识地聚焦于某一对象的注意力;
显着性(saliency-based)注意力:自下而上的有意识的注意力,被动注意——基于显着性的注意力是由外界刺激驱动的注意,不需要主动干预,也和任务无关;可以将max-pooling和门控(gating)机制来近似地看作是自下而上的基于显着性的注意力机制。
在人工神经网络中,注意力机制一般就特指聚焦式注意力。
3、Attention机制的计算流程是怎样的?
Attention机制的实质其实就是一个寻址(addressing)的过程,如上图所示:给定一个和任务相关的查询Query向量q,通过计算与Key的注意力分布并附加在Value上,从而计算Attention Value,这个过程实际上是Attention机制缓解神经网络模型复杂度的体现:不需要将所有的N个输入信息都输入到神经网络进行计算,只需要从X中选择一些和任务相关的信息输入给神经网络。
step1-信息输入:用X= [x1, · · · , xN ]表示N 个输入信息;
step2-注意力分布计算:令Key=Value=X,则可以给出注意力分布
我们将称之为注意力分布(概率分布),为注意力打分机制,有几种打分机制:
step3-信息加权平均:注意力分布可以解释为在上下文查询q时,第i个信息受关注的程度,采用一种“软性”的信息选择机制对输入信息X进行编码为:
这种编码方式为软性注意力机制(soft Attention),软性注意力机制有两种:普通模式(Key=Value=X)和键值对模式(Key!=Value)。
4、Attention机制的变种有哪些?
与普通的Attention机制(上图左)相比,Attention机制有哪些变种呢?
变种1-硬性注意力:之前提到的注意力是软性注意力,其选择的信息是所有输入信息在注意力 分布下的期望。还有一种注意力是只关注到某一个位置上的信息,叫做硬性注意力(hard attention)。硬性注意力有两种实现方式:(1)一种是选取最高概率的输入信息;(2)另一种硬性注意力可以通过在注意力分布式上随机采样的方式实现。硬性注意力模型的缺点:
变种2-键值对注意力:即上图右边的键值对模式,此时Key!=Value,注意力函数变为:
变种3-多头注意力:多头注意力(multi-head attention)是利用多个查询Q = [q1, · · · , qM],来平行地计算从输入信息中选取多个信息。每个注意力关注输入信息的不同部分,然后再进行拼接:
5、一种强大的Attention机制:为什么自注意力模型(self-Attention model)在长距离序列中如此强大?
(1)卷积或循环神经网络难道不能处理长距离序列吗?
当使用神经网络来处理一个变长的向量序列时,我们通常可以使用卷积网络或循环网络进行编码来得到一个相同长度的输出向量序列,如图所示:
从上图可以看出,无论卷积还是循环神经网络其实都是对变长序列的一种“局部编码”:卷积神经网络显然是基于N-gram的局部编码;而对于循环神经网络,由于梯度消失等问题也只能建立短距离依赖。
(2)要解决这种短距离依赖的“局部编码”问题,从而对输入序列建立长距离依赖关系,有哪些办法呢?
由上图可以看出,全连接网络虽然是一种非常直接的建模远距离依赖的模型, 但是无法处理变长的输入序列。不同的输入长度,其连接权重的大小也是不同的。
这时我们就可以利用注意力机制来“动态”地生成不同连接的权重,这就是自注意力模型(self-attention model)。由于自注意力模型的权重是动态生成的,因此可以处理变长的信息序列。
总体来说,为什么自注意力模型(self-Attention model)如此强大:利用注意力机制来“动态”地生成不同连接的权重,从而处理变长的信息序列。
(3)自注意力模型(self-Attention model)具体的计算流程是怎样的呢?
同样,给出信息输入:用X = [x1, · · · , xN ]表示N 个输入信息;通过线性变换得到为查询向量序列,键向量序列和值向量序列:
上面的公式可以看出,self-Attention中的Q是对自身(self)输入的变换,而在传统的Attention中,Q来自于外部。
注意力计算公式为:
自注意力模型(self-Attention model)中,通常使用缩放点积来作为注意力打分函数,输出向量序列可以写为:
二、Transformer(Attention Is All You Need)详解
从Transformer这篇论文的题目可以看出,Transformer的核心就是Attention,这也就是为什么本文会在剖析玩Attention机制之后会引出Transformer,如果对上面的Attention机制特别是自注意力模型(self-Attention model)理解后,Transformer就很容易理解了。
1、Transformer的整体架构是怎样的?由哪些部分组成?
