导航:首页 > 网络问题 > 神经网络异常检测

神经网络异常检测

发布时间:2022-01-08 19:24:57

什么是BP神经网络

BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。经反复学习,最终使误差减小到可接受的范围。具体步骤如下:
1、从训练集中取出某一样本,把信息输入网络中。
2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。
3、计算网络实际输出与期望输出的误差。
4、将误差逐层反向回传至之前各层,并按一定原则将误差信号加载到连接权值上,使整个神经网络的连接权值向误差减小的方向转化。
5、対训练集中每一个输入—输出样本对重复以上步骤,直到整个训练样本集的误差减小到符合要求为止。

② 人工神经网络概念梳理与实例演示

人工神经网络概念梳理与实例演示
神经网络是一种模仿生物神经元的机器学习模型,数据从输入层进入并流经激活阈值的多个节点。
递归性神经网络一种能够对之前输入数据进行内部存储记忆的神经网络,所以他们能够学习到数据流中的时间依赖结构。
如今机器学习已经被应用到很多的产品中去了,例如,siri、Google Now等智能助手,推荐引擎——亚马逊网站用于推荐商品的推荐引擎,Google和Facebook使用的广告排名系统。最近,深度学习的一些进步将机器学习带入公众视野:AlphaGo 打败围棋大师李世石事件以及一些图片识别和机器翻译等新产品的出现。
在这部分中,我们将介绍一些强大并被普遍使用的机器学习技术。这当然包括一些深度学习以及一些满足现代业务需求传统方法。读完这一系列的文章之后,你就掌握了必要的知识,便可以将具体的机器学习实验应用到你所在的领域当中。
随着深层神经网络的精度的提高,语音和图像识别技术的应用吸引了大众的注意力,关于AI和深度学习的研究也变得更加普遍了。但是怎么能够让它进一步扩大影响力,更受欢迎仍然是一个问题。这篇文章的主要内容是:简述前馈神经网络和递归神经网络、怎样搭建一个递归神经网络对时间系列数据进行异常检测。为了让我们的讨论更加具体化,我们将演示一下怎么用Deeplearning4j搭建神经网络。
一、什么是神经网络?
人工神经网络算法的最初构思是模仿生物神经元。但是这个类比很不可靠。人工神经网络的每一个特征都是对生物神经元的一种折射:每一个节点与激活阈值、触发的连接。
连接人工神经元系统建立起来之后,我们就能够对这些系统进行训练,从而让他们学习到数据中的一些模式,学到之后就能执行回归、分类、聚类、预测等功能。
人工神经网络可以看作是计算节点的集合。数据通过这些节点进入神经网络的输入层,再通过神经网络的隐藏层直到关于数据的一个结论或者结果出现,这个过程才会停止。神经网络产出的结果会跟预期的结果进行比较,神经网络得出的结果与正确结果的不同点会被用来更正神经网络节点的激活阈值。随着这个过程的不断重复,神经网络的输出结果就会无限靠近预期结果。
二、训练过程
在搭建一个神经网络系统之前,你必须先了解训练的过程以及网络输出结果是怎么产生的。然而我们并不想过度深入的了解这些方程式,下面是一个简短的介绍。
网络的输入节点收到一个数值数组(或许是叫做张量多维度数组)就代表输入数据。例如, 图像中的每个像素可以表示为一个标量,然后将像素传递给一个节点。输入数据将会与神经网络的参数相乘,这个输入数据被扩大还是减小取决于它的重要性,换句话说,取决于这个像素就不会影响神经网络关于整个输入数据的结论。
起初这些参数都是随机的,也就是说神经网络在建立初期根本就不了解数据的结构。每个节点的激活函数决定了每个输入节点的输出结果。所以每个节点是否能够被激活取决于它是否接受到足够的刺激强度,即是否输入数据和参数的结果超出了激活阈值的界限。
在所谓的密集或完全连接层中,每个节点的输出值都会传递给后续层的节点,在通过所有隐藏层后最终到达输出层,也就是产生输入结果的地方。在输出层, 神经网络得到的最终结论将会跟预期结论进行比较(例如,图片中的这些像素代表一只猫还是狗?)。神经网络猜测的结果与正确结果的计算误差都会被纳入到一个测试集中,神经网络又会利用这些计算误差来不断更新参数,以此来改变图片中不同像素的重要程度。整个过程的目的就是降低输出结果与预期结果的误差,正确地标注出这个图像到底是不是一条狗。
深度学习是一个复杂的过程,由于大量的矩阵系数需要被修改所以它就涉及到矩阵代数、衍生品、概率和密集的硬件使用问题,但是用户不需要全部了解这些复杂性。
但是,你也应该知道一些基本参数,这将帮助你理解神经网络函数。这其中包括激活函数、优化算法和目标函数(也称为损失、成本或误差函数)。
激活函数决定了信号是否以及在多大程度上应该被发送到连接节点。阶梯函数是最常用的激活函数, 如果其输入小于某个阈值就是0,如果其输入大于阈值就是1。节点都会通过阶梯激活函数向连接节点发送一个0或1。优化算法决定了神经网络怎么样学习,以及测试完误差后,权重怎么样被更准确地调整。最常见的优化算法是随机梯度下降法。最后, 成本函数常用来衡量误差,通过对比一个给定训练样本中得出的结果与预期结果的不同来评定神经网络的执行效果。
Keras、Deeplearning4j 等开源框架让创建神经网络变得简单。创建神经网络结构时,需要考虑的是怎样将你的数据类型匹配到一个已知的被解决的问题,并且根据你的实际需求来修改现有结构。
三、神经网络的类型以及应用
