1.应用程序持续增长,且不再是完全依赖于网络,已经成为了关注的焦点。直到现在,它已经被满足特定应用程序需求的网络所限制。然而,随着SDN的出现,网络可以通过应用程序本身来实现动态的编程,它的主要目标是向用户提供服务,SDN的重要性变得更加明显。
2.在部署SDN之前让员工掌握相应的技能,传统网络和软件定义网络是截然不同的。
3.大多数情况下,SDN仍然是一个全新的事物,虽然新技术能带来各种优势,但如果参与进去的组织不了解真正的需求以及SDN将如何发挥功能,那么失败在所难免。部署SDN之前,首先要考虑的是如何帮助企业实现目标或者其他方面的需求。
‘贰’ 网络软件是实现网络功能不可缺少的软件环境,它通常包括哪些部分其中最主要的网络软件是什么软件
[右击选择目录]
2.网络软件
网络软件是实现网络功能所不可缺少的软环境。网络软件通常包括网络操作系统和网络协议软件。
(1)网络操作系统
网络操作系统是运行在网络硬件基础之上的,为网络用户提供共享资源管理服务、基本通信服务、网络系统安全服务及其他网络服务的软件系统。网络操作系统是网络的核心,其他应用软件系统需要网络操作系统的支持才能运行。
在网络系统中,每个用户都可享用系统中的各种资源,所以,网络操作系统必须对用户进行控制,否则,就会造成系统混乱,造成信息数据的破坏和丢失。为了协调系统资源,网络操作系统需要通过软件工具对网络资源进行全面的管理,进行合理的调度和分配。
(2)网络协议软件
连入网络的计算机依靠网络协议实现互相通信,而网络协议是靠具体的网络协议软件的运行支持才能工作。凡是连人计算机网络的服务器和工作站上都运行着相应的网络协议软件。
‘叁’ 软件定义网络利用()实现网络配置
摘要 您好,您的问题我已经看到了,正在整理答案,请您稍等一会儿~
‘肆’ 什么是软件定义网络
话说最近网络虚拟化(Networking Virtualization,NV)和SDN真实热得发烫,先谈一下我个人的理解和看法。由于没有实际玩过相应的产品,所以也只是停留在理论阶段,而且尚在学习中,有些地方难以理解甚至理解错误,因此,特地来和大家交流一下。
早在2009年就出现了SDN(Software Defined Networking)的概念,但最近才开始被众人所关注,主要还是因为Google跳出来表态其内部数据中心所有网络都开始采用OpenFlow进行控制,将OpenFlow从原本仅是学术性的东西瞬间推到了商用领域。第二个劲爆的消息就是VMWare大手笔12.6个亿$收掉了网络虚拟化公司Nicira。
SDN只是一个理念,归根结底,她是要实现可编程网络,将原本封闭的网络设备控制面(Control Plane)完全拿到“盒子”外边,由集中的控制器来管理,而该控制器是完全开放的,因此你可以定义任何想实现的机制和协议。比如你不喜欢交换机/路由器自身所内置的TCP协议,希望通过编程的方式对其进行修改,甚至去掉它,完全由另一个控制协议取代也是可以的。正是因为这种开放性,使得网络的发展空间变为无限可能,换句话说,只有你想不到,没有你做不到。
那SDN为什么会和NV扯上关系呢?其实他们之间并没有因果关系,SDN不是为实现网络虚拟化而设计的,但正式因为SDN架构的先进性,使得网络虚拟化的任务也得以实现。很多人(包括我自己)在最初接触SDN的时候,甚至认为她就是NV,但实际上SDN的目光要远大得多,用句数学术语来说就是“NV包含于SDN,SDN包含NV”。
再来看看NV,为什么NV会如此火爆,归根结底还是因为云计算的崛起。服务器/存储虚拟化为云计算提供了基础架构支撑,也已经有成熟的产品和解决方案,但你会发现一个问题,即便如此,虚拟机的迁移依然不够灵活,例如VMWare vMotion可以做到VM在线迁移,EMC VPLEX可以做到双活站点,但虚拟机的网络(地址、策略、安全、VLAN、ACL等等)依然死死地与物理设备耦合在一起,即便虚拟机从一个子网成功地迁移到另一个子网,但你依然需要改变其IP地址,而这一过程,必然会有停机。另外,很多策略通常也是基于地址的,地址改了,策略有得改,所以依然是手动活,繁杂且易出错。所以说,要实现Full VM Migration,即不需要更改任何现有配置,把逻辑对象(比如IP地址)与物理网络设备去耦(decouple)才行。这是一个举例,总而言之,目的就是实现VM Migration Anywhere within the DataCenter non-disruptively,尤其是在云这样的多租户(Multi-tanency)环境里,为每一个租户提供完整的网络视图,实现真正的敏捷商务模型,才能吸引更多人投身于云计算。