Transformer其实这就是一个Seq2Seq模型,左边一个encoder把输入读进去,右边一个decoder得到输出:
Transformer=Transformer Encoder+Transformer Decoder
(1)Transformer Encoder(N=6层,每层包括2个sub-layers):
sub-layer-1:multi-head self-attention mechanism,用来进行self-attention。
sub-layer-2:Position-wise Feed-forward Networks,简单的全连接网络,对每个position的向量分别进行相同的操作,包括两个线性变换和一个ReLU激活输出(输入输出层的维度都为512,中间层为2048):
每个sub-layer都使用了残差网络:
(2)Transformer Decoder(N=6层,每层包括3个sub-layers):
sub-layer-1:Masked multi-head self-attention mechanism,用来进行self-attention,与Encoder不同:由于是序列生成过程,所以在时刻 i 的时候,大于 i 的时刻都没有结果,只有小于 i 的时刻有结果,因此需要做Mask。
sub-layer-2:Position-wise Feed-forward Networks,同Encoder。
sub-layer-3:Encoder-Decoder attention计算。
2、Transformer Encoder 与 Transformer Decoder 有哪些不同?
(1)multi-head self-attention mechanism不同,Encoder中不需要使用Masked,而Decoder中需要使用Masked;
(2)Decoder中多了一层Encoder-Decoder attention,这与 self-attention mechanism不同。
3、Encoder-Decoder attention 与self-attention mechanism有哪些不同?
它们都是用了 multi-head计算,不过Encoder-Decoder attention采用传统的attention机制,其中的Query是self-attention mechanism已经计算出的上一时间i处的编码值,Key和Value都是Encoder的输出,这与self-attention mechanism不同。代码中具体体现:
4、multi-head self-attention mechanism具体的计算过程是怎样的?
Transformer中的Attention机制由Scaled Dot-Proct Attention和Multi-Head Attention组成,上图给出了整体流程。下面具体介绍各个环节:
Expand:实际上是经过线性变换,生成Q、K、V三个向量;
Split heads: 进行分头操作,在原文中将原来每个位置512维度分成8个head,每个head维度变为64;
Self Attention:对每个head进行Self Attention,具体过程和第一部分介绍的一致;
Concat heads:对进行完Self Attention每个head进行拼接;
上述过程公式为:
5、Transformer在GPT和Bert等词向量预训练模型中具体是怎么应用的?有什么变化?
GPT中训练的是单向语言模型,其实就是直接应用Transformer Decoder;
Bert中训练的是双向语言模型,应用了Transformer Encoder部分,不过在Encoder基础上还做了Masked操作;
BERT Transformer 使用双向self-attention,而GPT Transformer 使用受限制的self-attention,其中每个token只能处理其左侧的上下文。双向 Transformer 通常被称为“Transformer encoder”,而左侧上下文被称为“Transformer decoder”,decoder是不能获要预测的信息的。