神经网络已经被了解和应用了数十年了,但是最近的一些技术趋势才使得深度神经网络变得更加高效。
GPUs使得矩阵操作速度更快;分布式计算结构让计算能力大大增强;多个超参数的组合也让迭代的速度提升。所有这些都让训练的速度大大加快,迅速找到适合的结构。
随着更大数据集的产生,类似于ImageNet 的大型高质量的标签数据集应运而生。机器学习算法训练的数据越大,那么它的准确性就会越高。
最后,随着我们理解能力以及神经网络算法的不断提升,神经网络的准确性在语音识别、机器翻译以及一些机器感知和面向目标的一些任务等方面不断刷新记录。
尽管神经网络架构非常的大,但是主要用到的神经网络种类也就是下面的几种。
3.1前馈神经网络
前馈神经网络包括一个输入层、一个输出层以及一个或多个的隐藏层。前馈神经网络可以做出很好的通用逼近器,并且能够被用来创建通用模型。
这种类型的神经网络可用于分类和回归。例如,当使用前馈网络进行分类时,输出层神经元的个数等于类的数量。从概念上讲, 激活了的输出神经元决定了神经网络所预测的类。更准确地说, 每个输出神经元返回一个记录与分类相匹配的概率数,其中概率最高的分类将被选为模型的输出分类。
前馈神经网络的优势是简单易用,与其他类型的神经网络相比更简单,并且有一大堆的应用实例。
3.2卷积神经网络
卷积神经网络和前馈神经网络是非常相似的,至少是数据的传输方式类似。他们结构大致上是模仿了视觉皮层。卷积神经网络通过许多的过滤器。这些过滤器主要集中在一个图像子集、补丁、图块的特征识别上。每一个过滤器都在寻找不同模式的视觉数据,例如,有的可能是找水平线,有的是找对角线,有的是找垂直的。这些线条都被看作是特征,当过滤器经过图像时,他们就会构造出特征图谱来定位各类线是出现在图像的哪些地方。图像中的不同物体,像猫、747s、榨汁机等都会有不同的图像特征,这些图像特征就能使图像完成分类。卷积神经网络在图像识别和语音识别方面是非常的有效的。
卷积神经网络与前馈神经网络在图像识别方面的异同比较。虽然这两种网络类型都能够进行图像识别,但是方式却不同。卷积神经网络是通过识别图像的重叠部分,然后学习识别不同部分的特征进行训练;然而,前馈神经网络是在整张图片上进行训练。前馈神经网络总是在图片的某一特殊部分或者方向进行训练,所以当图片的特征出现在其他地方时就不会被识别到,然而卷积神经网络却能够很好的避免这一点。
卷积神经网络主要是用于图像、视频、语音、声音识别以及无人驾驶的任务。尽管这篇文章主要是讨论递归神经网络的,但是卷积神经网络在图像识别方面也是非常有效的,所以很有必要了解。
3.3递归神经网络
与前馈神经网络不同的是,递归神经网络的隐藏层的节点里有内部记忆存储功能,随着输入数据的改变而内部记忆内容不断被更新。递归神经网络的结论都是基于当前的输入和之前存储的数据而得出的。递归神经网络能够充分利用这种内部记忆存储状态处理任意序列的数据,例如时间序列。
递归神经网络经常用于手写识别、语音识别、日志分析、欺诈检测和网络安全
递归神经网络是处理时间维度数据集的最好方法,它可以处理以下数据:网络日志和服务器活动、硬件或者是医疗设备的传感器数据、金融交易、电话记录。想要追踪数据在不同阶段的依赖和关联关系需要你了解当前和之前的一些数据状态。尽管我们通过前馈神经网络也可以获取事件,随着时间的推移移动到另外一个事件,这将使我们限制在对事件的依赖中,所以这种方式很不灵活。
追踪在时间维度上有长期依赖的数据的更好方法是用内存来储存重要事件,以使近期事件能够被理解和分类。递归神经网络最好的一点就是在它的隐藏层里面有“内存”可以学习到时间依赖特征的重要性。
接下来我们将讨论递归神经网络在字符生成器和网络异常检测中的应用。递归神经网络可以检测出不同时间段的依赖特征的能力使得它可以进行时间序列数据的异常检测。
递归神经网络的应用
网络上有很多使用RNNs生成文本的例子,递归神经网络经过语料库的训练之后,只要输入一个字符,就可以预测下一个字符。下面让我们通过一些实用例子发现更多RNNs的特征。
应用一、RNNs用于字符生成
递归神经网络经过训练之后可以把英文字符当做成一系列的时间依赖事件。经过训练后它会学习到一个字符经常跟着另外一个字符(“e”经常跟在“h”后面,像在“the、he、she”中)。由于它能预测下一个字符是什么,所以它能有效地减少文本的输入错误。
Java是个很有趣的例子,因为它的结构包括很多嵌套结构,有一个开的圆括号必然后面就会有一个闭的,花括号也是同理。他们之间的依赖关系并不会在位置上表现的很明显,因为多个事件之间的关系不是靠所在位置的距离确定的。但是就算是不明确告诉递归神经网络Java中各个事件的依赖关系,它也能自己学习了解到。
在异常检测当中,我们要求神经网络能够检测出数据中相似、隐藏的或许是并不明显的模式。就像是一个字符生成器在充分地了解数据的结构后就会生成一个数据的拟像,递归神经网络的异常检测就是在其充分了解数据结构后来判断输入的数据是不是正常。
字符生成的例子表明递归神经网络有在不同时间范围内学习到时间依赖关系的能力,它的这种能力还可以用来检测网络活动日志的异常。
异常检测能够使文本中的语法错误浮出水面,这是因为我们所写的东西是由语法结构所决定的。同理,网络行为也是有结构的,它也有一个能够被学习的可预测模式。经过在正常网络活动中训练的递归神经网络可以监测到入侵行为,因为这些入侵行为的出现就像是一个句子没有标点符号一样异常。
应用二、一个网络异常检测项目的示例