SDN不是网络虚拟化的唯一做法,Network overly(mac in mac, ip in ip)的方式也是现在很多公司实际在使用的,比如Microsoft NVGRE、Cisco/VMWare VXLAN、Cisco OTV、Nicira STT等。事实上overly network似乎已经成为NV实现的标准做法,SDN模型下的NV实现目前更多的是在学术、研究领域。新技术总是伴随大量的竞争者,都想在此分一杯羹,甚至最后成为标准。好戏才刚刚上演,相信会越发精彩。
个人觉得这是一个非常有意思的话题,希望和大家交流心得,互相学习.
NV的目标就是如何呈现一个完全的网络给云环境中的每一个租户,租户可能会要求使用任何其希望使用的IP地址段,任何拓扑,当然更不希望在迁移至公共云的情况下需要更改其原本的IP地址,因为这意味着停机。所以,客户希望有一个安全且完全隔离的网络环境,保证不会与其他租户产生冲突。既然vMotion之类的功能能够让虚拟机在云中自由在线漂移,那网络是否也能随之漂移呢?这里简单介绍下微软的Hyper-v networking virtualization,到不是因为技术有多先进,只不过他的实现细节比较公开,而其它公司的具体做法相对封闭,难以举例。
其实微软的思路很简单,就是将原本虚拟机的二层Frame通过NVGRE再次封装到 IP packet中进行传输,使得交换机能够通过识别NVGRE的Key字段来判断数据包的最终目的地。这其实就是一个Network Overlay的做法,它将虚拟网络与物理网络进行了分离。试想,公司A和公司B都迁移到公有云且就那么巧,他们的一些虚拟机连接到了同一个物理交换机上,现在的问题是,他们各自的虚拟机原本使用的私有IP段是一样的,如果没有VLAN就会导致IP冲突。但现在看来,这已经不是问题,因为虚拟机之间的通信都要通过NVGRE的封装,而新的IP包在物理网络上传输时是走物理地址空间的,而物理地址空间是由云服务提供者所独占的,因此不存在IP冲突的情况。
总结一下就是,这里的网络虚拟化可以认为是IP地址虚拟化,将虚拟网络的IP与物理网络完全分离,这样做就可以避免IP冲突,跨子网在线迁移虚拟机的问题,微软的要求是:虚拟机可以在数据中心中任意移动,而客户不会有任何感觉,这种移动能力带来了极大的灵活性。
Software-defined networking (SDN) is an approach to computer networking which evolved from work done at UC Berkeley and Stanford University around 2008.[1] SDN allows network administrators to manage network services throughabstraction of lower level functionality. This is done by decoupling the system that makes decisions about where traffic is sent (the control plane) from the underlying systems that forwards traffic to the selected destination (the data plane). The inventors and vendors of these systems claim that this simplifies networking.[2]
SDN requires some method for the control plane to communicate with the data plane. One such mechanism, OpenFlow, is often misunderstood to be equivalent to SDN, but other mechanisms could also fit into the concept. The Open Networking Foundation was founded to promote SDN and OpenFlow, marketing the use of the term cloud computing before it became popular.