④ 循环神经网络(RNN)简介
循环神经网络英文名称为 ( Recurrent Neural Network, RNN ),其通过使用带自反馈的神经元,能够处理任意长度的 时序 数据。
给定输入时序序列
式中, 表示一段时序数据, 为时间长度
以一段英文段落为例,其时序数据可以表示为:
若是一段视频,将其每一帧通过CNN网络处理得到相应的编码向量
循环神经网络通过以下公式更新隐藏层的活性值
循环神经网络图示
RNN的基本模型如下图所示,为便于理解,图中将RNN的模型展开,按照时序方向对其前向传播流程进行介绍
RNN的基本模型
利用数学表达式整个过程可以变得更加清晰,RNN的前向传播公式如下:
将上述过程整合到一个RNN cell中,可以表示为如下图所示的过程:
RNN的前向传播示意图
缺陷:
没有利用到模型后续的信息,可以通过双向RNN网络进行优化
RNN主要有两种计算梯度的方式:随时间反向传播(BPTT)和实时循环学习法(RTRL)算法
本文中主要介绍随时间反向传播的方法 ( BackPropagation Through Time )
RNN的损失函数与任务有关,对于同步的序列对序列任务,其loss可以用交叉熵公式表示
然后通过BPTT算法便可以进行梯度的反向传播计算
梯度爆炸的解决方法:梯度修剪
梯度消失的解决方法:增加长程依赖 LSTM,GRU
GRU的基本思路:增加相关门(Relate Gate)和更新门(Update Gate),进而使得RNN单元具有记忆能力
首先从数学角度对GRU的前向传播过程进行介绍,具体公式如下:
公式中各变量的含义:
将上述数学公式转化为图像,可得
GRU Cell的前向传播流程
LSTM意为长短时记忆网络 (Long Short-Term Memory Network,LSTM) ,可以有效地解决简单神经网络的梯度消失和爆炸问题
在LSTM中,与GRU主要有两点不同
同样,先从数学公式入手,对LSTM的前向传播过程进行了解
基于数学公式的过程,可将LSTM CELL的前向传播过程总结为(图片借用于nndl):
LSTM Cell的前向传播示意图
从上图中可以看出,LSTM在前向传播的过程中传输了两个状态:内部状态 以及外部状态 ,在整个传播过程中 外部状态(隐状态) 每个时刻都会被重写,因此可以看作一种 短时记忆 ,而 内部状态 可以在某个时刻捕捉一些关键信息,并将此信息保存一段时间间隔,可以看作一种 长时记忆 (长的短时记忆)
此外,在LSTM网络初始化训练的时候,需要手动将遗忘门的数值设置的大一些,否则在参数初始化的时候,遗忘门的数据会被初始化为一个很小的值,前一时刻的内部状态 大部分都会丢失,这样网络很难获取到长距离的依赖信息,并且相邻时间间隔的梯度会非常小,导致 梯度弥散 问题,因此遗忘门的 偏置变量 的初始值 一般很大,取 1或2
将 设置为1即可,但是长度非常的大的时候会造成记忆单元的饱和,降低性能
三个门不仅依赖于 和 ,也依赖于
将两者合并为一个门,即:
首先,我们要理解什么是深层的RNN,对于单个的RNN cell,若将其在时间维度上展开,其深度与时间维度的长度成正比,但若将一个RNN cell看作为单个从 的映射函数,则单个cell实际上是很浅显的一层,因此深层循环神经网络要做的就是把多个RNN cell组合起来,换句话说,就是增加从输入 到输出 的路径,使得网络的深度更深。
如何增加从输入 到输出 的路径呢?两种途径:
堆叠循环神经网络示意图
将网络带入到实际应用场景中:假如我们要翻译一段句子
在这里,is和are实际上是由后面的Lucy和they所决定的,而这种单向的按照时序进行传播的方式没有利用到后面的信息。因此诞生了双向循环网络
双向循环神经网络示意图
双向循环神经网络实际上就是简单的双层循环神经网络,只不过第二层网络的传播方式为按时序的逆向传播,其传播公式为:
⑤ BP神经网络的原理的BP什么意思
原文链接:http://tecdat.cn/?p=19936
在本教程中,您将学习如何在R语言中创建神经网络模型。
