❶ 脉冲神经网络的介绍
脉冲神经网络 (SNN-Spiking Neuron Networks) 经常被誉为第三代人工神经网络。其模拟神经元更加接近实际,除此之外,它把时间信息的影响也考虑其中。思路是这样的,动态神经网络中的神经元不是在每一次迭代传播中都被激活(而在典型的多层感知机网络中却是),而是在它的膜电位达到某一个特定值才被激活。当一个神经元被激活,它会产生一个信号传递给其他神经元,提高或降低其膜电位。
❷ 脉冲神经网络的分类
脉冲耦合神经网络(PCNN-Pulse Coupled Neural Network)与脉冲神经网络 (SNN-Spiking Neuron Networks) 容易混淆。脉冲耦合神经网络(PCNN)可以看做是脉冲神经网络(SNN)的一种,而脉冲神经网络(SNN)是更广泛的分类。两者其实无明显差异,都是基于脉冲编码(spike coding)。
❸ 脉冲神经网络的简介
脉冲神经网络 (SNN-Spiking Neuron Networks) 经常被誉为第三代人工神经网络。第一代神经网络是感知器,它是一个简单的神经元模型并且只能处理二进制数据。第二代神经网络包括比较广泛,包括应用较多的BP神经网络。但是从本质来讲,这些神经网络都是基于神经脉冲的频率进行编码( rate coded)。
脉冲神经网络,其模拟神经元更加接近实际,除此之外,把时间信息的影响也考虑其中。思路是这样的,动态神经网络中的神经元不是在每一次迭代传播中都被激活(而在典型的多层感知机网络中却是),而是在它的膜电位达到某一个特定值才被激活。当一个神经元被激活,它会产生一个信号传递给其他神经元,提高或降低其膜电位。
在脉冲神经网络中,神经元的当前激活水平(被建模成某种微分方程)通常被认为是当前状态,一个输入脉冲会使当前这个值升高,持续一段时间,然后逐渐衰退。出现了很多编码方式把这些输出脉冲序列解释为一个实际的数字,这些编码方式会同时考虑到脉冲频率和脉冲间隔时间。
借助于神经科学的研究,人们可以精确的建立基于脉冲产生时间神经网络模型。这种新型的神经网络采用脉冲编码(spike coding),通过获得脉冲发生的精确时间,这种新型的神经网络可以进行获得更多的信息和更强的计算能力。
❹ 脉冲神经网络的历史
Alan Lloyd Hodgkin和Andrew Huxley在1952年提出了第一个脉冲神经网络模型,这个模型描述了动作电位是怎样产生并传播的。但是,脉冲并不是在神经元之间直接传播的,它需要在突触间隙间交换一种叫“神经递质”的化学物质。这种生物体的复杂性和可变性导致了许多不同的神经元模型。
从信息论的观点来看,找到一种可以解释脉冲,也就是动作电位的模型是个问题。所以,神经科学的一个基本问题就是确定神经元是否通过时间编码来交流。时间编码表明单一的神经元可以取代上百个S型隐藏层节点。
❺ 急求翻译——英译汉
神经网络分割 神经网络分割依靠处理图象使用一个神经网络[4]或一套的小范围神经网络。 在这样处理以后政策制定机制相应地指示图象的区域对神经网络认可的类别。 网络的类型特别是为此设计了,是Kohonen地图。 脉冲被结合的神经网络(PCNNs)是为高性能biomimetic图象处理提议通过塑造猫的视觉皮质和开发的神经系统的模型。 在1989年, Eckhorn介绍一个神经系统的模型看齐猫的视觉皮质机制。 Eckhorn模型提供了为学习小哺乳动物的视觉皮质的一个简单和有效的工具和很快被认出了作为有重大应用潜力在图象处理。 在1994年, Eckhorn模型由约翰逊适应是图象处理算法,命名这个算法脉冲被结合的神经网络。 在过去十年中, PCNNs为各种各样的图象处理应用被运用了,包括: 图象分割,特点世代,面孔提取,行动侦查,生长的区域,噪声降低,等等。 