假设我们想要了解的网络异常检测就是能够得到硬件故障、应用程序失败、以及入侵的一些信息。
模型将会向我们展示什么呢?
随着大量的网络活动日志被输入到递归神经网络中去,神经网络就能学习到正常的网络活动应该是什么样子的。当这个被训练的网络被输入新的数据时,它就能偶判断出哪些是正常的活动,哪些是被期待的,哪些是异常的。
训练一个神经网络来识别预期行为是有好处的,因为异常数据不多,或者是不能够准确的将异常行为进行分类。我们在正常的数据里进行训练,它就能够在未来的某个时间点提醒我们非正常活动的出现。
说句题外话,训练的神经网络并不一定非得识别到特定事情发生的特定时间点(例如,它不知道那个特殊的日子就是周日),但是它一定会发现一些值得我们注意的一些更明显的时间模式和一些可能并不明显的事件之间的联系。
我们将概述一下怎么用 Deeplearning4j(一个在JVM上被广泛应用的深度学习开源数据库)来解决这个问题。Deeplearning4j在模型开发过程中提供了很多有用的工具:DataVec是一款为ETL(提取-转化-加载)任务准备模型训练数据的集成工具。正如Sqoop为Hadoop加载数据,DataVec将数据进行清洗、预处理、规范化与标准化之后将数据加载到神经网络。这跟Trifacta’s Wrangler也相似,只不过它更关注二进制数据。
开始阶段
第一阶段包括典型的大数据任务和ETL:我们需要收集、移动、储存、准备、规范化、矢量话日志。时间跨度的长短是必须被规定好的。数据的转化需要花费一些功夫,这是由于JSON日志、文本日志、还有一些非连续标注模式都必须被识别并且转化为数值数组。DataVec能够帮助进行转化和规范化数据。在开发机器学习训练模型时,数据需要分为训练集和测试集。
训练神经网络
神经网络的初始训练需要在训练数据集中进行。
在第一次训练的时候,你需要调整一些超参数以使模型能够实现在数据中学习。这个过程需要控制在合理的时间内。关于超参数我们将在之后进行讨论。在模型训练的过程中,你应该以降低错误为目标。
但是这可能会出现神经网络模型过度拟合的风险。有过度拟合现象出现的模型往往会在训练集中的很高的分数,但是在遇到新的数据时就会得出错误结论。用机器学习的语言来说就是它不够通用化。Deeplearning4J提供正则化的工具和“过早停止”来避免训练过程中的过度拟合。
神经网络的训练是最花费时间和耗费硬件的一步。在GPUs上训练能够有效的减少训练时间,尤其是做图像识别的时候。但是额外的硬件设施就带来多余的花销,所以你的深度学习的框架必须能够有效的利用硬件设施。Azure和亚马逊等云服务提供了基于GPU的实例,神经网络还可以在异构集群上进行训练。
创建模型
Deeplearning4J提供ModelSerializer来保存训练模型。训练模型可以被保存或者是在之后的训练中被使用或更新。
在执行异常检测的过程中,日志文件的格式需要与训练模型一致,基于神经网络的输出结果,你将会得到是否当前的活动符合正常网络行为预期的结论。
代码示例
递归神经网络的结构应该是这样子的:
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder(
.seed(123)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1)
.weightInit(WeightInit.XAVIER)
.updater(Updater.NESTEROVS).momentum(0.9)
.learningRate(0.005)
.gradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue)
.(0.5)
.list()
.layer(0, new GravesLSTM.Builder().activation("tanh").nIn(1).nOut(10).build())
.layer(1, new RnnOutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
.activation("softmax").nIn(10).nOut(numLabelClasses).build())
.pretrain(false).backprop(true).build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();
下面解释一下几行重要的代码:
.seed(123)
随机设置一个种子值对神经网络的权值进行初始化,以此获得一个有复验性的结果。系数通常都是被随机的初始化的,以使我们在调整其他超参数时仍获得一致的结果。我们需要设定一个种子值,让我们在调整和测试的时候能够用这个随机的权值。
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1)
决定使用哪个最优算法(在这个例子中是随机梯度下降法)来调整权值以提高误差分数。你可能不需要对这个进行修改。
.learningRate(0.005)
当我们使用随机梯度下降法的时候,误差梯度就被计算出来了。在我们试图将误差值减到最小的过程中,权值也随之变化。SGD给我们一个让误差更小的方向,这个学习效率就决定了我们该在这个方向上迈多大的梯度。如果学习效率太高,你可能是超过了误差最小值;如果太低,你的训练可能将会永远进行。这是一个你需要调整的超参数。