神经网络(或人工神经网络)具有通过样本进行学习的能力。人工神经网络是一种受生物神经元系统启发的信息处理模型。它由大量高度互连的处理元件(称为神经元)组成,以解决问题。它遵循非线性路径,并在整个节点中并行处理信息。神经网络是一个复杂的自适应系统。自适应意味着它可以通过调整输入权重来更改其内部结构。
该神经网络旨在解决人类容易遇到的问题和机器难以解决的问题,例如识别猫和狗的图片,识别编号的图片。这些问题通常称为模式识别。它的应用范围从光学字符识别到目标检测。
本教程将涵盖以下主题:
神经网络概论
正向传播和反向传播
激活函数
R中神经网络的实现
案例
利弊
结论
神经网络概论
神经网络是受人脑启发执行特定任务的算法。它是一组连接的输入/输出单元,其中每个连接都具有与之关联的权重。在学习阶段,网络通过调整权重进行学习,来预测给定输入的正确类别标签。
人脑由数十亿个处理信息的神经细胞组成。每个神经细胞都认为是一个简单的处理系统。被称为生物神经网络的神经元通过电信号传输信息。这种并行的交互系统使大脑能够思考和处理信息。一个神经元的树突接收来自另一个神经元的输入信号,并根据这些输入将输出响应到某个其他神经元的轴突。
创建测试数据集
创建测试数据集:专业知识得分和沟通技能得分
预测测试集的结果
使用计算函数预测测试数据的概率得分。
现在,将概率转换为二进制类。
预测结果为1,0和1。
利弊
神经网络更灵活,可以用于回归和分类问题。神经网络非常适合具有大量输入(例如图像)的非线性数据集,可以使用任意数量的输入和层,可以并行执行工作。
还有更多可供选择的算法,例如SVM,决策树和回归算法,这些算法简单,快速,易于训练并提供更好的性能。神经网络更多的是黑盒子,需要更多的开发时间和更多的计算能力。与其他机器学习算法相比,神经网络需要更多的数据。NN仅可用于数字输入和非缺失值数据集。一位着名的神经网络研究人员说:“神经网络是解决任何问题的第二好的方法。最好的方法是真正理解问题。”
神经网络的用途
神经网络的特性提供了许多应用方面,例如:
模式识别:神经网络非常适合模式识别问题,例如面部识别,物体检测,指纹识别等。
异常检测:神经网络擅长异常检测,它们可以轻松检测出不适合常规模式的异常模式。
时间序列预测:神经网络可用于预测时间序列问题,例如股票价格,天气预报。
自然语言处理:神经网络在自然语言处理任务中提供了广泛的应用,例如文本分类,命名实体识别(NER),词性标记,语音识别和拼写检查。
最受欢迎的见解
1.r语言用神经网络改进nelson-siegel模型拟合收益率曲线分析
2.r语言实现拟合神经网络预测和结果可视化
3.python用遗传算法-神经网络-模糊逻辑控制算法对乐透分析
4.用于nlp的python:使用keras的多标签文本lstm神经网络分类
5.用r语言实现神经网络预测股票实例
6.R语言基于Keras的小数据集深度学习图像分类
7.用于NLP的seq2seq模型实例用Keras实现神经机器翻译
8.python中基于网格搜索算法优化的深度学习模型分析糖
9.matlab使用贝叶斯优化的深度学习
⑥ BP神经网络模型各个参数的选取问题
样本变量不需要那么多,因为神经网络的信息存储能力有限,过多的样本会造成一些有用的信息被丢弃。如果样本数量过多,应增加隐层节点数或隐层数目,才能增强学习能力。
一、隐层数
一般认为,增加隐层数可以降低网络误差(也有文献认为不一定能有效降低),提高精度,但也使网络复杂化,从而增加了网络的训练时间和出现“过拟合”的倾向。一般来讲应设计神经网络应优先考虑3层网络(即有1个隐层)。一般地,靠增加隐层节点数来获得较低的误差,其训练效果要比增加隐层数更容易实现。对于没有隐层的神经网络模型,实际上就是一个线性或非线性(取决于输出层采用线性或非线性转换函数型式)回归模型。因此,一般认为,应将不含隐层的网络模型归入回归分析中,技术已很成熟,没有必要在神经网络理论中再讨论之。
二、隐层节点数
在BP 网络中,隐层节点数的选择非常重要,它不仅对建立的神经网络模型的性能影响很大,而且是训练时出现“过拟合”的直接原因,但是目前理论上还没有一种科学的和普遍的确定方法。 目前多数文献中提出的确定隐层节点数的计算公式都是针对训练样本任意多的情况,而且多数是针对最不利的情况,一般工程实践中很难满足,不宜采用。事实上,各种计算公式得到的隐层节点数有时相差几倍甚至上百倍。为尽可能避免训练时出现“过拟合”现象,保证足够高的网络性能和泛化能力,确定隐层节点数的最基本原则是:在满足精度要求的前提下取尽可能紧凑的结构,即取尽可能少的隐层节点数。研究表明,隐层节点数不仅与输入/输出层的节点数有关,更与需解决的问题的复杂程度和转换函数的型式以及样本数据的特性等因素有关。
