❶ BP神经网络除了应用于变压器上还应用于哪些器件
《MATLAB神经网络30个案例分析》这本书里边有例程和一部分数据。
❷ BP网络就是BP神经网络吗
我研究生三年研究的都是这玩意,很负责任地告诉你,BP网络就是BP神经网络,看你这个题目,你是本科生吧!你这个很简单啊,很多参考书上都有类似的程序,借鉴一下就可以了!
基于BP网络的PID控制器,这怎么解答,呵呵!你去参考一些书就是了,有一本西安电子科技大学出版的关于神经网路的书,很好,里面的程序很多可以拿来用!记住买书的时候不一定非要买BP神经网络方面的书,因为BP神经网络只是N多种神经网络中最常用的一种,所以很少有单讲BP网路的,都是讲神经网络,其中有一章是BP。
❸ BP神经网络原理
人工神经网络有很多模型,但是日前应用最广、基本思想最直观、最容易被理解的是多层前馈神经网络及误差逆传播学习算法(Error Back-Prooaeation),简称为BP网络。
在1986年以Rumelhart和McCelland为首的科学家出版的《Parallel Distributed Processing》一书中,完整地提出了误差逆传播学习算法,并被广泛接受。多层感知网络是一种具有三层或三层以上的阶层型神经网络。典型的多层感知网络是三层、前馈的阶层网络(图4.1),即:输入层、隐含层(也称中间层)、输出层,具体如下:
图4.1 三层BP网络结构
(1)输入层
输入层是网络与外部交互的接口。一般输入层只是输入矢量的存储层,它并不对输入矢量作任何加工和处理。输入层的神经元数目可以根据需要求解的问题和数据表示的方式来确定。一般而言,如果输入矢量为图像,则输入层的神经元数目可以为图像的像素数,也可以是经过处理后的图像特征数。
(2)隐含层
1989年,Robert Hecht Nielsno证明了对于任何在闭区间内的一个连续函数都可以用一个隐层的BP网络来逼近,因而一个三层的BP网络可以完成任意的n维到m维的映射。增加隐含层数虽然可以更进一步的降低误差、提高精度,但是也使网络复杂化,从而增加了网络权值的训练时间。误差精度的提高也可以通过增加隐含层中的神经元数目来实现,其训练效果也比增加隐含层数更容易观察和调整,所以一般情况应优先考虑增加隐含层的神经元个数,再根据具体情况选择合适的隐含层数。
(3)输出层
输出层输出网络训练的结果矢量,输出矢量的维数应根据具体的应用要求来设计,在设计时,应尽可能减少系统的规模,使系统的复杂性减少。如果网络用作识别器,则识别的类别神经元接近1,而其它神经元输出接近0。
以上三层网络的相邻层之间的各神经元实现全连接,即下一层的每一个神经元与上一层的每个神经元都实现全连接,而且每层各神经元之间无连接,连接强度构成网络的权值矩阵W。
BP网络是以一种有教师示教的方式进行学习的。首先由教师对每一种输入模式设定一个期望输出值。然后对网络输入实际的学习记忆模式,并由输入层经中间层向输出层传播(称为“模式顺传播”)。实际输出与期望输出的差即是误差。按照误差平方最小这一规则,由输出层往中间层逐层修正连接权值,此过程称为“误差逆传播”(陈正昌,2005)。所以误差逆传播神经网络也简称BP(Back Propagation)网。随着“模式顺传播”和“误差逆传播”过程的交替反复进行。网络的实际输出逐渐向各自所对应的期望输出逼近,网络对输入模式的响应的正确率也不断上升。通过此学习过程,确定下各层间的连接权值后。典型三层BP神经网络学习及程序运行过程如下(标志渊,2006):
(1)首先,对各符号的形式及意义进行说明:
网络输入向量Pk=(a1,a2,...,an);
网络目标向量Tk=(y1,y2,...,yn);
中间层单元输入向量Sk=(s1,s2,...,sp),输出向量Bk=(b1,b2,...,bp);
输出层单元输入向量Lk=(l1,l2,...,lq),输出向量Ck=(c1,c2,...,cq);
输入层至中间层的连接权wij,i=1,2,...,n,j=1,2,...p;