This section does not cite any references or sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged andremoved. (February 2013)
One application of SDN is the infrastructure as a service (IaaS).
This extension means that SDN virtual networking combined with virtual compute (VMs) and virtual storage can emulate elastic resource allocation as if each such enterprise application was written like a Google or Facebook application. In the vast majority of these applications resource allocation is statically mapped in inter process communication (IPC). However if such mapping can be expanded or reced to large (many cores) or small VMs the behavior would be much like one of the purpose built large Internet applications.
Other uses in the consolidated data-center include consolidation of spare capacity stranded in static partition of racks to pods. Pooling these spare capacities results in significant rection of computing resources. Pooling the active resources increases average utilization.
The use of SDN distributed and global edge control also includes the ability to balance load on lots of links leading from the racks to the switching spine of the data-center. Without SDN this task is done using traditional link-state updates that update all locations upon change in any location. Distributed global SDN measurements may extend the cap on the scale of physical clusters. Other data-center uses being listed are distributed application load balancing, distributed fire-walls, and similar adaptations to original networking functions that arise from dynamic, any location or rack allocation of compute resources.
Other uses of SDN in enterprise or carrier managed network services (MNS) address the traditional and geo-distributed campus network. These environments were always challenged by the complexities of moves-adds-changes, mergers & acquisitions, and movement of users. Based on SDN principles, it expected that these identity and policy management challenges could be addressed using global definitions and decoupled from the physical interfaces of the network infrastructure. In place infrastructure on the other hand of potentially thousands of switches and routers can remain intact.
It has been noted that this "overlay" approach raises a high likelihood of inefficiency and low performance by ignoring the characteristics of the underlying infrastructure. Hence, carriers have identified the gaps in overlays and asked for them to be filled by SDN solutions that take traffic, topology, and equipment into account.[7]
SDN deployment models[edit]
This section does not cite any references or sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged andremoved. (February 2013)
Symmetric vs asymmetric
In an asymmetric model, SDN global information is centralized as much as possible, and edge driving is distributed as much as possible. The considerations behind such an approach are clear, centralization makes global consolidation a lot easier, and distribution lowers SDN traffic aggregation-encapsulation pressures. This model however raises questions regarding the exact relationships between these very different types of SDN elements as far as coherency, scale-out simplicity, and multi-location high-availability, questions which do not come up when using traditional AS based networking models. In a Symmetrically distributed SDN model an effort is applied to increase global information distribution ability, and SDN aggregation performance ability so that the SDN elements are basically one type of component. A group of such elements can form an SDN overlay as long as there is network reachability among any subset.
Floodless vs flood-based
In a flood-based model, a significant amount of the global information sharing is achieved using well known broadcast and multicast mechanisms. This can help make SDN models more Symmetric and it leverages existing transparent bridging principles encapsulated dynamically in order to achieve global awareness and identity learning. One of the downsides of this approach is that as more locations are added, the load per location increases, which degrades scalability. In a FloodLess model, all forwarding is based on global exact match, which is typically achieved using Distributed Hashing and Distributed Caching of SDN lookup tables.
Host-based vs Network-centric
In a host-based model an assumption is made regarding use of SDN in data-centers with lots of virtual machines moving to enable elasticity. Under this assumption the SDN encapsulation processing is already done at the host HyperVisor on behalf of the local virtual machines. This design reces SDN edge traffic pressures and uses "free" processing based on each host spare core capacity. In a NetworkCentric design a clearer demarcation is made between network edge and end points. Such an SDN edge is associated with the access of Top of Rack device and outside the host endpoints. This is a more traditional approach to networking that does not count on end-points to perform any routing function.