⑦ 在模式识别、人工神经网络方法中,为什么要进行数据预处理呢
原数据可能含有大量的噪声,去除噪声是有必要的。
原数据可能数据量很大,维数很,计算机处理起来时间复杂度很高,预处理可以降低数据维度。
⑧ 输入循环的三种主要控制方式
1.查询方式、2.中断方式、3.DMA方式。
循环神经网络(RNN/recurrentneuralnetwork)是一类人工神经网络,其可以通过为网络添加额外的权重来在网络图(networkgraph)中创建循环,以便维持一个内部状态。为神经网络添加状态的好处是它们将能在序列预测问题中明确地学习和利用背景信息(context)。
这类问题包括带有顺序或时间组件的问题。在这篇文章中,你将踏上了解用于深度学习的循环神经网络的旅程。在读完这篇文章后,你将了解:用于深度学习的顶级循环神经网络的工作方式,其中包括LSTM、GRU和NTM、顶级RNN与人工神经网络中更广泛的循环(recurrence)研究的相关性。
RNN研究如何在一系列高难度问题上实现了当前最佳的表现。注意,我们并不会覆盖每一种可能的循环神经网络,而是会重点关注几种用于深度学习的循环神经网络(LSTM、GRU和NTM)以及用于理解它们的背景。
那就让我们开始吧!概述我们首先会设置循环神经网络领域的场景;然后,我们将深入了解用于深度学习的LSTM、GRU和NTM;之后我们会花点时间介绍一些与用于深度学习的RNN相关的高级主题。
⑨ 循环神经网络(RNN)浅析
RNN是两种神经网络模型的缩写,一种是递归神经网络(Recursive Neural Network),一种是循环神经网络(Recurrent Neural Network)。虽然这两种神经网络有着千丝万缕的联系,但是本文主要讨论的是第二种神经网络模型——循环神经网络(Recurrent Neural Network)。
循环神经网络是指一个随着时间的推移,重复发生的结构。在自然语言处理(NLP),语音图像等多个领域均有非常广泛的应用。RNN网络和其他网络最大的不同就在于RNN能够实现某种“记忆功能”,是进行时间序列分析时最好的选择。如同人类能够凭借自己过往的记忆更好地认识这个世界一样。RNN也实现了类似于人脑的这一机制,对所处理过的信息留存有一定的记忆,而不像其他类型的神经网络并不能对处理过的信息留存记忆。
循环神经网络的原理并不十分复杂,本节主要从原理上分析RNN的结构和功能,不涉及RNN的数学推导和证明,整个网络只有简单的输入输出和网络状态参数。一个典型的RNN神经网络如图所示:
由上图可以看出:一个典型的RNN网络包含一个输入x,一个输出h和一个神经网络单元A。和普通的神经网络不同的是,RNN网络的神经网络单元A不仅仅与输入和输出存在联系,其与自身也存在一个回路。这种网络结构就揭示了RNN的实质:上一个时刻的网络状态信息将会作用于下一个时刻的网络状态。如果上图的网络结构仍不够清晰,RNN网络还能够以时间序列展开成如下形式:
等号右边是RNN的展开形式。由于RNN一般用来处理序列信息,因此下文说明时都以时间序列来举例,解释。等号右边的等价RNN网络中最初始的输入是x0,输出是h0,这代表着0时刻RNN网络的输入为x0,输出为h0,网络神经元在0时刻的状态保存在A中。当下一个时刻1到来时,此时网络神经元的状态不仅仅由1时刻的输入x1决定,也由0时刻的神经元状态决定。以后的情况都以此类推,直到时间序列的末尾t时刻。