PCNN是一个二维神经网络。 在网络的每个神经元对应于在输入图象的一个映象点,获得它对应的映象点的颜色信息(即强度)作为外在刺激。 每个神经元也连接用它的邻居神经元,接受地方刺激从他们。 外部和地方刺激在一个内部活化作用系统被结合,积累刺激,直到它超出动态门限,造成脉冲输出。 通过重复计算, PCNN神经元导致脉冲输出世俗系列。 脉冲输出世俗系列包含输入图象的信息,并且可以为各种各样的图象处理应用被运用,例如图象分割和特点世代。 比较常规图象处理手段, PCNNs有几重大优点,包括几何变异的强壮反对噪声,跨接较小强度变异的独立在输入样式,能力在输入样式等等
❻ pcnn 的全名是什么
脉冲耦合神经网络(PCNN-Pulse Coupled Neural Network)与传统神经网络相比,有着根本的不同。PCNN有生物学的背景,它是依据猫、猴等动物的大脑皮层上的同步脉冲发放现象提出的。PCNN有着广泛的应用,可应用于图像分割,边缘检测、细化、识别等方面。 PCNN是Eckhorn于20世纪90年代开始提出的一种基于猫的视觉原理构建的简化神经网络模型,与BP神经网络和Kohonen神经网络相比,PCNN不需要学习或者训练,能从复杂背景下提取有效信息,具有同步脉冲发放和全局耦合等特性,其信号形式和处理机制更符合人类视觉神经系统的生理学基础。
需要的话 我这边有资料~~
❼ 脉冲神经网络的应用
脉冲神经网络大体上可以和传统的人工神经网络一样被用在信息处理中,而且脉冲神经网络可以对一个虚拟昆虫寻找食物的问题建模,而不需要环境的先验知识。并且,由于它更加接近现实的性能,使它可以用来学习生物神经系统的工作,电生理学的脉冲和脉冲神经网络在电脑上的模拟输出相比,决定了拓扑学和生物神经学的假说的可能性。
在实践中脉冲神经网络和已被证明的理论之间还存在一个主要的不同点。脉冲神经网络已被证明在神经科学系统中有作用,而在工程学中还无建树,一些大规模的神经网络已经被审计来利用脉冲神经网络中发现的脉冲编码,这些网络根据储备池计算 的原则,但是现实中,大规模的脉冲神经网络计算由于所需计算资源多而产能小被限制了,造成了只有很少的大规模脉冲神经网络被用来解决复杂的计算问题,而这些之前都是由第二代神经网络解决的。第二代神经网络模型中难以加入时间,脉冲神经网络(特备当算法定义为离散时间时)相当容易观察其动力学特征。我们很难建立一个具有稳定行为的模型来实现一个特定功能。
❽ 脉冲耦合神经网络被称为第三代神经网络,那么第一代和第二代分别是什么
第一代神经网络是感知器,一个简单的神经元模型并且只能处理二进制数据。第二代神经网络包括比较广泛,BP神经网络等。
❾ 脉冲神经网络和非脉冲神经网络各有什么优缺点
度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构,通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。深度学习的概念由Hinton等人于2006年提出,基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。
系统地论述了神经网络的基本原理、方法、技术和应用,主要内容包括:神经信息处理的基本原理、感知器、反向传播网络、自组织网络、递归网络、径向基函数网络、核函数方法、神经网络集成、模糊神经网络、概率神经网络、脉冲耦合神经网络、神经场理论、神经元集群以及神经计算机。每章末附有习题,书末附有详细的参考文献。神经网络是通过对人脑或生物神经网络的抽象和建模,研究非程序的、适应性的、大脑风格的信息处理的本质和能力。它以脑科学和认知神经科学的研究成果为基础,拓展智能信息处理的方法,为解决复杂问题和智能控制提供有效的途径,是智能科学和计算智能的重要部分。