Some of the lines between these design models may not be completely sharp. For example in data-centers using compute fabrics "Big" hosts with lots of CPU cards perform also some of the TopOfRack access functions and can concentrate SDN Edge functions on behalf of all the CPU cards in a chassis. This would be both HostBased and NetworkCentric design. There may also be dependency between these design variants, for example a HostBased implementation will typically mandate an Asymmetric centralized Lookup or Orchestration service to help organize a large distribution. Symmetric and FloodLess implementation model would typically mandate in-network SDN aggregation to enable lookup distribution to a reasonable amount of Edge points. Such concentration relies on local OpenFlow interfaces in order to sustain traffic encapsulation pressures.[5] [6]
‘伍’ 在“下一代网络”热潮中,中国SDN(软件定义网络)会怎么走
SDN,即Software-Defined Network(软件定义网络),由于传统的网络设备(交换机、路由器)的固件是由设备制造商锁定和控制,所以SDN希望将网络控制与物理网络拓扑分离,从而摆脱硬件对网络架构的限制。这样企业便可以像升级、安装软件一样对网络架构进行修改,满足企业对整个网站架构进行调整、扩容或升级。而底层的交换机、路由器等硬件则无需替换,节省大量的成本的同时,网络架构迭代周期将大大缩短。举个不恰当的例子,SDN技术就相当于把每人家里路由器的的管理设置系统和路由器剥离开。以前我们每台路由器都有自己的管理系统,而有了SDN之后,一个管理系统可用在所有品牌的路由器上。如果说现在的 网络系统是功能机,系统和硬件出厂时就被捆绑在一起,那么SDN就是 Android系统,可以在很多智能手机上安装、升级,同时还能安装更多更强大的手机App(SDN应用层部署)。昨天,中国第一届开放网络峰会在北京召开,参会商除了有网络、腾讯、阿里巴巴等互联网公司,还包括如NEC、NTT Communications等国内外一些运营商、软硬件公司。既然如此,就让我们从这次大会来看看,中国的SDN普及之路会怎么走?现状 在国内,SDN技术仍处在实验的阶段。作为从斯坦福出来的新兴网络技术,高校自然会更早的接触和研究这类技术。目前国内一些院校已经开始对SDN技术进行了大量的研究测试,比如清华研究院博士生亓亚烜介绍了清华SDN团队在架构、安全性、资源管理等方面的研究进程,到目前为止已经运行一年之久。而亓亚烜也和另外两位Founder成立了SDN相关服务公司,开始进入SDN技术商业应用之路。北邮院长张杰则称:到2016年,思科预测全球每年的IP流量将达到Zettabyte级别(1ZB=1024EB,1EB=1024PB)。所以他们也在利用SDN技术在尝试一种可大大减少网络流量的交换损耗的灵活光联网。另外上海交大的金耀辉教授在会上也介绍了他们在OpenStack中的SDN技术的使用情况,以及OpenStack中网络模块的实现效果等。对于SDN对现有网络的革命性改变,谁也不会否认。世纪互联顾问厉建宇称企业SDN网络部署能够提高网络利用率、简化网络交换设备、简化传统的CDN流量工程等,另外在成本、能耗等方面也都有较大的提高。