上面的过程可以用一个简单的例子来论证:假设现在有一句话“I want to play basketball”,由于自然语言本身就是一个时间序列,较早的语言会与较后的语言存在某种联系,例如刚才的句子中“play”这个动词意味着后面一定会有一个名词,而这个名词具体是什么可能需要更遥远的语境来决定,因此一句话也可以作为RNN的输入。回到刚才的那句话,这句话中的5个单词是以时序出现的,我们现在将这五个单词编码后依次输入到RNN中。首先是单词“I”,它作为时序上第一个出现的单词被用作x0输入,拥有一个h0输出,并且改变了初始神经元A的状态。单词“want”作为时序上第二个出现的单词作为x1输入,这时RNN的输出和神经元状态将不仅仅由x1决定,也将由上一时刻的神经元状态或者说上一时刻的输入x0决定。之后的情况以此类推,直到上述句子输入到最后一个单词“basketball”。
接下来我们需要关注RNN的神经元结构:
上图依然是一个RNN神经网络的时序展开模型,中间t时刻的网络模型揭示了RNN的结构。可以看到,原始的RNN网络的内部结构非常简单。神经元A在t时刻的状态仅仅是t-1时刻神经元状态与t时刻网络输入的双曲正切函数的值,这个值不仅仅作为该时刻网络的输出,也作为该时刻网络的状态被传入到下一个时刻的网络状态中,这个过程叫做RNN的正向传播(forward propagation)。注:双曲正切函数的解析式如下:
双曲正切函数的求导如下:
双曲正切函数的图像如下所示:
这里就带来一个问题:为什么RNN网络的激活函数要选用双曲正切而不是sigmod呢?(RNN的激活函数除了双曲正切,RELU函数也用的非常多)原因在于RNN网络在求解时涉及时间序列上的大量求导运算,使用sigmod函数容易出现梯度消失,且sigmod的导数形式较为复杂。事实上,即使使用双曲正切函数,传统的RNN网络依然存在梯度消失问题,无法“记忆”长时间序列上的信息,这个bug直到LSTM上引入了单元状态后才算较好地解决。
这一节主要介绍与RNN相关的数学推导,由于RNN是一个时序模型,因此其求解过程可能和一般的神经网络不太相同。首先需要介绍一下RNN完整的结构图,上一节给出的RNN结构图省去了很多内部参数,仅仅作为一个概念模型给出。
上图表明了RNN网络的完整拓扑结构,从图中我们可以看到RNN网络中的参数情况。在这里我们只分析t时刻网络的行为与数学推导。t时刻网络迎来一个输入xt,网络此时刻的神经元状态st用如下式子表达:
t时刻的网络状态st不仅仅要输入到下一个时刻t+1的网络状态中去,还要作为该时刻的网络输出。当然,st不能直接输出,在输出之前还要再乘上一个系数V,而且为了误差逆传播时的方便通常还要对输出进行归一化处理,也就是对输出进行softmax化。因此,t时刻网络的输出ot表达为如下形式:
为了表达方便,笔者将上述两个公式做如下变换:
以上,就是RNN网络的数学表达了,接下来我们需要求解这个模型。在论述具体解法之前首先需要明确两个问题:优化目标函数是什么?待优化的量是什么?
只有在明确了这两个问题之后才能对模型进行具体的推导和求解。关于第一个问题,笔者选取模型的损失函数作为优化目标;关于第二个问题,我们从RNN的结构图中不难发现:只要我们得到了模型的U,V,W这三个参数就能完全确定模型的状态。因此该优化问题的优化变量就是RNN的这三个参数。顺便说一句,RNN模型的U,V,W三个参数是全局共享的,也就是说不同时刻的模型参数是完全一致的,这个特性使RNN得参数变得稍微少了一些。
不做过多的讨论,RNN的损失函数选用交叉熵(Cross Entropy),这是机器学习中使用最广泛的损失函数之一了,其通常的表达式如下所示:
上面式子是交叉熵的标量形式,y_i是真实的标签值,y_i*是模型给出的预测值,最外面之所以有一个累加符号是因为模型输出的一般都是一个多维的向量,只有把n维损失都加和才能得到真实的损失值。交叉熵在应用于RNN时需要做一些改变:首先,RNN的输出是向量形式,没有必要将所有维度都加在一起,直接把损失值用向量表达就可以了;其次,由于RNN模型处理的是序列问题,因此其模型损失不能只是一个时刻的损失,应该包含全部N个时刻的损失。
故RNN模型在t时刻的损失函数写成如下形式:
全部N个时刻的损失函数(全局损失)表达为如下形式:
需要说明的是:yt是t时刻输入的真实标签值,ot为模型的预测值,N代表全部N个时刻。下文中为了书写方便,将Loss简记为L。在结束本小节之前,最后补充一个softmax函数的求导公式:
由于RNN模型与时间序列有关,因此不能直接使用BP(back propagation)算法。针对RNN问题的特殊情况,提出了BPTT算法。BPTT的全称是“随时间变化的反向传播算法”(back propagation through time)。这个方法的基础仍然是常规的链式求导法则,接下来开始具体推导。虽然RNN的全局损失是与全部N个时刻有关的,但为了简单笔者在推导时只关注t时刻的损失函数。
首先求出t时刻下损失函数关于o_t*的微分:
求出损失函数关于参数V的微分:
因此,全局损失关于参数V的微分为:
求出t时刻的损失函数关于关于st*的微分:
求出t时刻的损失函数关于s_t-1*的微分:
求出t时刻损失函数关于参数U的偏微分。注意:由于是时间序列模型,因此t时刻关于U的微分与前t-1个时刻都有关,在具体计算时可以限定最远回溯到前n个时刻,但在推导时需要将前t-1个时刻全部带入:
因此,全局损失关于U的偏微分为:
求t时刻损失函数关于参数W的偏微分,和上面相同的道理,在这里仍然要计算全部前t-1时刻的情况:
因此,全局损失关于参数W的微分结果为:
至此,全局损失函数关于三个主要参数的微分都已经得到了。整理如下:
接下来进一步化简上述微分表达式,化简的主要方向为t时刻的损失函数关于ot的微分以及关于st*的微分。已知t时刻损失函数的表达式,求关于ot的微分:
softmax函数求导:
因此:
又因为:
且:
有了上面的数学推导,我们可以得到全局损失关于U,V,W三个参数的梯度公式:
由于参数U和W的微分公式不仅仅与t时刻有关,还与前面的t-1个时刻都有关,因此无法写出直接的计算公式。不过上面已经给出了t时刻的损失函数关于s_t-1的微分递推公式,想来求解这个式子也是十分简单的,在这里就不赘述了。
以上就是关于BPTT算法的全部数学推导。从最终结果可以看出三个公式的偏微分结果非常简单,在具体的优化过程中可以直接带入进行计算。对于这种优化问题来说,最常用的方法就是梯度下降法。针对本文涉及的RNN问题,可以构造出三个参数的梯度更新公式:
依靠上述梯度更新公式就能够迭代求解三个参数,直到三个参数的值发生收敛。
这是笔者第一次尝试推导RNN的数学模型,在推导过程中遇到了非常多的bug。非常感谢互联网上的一些公开资料和博客,给了我非常大的帮助和指引。接下来笔者将尝试实现一个单隐层的RNN模型用于实现一个语义预测模型。
⑩ 神经网络算法中,参数的设置或者调整,有什么方法可以采用
若果对你有帮助,请点赞。
神经网络的结构(例如2输入3隐节点1输出)建好后,一般就要求神经网络里的权值和阈值。现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法、牛顿法、列文伯格-马跨特法、狗腿法等等),这些算法会先初始化一个解,在这个解的基础上,确定一个搜索方向和一个移动步长(各种法算确定方向和步长的方法不同,也就使各种算法适用于解决不同的问题),使初始解根据这个方向和步长移动后,能使目标函数的输出(在神经网络中就是预测误差)下降。 然后将它更新为新的解,再继续寻找下一步的移动方向的步长,这样不断的迭代下去,目标函数(神经网络中的预测误差)也不断下降,最终就能找到一个解,使得目标函数(预测误差)比较小。
而在寻解过程中,步长太大,就会搜索得不仔细,可能跨过了优秀的解,而步长太小,又会使寻解过程进行得太慢。因此,步长设置适当非常重要。
学习率对原步长(在梯度下降法中就是梯度的长度)作调整,如果学习率lr = 0.1,那么梯度下降法中每次调整的步长就是0.1*梯度,
而在matlab神经网络工具箱里的lr,代表的是初始学习率。因为matlab工具箱为了在寻解不同阶段更智能的选择合适的步长,使用的是可变学习率,它会根据上一次解的调整对目标函数带来的效果来对学习率作调整,再根据学习率决定步长。
机制如下:
if newE2/E2 > maxE_inc %若果误差上升大于阈值
lr = lr * lr_dec; %则降低学习率
else
if newE2 < E2 %若果误差减少
lr = lr * lr_inc;%则增加学习率
end
详细的可以看《神经网络之家》nnetinfo里的《[重要]写自己的BP神经网络(traingd)》一文,里面是matlab神经网络工具箱梯度下降法的简化代码
若果对你有帮助,请点赞。
祝学习愉快