③ 异常聚集检测报警系统最大的作用是什么

1.告警精确度高
智能视频分析系统内置智能算法,能排除气候与环境因素的干扰,有效弥补人工监控的不足,减少视频监控系统整体的误报率和漏报率。
2.实时识别报警
基于智能视频分析和深度学习神经网络技术,对监控区域内的人员异常聚集行为进行识别,报警信息可显示在监控客户端界面,也可将报警信息推送到移动端。
3.全天候运行 稳定可靠
智能视频监控系统可对监控画面进行7×24不间断的分析,大大提高了视频资源的利用率,减少人工监控的工作强度。
4.告警存储功能
对监控区域内的人员异常聚集行为实时识别预警,并将报警信息存储到服务器数据库中,包括时间、地点、快照、视频等。

④ 急求BP神经网络算法应用于异常数据识别,用java实现!!!

BP(Back Propagation)神经网络是86年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。


附件是一个应用BP神经网络进行数据分类的java例子,可供参考。

⑤ 机械编程还能自己检测出BUG,机械编程带来了哪些好处

首先,ControlFlag是完全自我监督的机器编程系统,不需要人类对其进行训练及指导。ControlFlag的无监督模式识别方法使它可以在本质上学习适应开发者的风格。在要评估的控制工具的有限输入信息中,ControlFlag可以识别编程语言中的各种样式,不受代码使用的编程语言限制。

第二,ControlFlag检测bug的功能集成了机器学习、形式化方法、编程语言、编译器和计算机系统。据悉,ControlFlag通过一个称为异常检测的功能来进行bug检测,通过学习经验证的例子来检测正常的编程模式,并找出代码中可能导致bug的异常。该工具将学会识别和标记这些风格选择,并根据其见解进行自动的错误识别和建议解决方案,以便ControlFlag能够尽可能地避免将两个开发团队之间的风格差异视为代码错误。

图:英特尔与麻省理工学院研究人员联合发表的愿景论文提出机器编程有三大支柱,分别是意图(intention)、创造(invention)、适应(adaptation)

如前所述,异构系统非常复杂,能够切实掌握异构系统编程技术的工程师少之又少,英特尔研究院机器编程研究正在开发某种机制,让程序员或非程序员不仅能够轻松访问异构硬件,还能充分使用其他系统可用资源,以大幅降低异构编程难度。这也是英特尔机器编程的基本驱动力之一。

⑥ BP神经网络的原理的BP什么意思

原文链接:http://tecdat.cn/?p=19936

在本教程中,您将学习如何在R语言中创建神经网络模型。

神经网络(或人工神经网络)具有通过样本进行学习的能力。人工神经网络是一种受生物神经元系统启发的信息处理模型。它由大量高度互连的处理元件(称为神经元)组成,以解决问题。它遵循非线性路径,并在整个节点中并行处理信息。神经网络是一个复杂的自适应系统。自适应意味着它可以通过调整输入权重来更改其内部结构。

该神经网络旨在解决人类容易遇到的问题和机器难以解决的问题,例如识别猫和狗的图片,识别编号的图片。这些问题通常称为模式识别。它的应用范围从光学字符识别到目标检测。

本教程将涵盖以下主题:

  • 神经网络概论

  • 正向传播和反向传播

  • 激活函数

  • R中神经网络的实现

  • 案例

  • 利弊

  • 结论

  • 神经网络概论

    神经网络是受人脑启发执行特定任务的算法。它是一组连接的输入/输出单元,其中每个连接都具有与之关联的权重。在学习阶段,网络通过调整权重进行学习,来预测给定输入的正确类别标签。