国外包括Google、微软、Facebook等很多厂商都已经进入了部署阶段。NEC中国研究院院长杜军也介绍说他们已经开始了SDN相关的研发工作,其SDN相关产品在日本、美国都有了一些的客户。而作为 Open Networking Foundation(开放网络基金会)8位董事会成员之一NTT Communications,其SDN负责人Ito 则认为中国是全球业务中不可或缺的一部分,而且由于其本身和电信、联通、移动以及华为、中兴等SDN相关厂商一直有合作,所以他们很愿意在国内的SDN发展上起到一定的推动作用。尽管上面的NTT、NEC都有了一些SDN产品,但不得不承认,这些产品和技术都还没有进入中国。限于中国的特殊环境和大企业的保守,中国在普及SDN技术上还有一定的困难,包括运营商、网络服务商等都处在一种观望的状态,所以SDN普及还需时日。使用者态度 下午,腾讯、阿里巴巴、新浪、网络等国内互联网巨头也谈到了SDN对他们的意义。作为SDN技术的直接使用者,他们看到了SDN对硬件和网络设施的巨大影响,但毫不例外的是,大家也都谈到了现有的SDN技术还有很多问题需要解决。这四家公司都已经开始对SDN进行了相关研究,但发现目前使用SDN来构建IDC还是会遇到一些瓶颈,比如阿里提到的运营数据挖掘、故障诊断和及时修复、以及一次性购买成本等问题。当然,除了怀疑,国内互联网公司也在努力做相关的开发工作。其中网络就已有了几块成型的SDN产品,他们的Traffic Engineering系统就是基于SDN网络架构的产品,未来还会做出更多地尝试和SDN应用的产品。阻碍 美国ONF(开放网络基金会)去年才刚刚成立,SDN对于很多人来说还相当陌生。限于国内技术水平、国家政策和环境特殊性以及运营商的垄断地位,国内的SDN发展还没法和美国等国家相比。另外,由于SDN切断了网络硬件设备和网络系统的捆绑,所以从某种角度来讲,这对华为、中兴这些硬件制造商并不利。虽然他们不会阻止这种趋势,但目前国内还很难依靠他们来推动SDN的发展。而且由于国内的技术型创业公司极少,目前还很难有 Nicira、 Contrail Systems、 Xsigo这样优秀的SDN创业公司的出现。未来 就像锐捷网络产品研发总监刘茗说的那样:“参加了这次峰会之后,我仍然看不清楚未来。”SDN目前在国内仍然没有成功的应用案例,持怀疑态度的还是大有人在。所以要想让SDN快速发展起来,这仍然是一个很不轻松的过程。
‘陆’ 常用的软件定义网络的控制器平台有哪些有何特点
是一种数字化运算器,常用于工业环境
‘柒’ 软件定义网络的介绍
软件定义网络(Software Defined Network, SDN ),是由Emulex提出的一种新型网络创新架构,其核心技术OpenFlow通过将网络设备控制面与数据面分离开来,从而实现了网络流量的灵活控制,为核心网络及应用的创新提供了良好的平台。
‘捌’ 什么是软件定义网络
软件定义网络(简称SDN)属于网络流量控制的下一个步骤。Tech Pro Research发布的调查报告正是以此为中心,旨在为我们展示企业如何使用SDN方案。
过去几年以来,以更为高效方式管理环境的需求正快速普及,这也使得网络领域的更高灵活性与控制手段成为必然。作为重要解决途径之一,软件定义网络(简称SDN)应运而生。它允许我们对网络流量加以控制,并利用软件与策略对网络行为及响应进行统一定义——而不必像以往那样面向单独硬件设备。
举例来说,SDN能够将网络流量指向至使用频率最低的资源处,从而有效利用冗余系统共享工作负载以实现负载均衡。这不仅改善了网络与系统的响应时间,亦能够反过来催生出充分利用此类优势的出色应用程序。另外,SDN还提供良好的可扩展性与异构环境控制能力,例如与云服务对接的本地数据中心。
Tech Pro Research的这份调查报告整理出以下几项重要结论:
· 没有良好的人员培训,SDN实现亦将无从谈起。目前的常见接口通常要求我们拥有对SDN常规开发语言的知识,同时了解如何利用技术优势实现业务改进。
· 考虑增量式实现,即利用定期关闭与现场解决方案了解SDN是否契合我们的整体基础设施架构。
· 认真考量并审查SDN是否有助于解决云服务管理工作、供应商访问以及随时/随地接入的复杂性。
· SDN正在全面普及,虽然普及速度仍然缓慢;不要坐视竞争对手将其转化为业务优势,而我们自己仍挣扎于使用命令行以及非统一设备管理方案。