中间层至输出层的连接权vjt,j=1,2,...,p,t=1,2,...,p;
中间层各单元的输出阈值θj,j=1,2,...,p;
输出层各单元的输出阈值γj,j=1,2,...,p;
参数k=1,2,...,m。
(2)初始化。给每个连接权值wij、vjt、阈值θj与γj赋予区间(-1,1)内的随机值。
(3)随机选取一组输入和目标样本
(4)用输入样本
基坑降水工程的环境效应与评价方法
bj=f(sj) j=1,2,...,p (4.5)
(5)利用中间层的输出bj、连接权vjt和阈值γt计算输出层各单元的输出Lt,然后通过传递函数计算输出层各单元的响应Ct。
基坑降水工程的环境效应与评价方法
Ct=f(Lt) t=1,2,...,q (4.7)
(6)利用网络目标向量
基坑降水工程的环境效应与评价方法
(7)利用连接权vjt、输出层的一般化误差dt和中间层的输出bj计算中间层各单元的一般化误差
基坑降水工程的环境效应与评价方法
(8)利用输出层各单元的一般化误差
基坑降水工程的环境效应与评价方法
(9)利用中间层各单元的一般化误差
基坑降水工程的环境效应与评价方法
(10)随机选取下一个学习样本向量提供给网络,返回到步骤(3),直到m个训练样本训练完毕。
(11)重新从m个学习样本中随机选取一组输入和目标样本,返回步骤(3),直到网路全局误差E小于预先设定的一个极小值,即网络收敛。如果学习次数大于预先设定的值,网络就无法收敛。
(12)学习结束。
可以看出,在以上学习步骤中,(8)、(9)步为网络误差的“逆传播过程”,(10)、(11)步则用于完成训练和收敛过程。
通常,经过训练的网络还应该进行性能测试。测试的方法就是选择测试样本向量,将其提供给网络,检验网络对其分类的正确性。测试样本向量中应该包含今后网络应用过程中可能遇到的主要典型模式(宋大奇,2006)。这些样本可以直接测取得到,也可以通过仿真得到,在样本数据较少或者较难得到时,也可以通过对学习样本加上适当的噪声或按照一定规则插值得到。为了更好地验证网络的泛化能力,一个良好的测试样本集中不应该包含和学习样本完全相同的模式(董军,2007)。
❹ 第一篇提出BP神经网络的论文是哪一篇
最初是86年,Rumelhart和McCelland领导的科学家小组在《平行分布式处理》一书中,对具有非线性连续变换函数的多层感知器的误差反向传播BP算法进行了详尽的分析,实现了Minsky关于多层网络的设想。
一般引用的话,无需引用第一篇,只需引用介绍BP网络的文献即可。最开始的文献往往理论不完善。反而阅读意义不大。
❺ matlab神经网络中的BP神经网络怎么用啊,介绍一本比较好的参考书,土木工程方面的易损性分析
matlab神经网络30例吧,淘宝上有卖电子版的
❻ 请问学bp神经网络哪本书比较好
我研究生3年学的都是这个玩意,你是本科生吧,给你推荐一本书,我和我的同学都觉得这本书非常宝贝!西安电子科技大学出版的一本关于神经网络的书,定价是20元,至少3年前的版本是20元。蓝紫色皮,那本书非常好,不过是关于matlab编程神经网络的,但是大同小异吧,入门看非常合适,深入浅出!我最近太忙,有空可以帮你搜搜具体的名字,不是很好买到,你在北京的话去西单图书大厦就能买到。
❼ 本人的毕业设计时给予BP神经网络的水质评价,我对神经网络一无所知,还请各位大侠帮忙
我研究生阶段也学习了神经网络,当然主要也是学习了基于误差反向传播算法(BP)的多层感知器(BP神经网络这个称呼是不对的)。
我学习的心得是:
先看丛爽主编的《面向MATLAB的工具箱的神经网络理论与应用》,感觉比较好。
看了差不多之后,强烈建议看外国人写的《Neural Network Design》,作者是Martin Hagan,为什么这本书是非常好的入门、进阶教材呢?因为这本书里把神经网络的学习和MATLAB联系起来了。利用MATLAB来辅助进行实验,领悟神经网络的知识,这是一个非常好的学习模式。
之后,进阶了,自己再看看怎么规划。
希望你能认真学习。
我加了一个神经网络讨论群,气氛还挺好的
38264063