    人脑由数十亿个处理信息的神经细胞组成。每个神经细胞都认为是一个简单的处理系统。被称为生物神经网络的神经元通过电信号传输信息。这种并行的交互系统使大脑能够思考和处理信息。一个神经元的树突接收来自另一个神经元的输入信号,并根据这些输入将输出响应到某个其他神经元的轴突。

    创建测试数据集

    创建测试数据集:专业知识得分和沟通技能得分

  • # 创建测试集test=data.frame(专业知识,沟通技能得分)

  • 预测测试集的结果

    使用计算函数预测测试数据的概率得分。

  • ## 使用神经网络进行预测Pred$result

  • 0.99282020800.33355439250.9775153014

  • 现在,将概率转换为二进制类。

  • # 将概率转换为设置阈值0.5的二进制类别pred <- ifelse(prob>0.5, 1, 0)pred

  • 101

  • 预测结果为1,0和1。

    利弊

    神经网络更灵活,可以用于回归和分类问题。神经网络非常适合具有大量输入(例如图像)的非线性数据集,可以使用任意数量的输入和层,可以并行执行工作。

    还有更多可供选择的算法,例如SVM,决策树和回归算法,这些算法简单,快速,易于训练并提供更好的性能。神经网络更多的是黑盒子,需要更多的开发时间和更多的计算能力。与其他机器学习算法相比,神经网络需要更多的数据。NN仅可用于数字输入和非缺失值数据集。一位着名的神经网络研究人员说:“神经网络是解决任何问题的第二好的方法。最好的方法是真正理解问题。”

    神经网络的用途

    神经网络的特性提供了许多应用方面,例如:

  • 模式识别:神经网络非常适合模式识别问题,例如面部识别,物体检测,指纹识别等。

  • 异常检测:神经网络擅长异常检测,它们可以轻松检测出不适合常规模式的异常模式。

  • 时间序列预测:神经网络可用于预测时间序列问题,例如股票价格,天气预报。

  • 自然语言处理:神经网络在自然语言处理任务中提供了广泛的应用,例如文本分类,命名实体识别(NER),词性标记,语音识别和拼写检查。

  • 最受欢迎的见解

    1.r语言用神经网络改进nelson-siegel模型拟合收益率曲线分析

    2.r语言实现拟合神经网络预测和结果可视化

    3.python用遗传算法-神经网络-模糊逻辑控制算法对乐透分析

    4.用于nlp的python:使用keras的多标签文本lstm神经网络分类

    5.用r语言实现神经网络预测股票实例

    6.R语言基于Keras的小数据集深度学习图像分类

    7.用于NLP的seq2seq模型实例用Keras实现神经机器翻译

    8.python中基于网格搜索算法优化的深度学习模型分析糖

    9.matlab使用贝叶斯优化的深度学习

⑦ 异常检测有哪些主要的分析方法

1. 概率统计方法
在基于异常检测技术的IDS中应用最早也是最多的一种方法。
首先要对系统或用户的行为按照一定的时间间隔进行采样,样本的内容包括每个会话的登录、退出情况,CPU和内存的占用情况,硬盘等存储介质的使用情况等。
将每次采集到的样本进行计算,得出一系列的参数变量对这些行为进行描述,从而产生行为轮廓,将每次采样后得到的行为轮廓与已有轮廓进行合并,最终得到系统和用户的正常行为轮廓。IDS通过将当前采集到的行为轮廓与正常行为轮廓相比较,来检测是否存在网络入侵行为。
2. 预测模式生成法
假设条件是事件序列不是随机的而是遵循可辨别的模式。这种检测方法的特点是考虑了事件的序列及其相互联系,利用时间规则识别用户行为正常模式的特征。通过归纳学习产生这些规则集,并能动态地修改系统中的这些规则,使之具有较高的预测性、准确性。如果规则在大部分时间是正确的,并能够成功地运用预测所观察到的数据,那么规则就具有高可信度。
3. 神经网络方法
基本思想是用一系列信息单元(命令)训练神经单元,这样在给定一组输入后、就可能预测出输出。与统计理论相比,神经网络更好地表达了变量间的非线性关系,并且能自动学习并更新。实验表明UNIX系统管理员的行为几乎全是可以预测的,对于一般用户,不可预测的行为也只占了很少的一部分。

⑧ BP神经网络建模后,想知道模型的RMSE(root mean squre error)不知道该怎么做,请高手指教

如果是自己编写神经网络代码的话,只需要在迭代完成以后加入一步正向学习的过程,把样本再输入一遍算出来预测值,然后按照定义,同样本输出做一步范数求和就能算出来。
如果是使用已有的工具箱那么很容易办,你把matlab更新到2010b以后的版本,工具箱会自动给你画出来。方法是训练完成以后点击performance,并且最佳收敛点也会给你自动标出来,同理,ROC曲线,错误直方图,各类检测概率漏报概率都会给你写的一清二楚。