这份报告同时指出,“虽然做出诸多承诺,但SDN实际推广中仍然障碍重重,这主要是由于大型供应商的消极态度。尽管这一态势已经出现变化迹象,但企业客户仍然需要相当长时间才会最终决定将SDN纳入自己的采购清单。”
‘玖’ 软件定义网络 如何去使用OpenFlow
事实上,OpenFlow交换机在Interop Las Vegas 2011上就已经公诸于众了,并且也引起了很大的争论。 SDN允许网络工程师控制和管理他们的网络,以便最好地服务他们各自需求,从而增加网络功能和降低运营网络的成本。Open Networking Foundation支持OpenFlow规范,这将最终实现定义软件的网络。 OpenFlow是一套软件API,它允许一个控制器将配置信息发送给交换机。这个配置往往指的是一个流及其附属的某些操作。 流是一组定义的帧或者数据包(类似于一个MPLS流)与一组操作。例如: Source IP/Port、Destination IP/Port和Drop。 Source IP、Destination IP和QoS Action。 Source MAC、Destination MAC和L2 Path。 通过OpenFlow,您可以将一组规则发送给一台配置设备的交换机或者路由器。然后每个设备会根据它的类型使用这些数据。交换机会更新它的MAC地址表以转发帧,路由器会添加访问列表,而防火墙会更新它的规则。 当组织将网络配置从设备迁移到软件平台时,交换机就变得更加简单和廉价了。但是主要的受益是网络配置可以由中央控制器管理。 控制者是一个包含算法、数学、分析和规则的软件,它来自规则组,并使用OpenFlow将配置下载到网络设备中。因此,当控制器评估和重新平衡配置时,网络就可能动态地进行重新配置。这就是所谓的软件定义网络。 HP Networking: HP已经在OpenFlow上投入了大量的资源。我见过HP向委员会提交的一个QoS功能的演示,并且公司也为控制器平台制定了全面的软件计划。 NEC: 您可能还未听说过NEC也是一个网络供应商,但是这家公司有完整的产品系列,并且已经在NEC美国市场开始销售了。NEC已经为OpenFlow做出了几个重大的贡献,而且它有一个支持OpenFlow的完整系列交换机。在Interop上,NEC演示了它的OpenFlow控制器。 Cisco: 虽然网络巨头是Open Networking Foundation的成员之一,但是我还未能找到它关于OpenFlow的计划。很可能Cisco会觉得OpenFlow破坏了作为营利产品的IOS软件。OpenFlow最突出的优点是减少硬件交换机的成本,而本身不会给网络供应商的销售带来任何的提升。 Avaya: 虽然公司在Shortest Path Bridging策略方面下了很大的功夫,但是据我了解,公司目前并没有任何关于OpenFlow的计划。 Arista: 网络新贵并没有任何关于OpenFlow的发布计划,同时它还指出在一台设备上管理所有流是不可能的。虽然Cisco也这样认为,但是我认为这是对OpenFlow工作方式的一种误解。使用OpenFlow来处理每一个流是可能的,但这并不是必要的,这只是一个配置选项。 Big Switch Networks: 这个最近成立的新兴公司关注于OpenFlow解决方案,特别是网络虚拟化。虽然Big Switch网站上没有任何的详细信息,但是我认为它们正在开发控制器和交换机。 如果OpenFlow能够拥有足够多的客户,那么它将从根本上改变网络行业,因为我们目前所使用的控制协议(例如OSPF或者Spanning Tree或者DCB)将被软件控制器所取代。虽然这会促成硬件的商品化,但是软件控制器将成为网络行业中新的组成部分。
‘拾’ SDN软件定义网络是干什么用的在企业内有哪些应用
软件定义网络(SDN)由多种网络技术组成,具有灵活敏捷的特点,它是一种可编程网络,主要通过OpenFlow技术来根据部署需求或后续需求更改网络的设置。与传统网络不同,软件定义网络(SDN)将网络设备的控制面与数据面分离开来,因此企业可以像升级、安装软件一样对网络架构进行修改,满足企业对整个网络结构进行调整、扩容或升级的需求,而底层的交换机、路由器等硬件则无需替换,节省大量的成本的同时,网络架构迭代周期也会大大缩短。