⑨ 用机器学习检测异常点击流

用机器学习检测异常点击流
本文内容是我学习ML时做的一个练手项目,描述应用机器学习的一般步骤。该项目的目标是从点击流数据中找出恶意用户的请求。点击流数据长下图这样子,包括请求时间、IP、平台等特征:

该项目从开始做到阶段性完成,大致可分为两个阶段:算法选择和工程优化。算法选择阶段挑选合适的ML模型,尝试了神经网络、高斯分布、Isolation Forest等三个模型。由于点击流数据本身的特性,导致神经网络和高斯分布并不适用于该场景,最终选择了Isolation Forest。工程优化阶段,最初使用单机训练模型和预测结果,但随着数据量的增加,最初的单机系统出现了性能瓶颈;然后开始优化性能,尝试了分布化训练,最终通过单机异步化达到了性能要求。
1 算法选择
1.1 神经网络
刚开始没经验,受TensorFlow热潮影响,先尝试了神经网络。选用的神经网络是MLP(Multilayer Perceptron,多层感知器),一种全连接的多层网络。MLP是有监督学习,需要带标签的样本,这里“带标签”的意思是样本数据标注了哪些用户请求是恶意的、哪些是正常的。但后台并没有现成带标签的恶意用户样本数据。后来通过安全侧的一些数据“间接”给用户请求打上了标签,然后选择IP、平台、版本号、操作码等数据作为MLP的输入数据。结果当然是失败,想了下原因有两个:
1, 样本的标签质量非常差,用这些样本训练出来的模型性能当然也很差;
2, 输入的特征不足以刻画恶意用户。
数据的质量问题目前很难解决,所以只能弃用MLP。
1.2 高斯分布
然后尝试其他模型。通过搜索发现,有一类ML模型专门用于异常检测,找到了Andrew Ng介绍的基于高斯分布的异常检测算法:高斯分布如下图所示:

这个算法的思想比较简单:与大部分样本不一致的样本就是异常;通过概率密度量化“不一致”。具体做法是:选择符合高斯分布或能转换为高斯分布的特征,利用收集到的数据对高斯分布做参数估计,把概率密度函数值小于某个阈值的点判定为异常。
所谓的参数估计是指,给定分布数据,求分布的参数。对高斯分布来说,就是求μ和σ。用极大似然估计可以得到高斯分布参数的解析解:

得到高斯分布参数后,用下式计算概率密度:

X表示一个特征输入。若有多个特征x0、x1、…、xn,一种简单的处理方法是将其结果连乘起来即可:f(x) = f(x0)f(x1)…f(xn)。
然后选定一个阈值ε,把f(x) < ε的样本判定为异常。ε值需根据实际情况动态调整,默认可设定ε = f(μ- 3σ)。
把这个模型初步应用于点击流异常检测时,效果还不错,但在进一步实施过程中碰到一个棘手问题:样本中最重要的一个特征是操作码,当前操作码在微信后台的取值范围是[101,1000],每个操作码的请求次数是模型的基础输入,对900个特征计算概率密度再相乘,非常容易导致结果下溢出,以致无法计算出精度合适的概率密度值。这个现象被称为维度灾难(Dimension Disaster)。
解决维度灾难的一个常见做法是降维,降维的手段有多种,这里不展开讨论了。在点击流分析的实践中,降维的效果并不好,主要原因有两个:
1, 正常用户和恶意用户的访问模式并不固定,导致很难分解出有效的特征矩阵或特征向量;
2, 降维的本质是有损压缩,有损压缩必定导致信息丢失。但在本例中每一维的信息都是关键信息,有损压缩会极大破坏样本的有效性。
高斯分布模型的维度灾难在本例中较难解决,只能再尝试其他模型了
1.3 Isolation Forest
Isolation Forest,可翻译为孤异森林,该算法的基本思想是:随机选择样本的一个特征,再随机选择该特征取值范围中的一个值,对样本集做拆分,迭代该过程,生成一颗Isolation Tree;树上叶子节点离根节点越近,其异常值越高。迭代生成多颗Isolation Tree,生成Isolation Forest,预测时,融合多颗树的结果形成最终预测结果。Isolation Forest的基础结构有点类似经典的随机森林(Random Forest)。
这个异常检测模型有效利用了异常样本“量少”和“与正常样本表现不一样”的两个特点,不依赖概率密度因此不会导致高维输入的下溢出问题。提取少量点击流样本测试,它在900维输入的情况下也表现良好,最终选择它作为系统的模型。
2 工程优化
工程实现经历了单机训练、分布式训练、单机异步化训练3个方案,下面内容介绍实现过程中碰到的问题和解决方法。
2.1 单机训练
整个系统主要包括收集数据、训练模型、预测异常、上报结果四个部分。
2.1.1 收集数据
刚开始尝试该模型时,是通过手工方式从mmstreamstorage获取样本的:
1,通过logid 11357,得到手工登录成功用户的uin和登录时间;
2,利用mmstreamstorage提供的接口,得到用户登录后10分钟的点击流;
但这样做有两个缺点:
1,上述步骤1是离线手工操作的,需要做成自动化;
2,mmstreamstorage的接口性能较差,只能提供2万/min的查询性能,上海IDC登录的峰值有9万/min。
改进办法是复用点击流上报模块mmstreamstorage,增加一个旁路数据的逻辑:
1,手工登录时在presence中记录手工登录时间,mmstreamstorage基于该时间旁路一份数据给mmguardstore。由于mmstreamstorage每次只能提供单挑点击流数据,所以需要在mmguardstore中缓存;
2,mmguardstore做完数据清洗和特征提取,然后把样本数据落地,最后利用crontab定期将该数据同步到Hadoop集群中。
最终的数据收集模块结构图如下所示:

点击流数据提供了IP、平台、版本号、操作码等特征,经过多次试验,选定用户手工登录后一段时间内操作码的访问次数作为模型的输入。
上面我们提到过点击流的操作码有900个有效取值,所以一个显然的处理方法是,在mmguardstore中把用户的点击流数据转化为一个900维的向量,key是cgi id,value是对应cgi的访问次数。该向量刻画了用户的行为,可称为行为特征向量。
2.1.2 训练模型
初起为了控制不确定性,只输入1万/分钟的样本给模型训练和预测。系统的工作流程是先从Hadoop加载上一分钟的样本数据,然后用数据训练Isolation Forest模型,最后用训练好的模型做异常检测,并将检测结果同步到tdw。
在1万/分钟输入下取得较好的检测结果后,开始导入全量数据,全量数据数据的峰值为20万/分钟左右。出现的第一个问题是,一分钟内无法完成加载数据、训练模型、预测结果,单加载数据就耗时10分钟左右。这里先解释下为什么有“一分钟”的时间周期限制,主要原因有两个:
1, 想尽快获取检测结果;
2, 由于点击流异常检测场景的特殊性,模型性能有时效性,需要经常用最新数据训练新的模型。
解决性能问题的第一步是要知道性能瓶颈在哪里,抽样发现主要是加载数据和训练模型耗时较多,预测异常和上报结果的耗时并没有随数据量的增加而快速上涨。
加载数据的耗时主要消耗在网络通信上:样本文件太大了,导致系统从Hadoop同步样本数据时碰到网络带宽瓶颈。但由于样本是文本类数据,对数据先压缩再传输可极大减少通信量,这里的耗时比较容易优化。
训练模型的耗时增加源于输入数据量的增加。下图是1万样本/min的输入下,系统个阶段的耗时:

其中:
加载程序: 2s
加载数据: 6s
训练模型:11s
分类异常: 2s
保存结果: 4s
单轮总耗时:25s
需处理全量数据时,按线性关系换算,“训练模型”耗时为:11s * 24 = 264s,约为4.4分钟,单机下无法在1分钟内完成计算。
最先想到的优化训练模型耗时的办法是分布式训练。
2.2 分布式训练
由于scikit-learn只提供单机版的Isolation Forest实现,所以只能自己实现它的分布式版本。了解了下目前最常用的分布式训练方法是参数服务器(Parameter Server,PS)模式,其想法比较简单:训练模型并行跑在多机上,训练结果在PS合并。示意图如下所示:

分布式训练对算法有一定要求,而Isolation Forest正好适用于分布式训练。
然后尝试在TensorFlow上实现Isolation Forest的分布式训练版本。选择TensorFlow的原因有主要两个:
1, TensorFlow已经实现了一个分布式训练框架;
2, TensorFlow的tf.contrib.learn包已经实现的Random Forest可作参考(Isolation Forest在结构上与Random Forest类似),只需对Isolation Forest定制一个Operation即可。
写完代码测试时,发现了个巨坑的问题:TenforFlow内部的序列化操作非常频繁、性能十分差。构造了110个测试样本,scikit-learn耗时只有0.340秒,29万次函数调用;而TensorFlow耗时达207.831秒,有2.48亿次函数调用。
TensorFlow性能抽样:

Scikit-learn性能抽样:

从TensorFlow的性能抽样数据可以看到,耗时排前排的函数都不是实现Isolation Forest算法的函数,其原因应该与TensorFlow基于Graph、Session的实现方式有关。感觉这里坑比较深,遂放弃填坑。
也了解了下基于Spark的spark-sklearn,该项目暂时还未支持Isolation Forest,也因为坑太深,一时半会搞不定而放弃了。
2.3 单机异步化训练
没搞定分布式训练,只能回到单机场景再想办法。单机优化有两个着力点:优化算法实现和优化系统结构。
首先看了下scikit-learn中Isoaltion Forest的实现,底层专门用Cython优化了,再加上Joblib库的多CPU并行,算法实现上的优化空间已经很小了,只能从系统结构上想办法。
系统结构上的优化有两个利器:并行化和异步化。之前的单机模型,加载数据、训练模型、预测异常、上报结果在单进程中串行执行,由此想到的办法是启动4个工作进程分别处理相应的四个任务:异步训练模型、预测异常和上报结果,并行加载数据。工作进程之间用队列通信,队列的一个优势是容易实现流量控制。
写完代码测试,却发现YARD环境中的Python HDFS库在多进程并发下直接抛异常。尝试多个方法发现这个问题较难解决,暂时只能想办法规避。经测试发现,直接从Hadoop同步所有压缩过的样本数据只需2秒左右,由此想到规避方法是:先单进程同步所有样本数据,再多进程并发解压、加载和预测。
按上述想法修改代码测试,效果较好,处理所有样本只需20秒左右,达到了1分钟处理完所有样本的要求。然后提交YARD作业线上跑,处理所有样本耗时却达到200~400秒:

咨询YARD侧同学,得知YARD对提交的离线作业有CPU配额的硬限制,分时段配额如下表:
00:00~09:00 80%
09:00~19:00 50%
19:00~23:00 15%
23:00~24:00 50%
晚高峰时段的配额只有15%。
与YARD侧同学沟通,他们答应后续会支持scikit-learn库的在线服务。目前通过手工方式在一台有scikit-learn的mmguardstore机器上运行在线服务,晚高峰时段处理全量数据耗时为20秒左右。
最终的系统结构图如下图所示:

模型训练进程定期训练最新的模型,并把模型通过队列传给预测进程。预测进程每分钟运行一次,检查模型队列上是否有新模型可使用,然后加载数据、检测异常,将检测结果通过上报队列传给上报进程。上报进程block在上报队列上,一旦发现有新数据,就根据数据类型执行上报监控、上报tdw等操作。
2.4 评估性能
安全侧将异常用户分为以下几类:盗号、LBS/加好友、养号、欺诈、外挂/多开等。由于这些分类的异常打击是由不同同学负责,不便于对Isolation Forest的分类结果做评估,因此需要在Isolation Forest的基础上,再加一个分类器,标记“异常样本”的小类。利用操作码实现了该分类器。
接入全量数据后,每天准实时分析1亿量级的样本,检测出500万左右的异常,精确分类出15万左右的恶意请求。恶意请求的uin、类型、发生时间通过tdw中转给安全侧。安全侧通过线下人工分析和线上打击,从结果看检测效果较好。
2.5 持续优化
再回过头观察点击流数据,我们使用的Isolation Forest模型只利用了操作码的统计数据。可以明显看到,点击流是一个具备时间序列信息的时序数据。而自然语言处理(Natural LanguageProcessing,NLP)领域已经积累了非常多的处理时序数据的理论和实战经验,如LSTM、word2vec等模型。后续期望能引入NLP的相关工具挖掘出更多恶意用户。

⑩ 入侵检测技术基础的异常检测技术

●概率统计异常检测
原理:每一个轮廓保存记录主体当前行为,并定时将当前轮廓与历史轮廓合并形成统计轮廓(更新),通过比较当前轮廓与统计轮廓来判定异常行为。
优点:可应用成熟的概率统计理论
缺点:①由于用户行为的复杂性,要想准确地匹配一个用户的历史行为非常困难,容易造成系统误报和漏报;
②定义入侵阈值比较困难,阈值高则误报率提高,阈值低则漏报率增高。
●神经网络异常检测
原理:对下一事件的预测错误率在一定程度上反映了用户行为的异常程度。
优点:①更好地表达了变量间的非线性关系,能更好地处理原始数据的随机特征,即不需要对这些数据做任何统计假设,并且能自动学习和更新;②有较好的抗干扰能力
缺点:网络拓扑结构以及各元素的权重很难确定

阅读全文

与神经网络异常检测相关的资料

热点内容
电脑工作网络位置安全吗 浏览:926
甘南哪个网络好 浏览:380
计算机网络谁在进行通讯 浏览:784
ipad怎样还原网络设置 浏览:213
中国联通网络如何变全网 浏览:861
国际网络哪个好 浏览:832
哪个网络音乐播放器 浏览:203
网络数据124kb等于多少钱 浏览:623
怎样取消打印机连接的无线网络 浏览:99
网络安全战略措施 浏览:844
传统企业网络营销的限制因素 浏览:914
家里无线路由器没有网络能上网吗 浏览:490
路由器设置完成显示网络不可用 浏览:954
有线网络无线网络哪个快 浏览:993
联通信号网络可以增强吗 浏览:461
手机通讯录显示无网络怎么办 浏览:751
蜻蜓fm网络连接 浏览:918
计算机网络软路由 浏览:857
苹果手机怎么能设置无线网络 浏览:470
气象部门网络安全总结 浏览:934

友情链接