㈠ 什么是卷积神经网络为什么它们很重要
卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。[1]它包括卷积层(alternating convolutional layer)和池层(pooling layer)。
卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(Convolutional Neural Networks-简称CNN)。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。 K.Fukushima在1980年提出的新识别机是卷积神经网络的第一个实现网络。随后,更多的科研工作者对该网络进行了改进。其中,具有代表性的研究成果是Alexander和Taylor提出的“改进认知机”,该方法综合了各种改进方法的优点并避免了耗时的误差反向传播。
㈡ 卷积在数字图像处理的应用
卷积就是把模版与图像对应点相乘再相加,把最后的结果代替模版中心点的值。其实实现挺简单的,如果你想弄的特别明白就看看数字信号处理的相关内容吧,只是一个概念而已。
㈢ 卷积神经网络主要做什么用的
卷积网络的特点主要是卷积核参数共享,池化操作。
参数共享的话的话是因为像图片等结构化的数据在不同的区域可能会存在相同的特征,那么就可以把卷积核作为detector,每一层detect不同的特征,但是同层的核是在图片的不同地方找相同的特征。然后把底层的特征组合传给后层,再在后层对特征整合(一般深度网络是说不清楚后面的网络层得到了什么特征的)。
而池化主要是因为在某些任务中降采样并不会影响结果。所以可以大大减少参数量,另外,池化后在之前同样大小的区域就可以包含更多的信息了。
综上,所有有这种特征的数据都可以用卷积网络来处理。有卷积做视频的,有卷积做文本处理的(当然这两者由于是序列信号,天然更适合用lstm处理)
另外,卷积网络只是个工具,看你怎么使用它,有必要的话你可以随意组合池化和卷积的顺序,可以改变网络结构来达到自己所需目的的,不必太被既定框架束缚。
㈣ CNN(卷积神经网络)是什么
在数字图像处理的时候我们用卷积来滤波是因为我们用的卷积模版在频域上确实是高通低通带通等等物理意义上的滤波器。然而在神经网络中,模版的参数是训练出来的,我认为是纯数学意义的东西,很难理解为在频域上还有什么意义,所以我不认为神经网络里的卷积有滤波的作用。接着谈一下个人的理解。首先不管是不是卷积神经网络,只要是神经网络,本质上就是在用一层层简单的函数(不管是sigmoid还是Relu)来拟合一个极其复杂的函数,而拟合的过程就是通过一次次back propagation来调参从而使代价函数最小。
㈤ 如何通过人工神经网络实现图像识别
人工神经网络(Artificial Neural Networks)(简称ANN)系统从20 世纪40 年代末诞生至今仅短短半个多世纪,但由于他具有信息的分布存储、并行处理以及自学习能力等优点,已经在信息处理、模式识别、智能控制及系统建模等领域得到越来越广泛的应用。尤其是基于误差反向传播(Error Back Propagation)算法的多层前馈网络(Multiple-Layer Feedforward Network)(简称BP 网络),可以以任意精度逼近任意的连续函数,所以广泛应用于非线性建模、函数逼近、模式分类等方面。
目标识别是模式识别领域的一项传统的课题,这是因为目标识别不是一个孤立的问题,而是模式识别领域中大多数课题都会遇到的基本问题,并且在不同的课题中,由于具体的条件不同,解决的方法也不尽相同,因而目标识别的研究仍具有理论和实践意义。这里讨论的是将要识别的目标物体用成像头(红外或可见光等)摄入后形成的图像信号序列送入计算机,用神经网络识别图像的问题。
一、BP 神经网络
BP 网络是采用Widrow-Hoff 学习算法和非线性可微转移函数的多层网络。一个典型的BP 网络采用的是梯度下降算法,也就是Widrow-Hoff 算法所规定的。backpropagation 就是指的为非线性多层网络计算梯度的方法。一个典型的BP 网络结构如图所示。
六、总结
从上述的试验中已经可以看出,采用神经网络识别是切实可行的,给出的例子只是简单的数字识别实验,要想在网络模式下识别复杂的目标图像则需要降低网络规模,增加识别能力,原理是一样的。
㈥ 如何理解卷积,另外如何理解图像处理中的卷积
卷积的运算可以分为反转、平移,相乘,求和。
在图像处理中,图像是一个大矩阵,卷积模板是一个小矩阵。按照上述过程,就是先把小矩阵反转,然后平移到某一位置,小矩阵的每一个小格对应大矩阵里面的一个小格,然后把对应小格里面的数相乘,把所有对应小格相乘的结果相加求和,得出的最后结果赋值给小矩阵中央小格对应的图像中小格的值,替换原来的值。就是上述说到的,反转、平移、相乘、求和。
一般图像卷积就是从第一个像素(小格)开始遍历到最后一个像素(小格)。之后的平滑、模糊、锐化、边缘提取等本质上都是卷积,只是模板不同。
㈦ 为什么要对图像卷积处理
图像的卷积是对图像处理的一个基本方法,FFT变换以及其他变换都市基于此的,经过变换以后 的图片往往能减除图像的噪声,比原图像易于处理,分析
㈧ 为什么图像识别都用卷积神经网络不能使用遗传算法来做图像识别吗
目前能用的图像识别算法中,卷积神经网络效果最好。
㈨ 为什么有图卷积神经网络
本质上说,世界上所有的数据都是拓扑结构,也就是网络结构,如果能够把这些网络数据真正的收集、融合起来,这确实是实现了AI智能的第一步。所以,如何利用深度学习处理这些复杂的拓扑数据,如何开创新的处理图数据以及知识图谱的智能算法是AI的一个重要方向。
深度学习在多个领域的成功主要归功于计算资源的快速发展(如 GPU)、大量训练数据的收集,还有深度学习从欧几里得数据(如图像、文本和视频)中提取潜在表征的有效性。但是,尽管深度学习已经在欧几里得数据中取得了很大的成功,但从非欧几里得域生成的数据已经取得更广泛的应用,它们需要有效分析。如在电子商务领域,一个基于图的学习系统能够利用用户和产品之间的交互以实现高度精准的推荐。在化学领域,分子被建模为图,新药研发需要测定其生物活性。在论文引用网络中,论文之间通过引用关系互相连接,需要将它们分成不同的类别。自2012年以来,深度学习在计算机视觉以及自然语言处理两个领域取得了巨大的成功。假设有一张图,要做分类,传统方法需要手动提取一些特征,比如纹理,颜色,或者一些更高级的特征。然后再把这些特征放到像随机森林等分类器,给到一个输出标签,告诉它是哪个类别。而深度学习是输入一张图,经过神经网络,直接输出一个标签。特征提取和分类一步到位,避免了手工提取特征或者人工规则,从原始数据中自动化地去提取特征,是一种端到端(end-to-end)的学习。相较于传统的方法,深度学习能够学习到更高效的特征与模式。
图数据的复杂性对现有机器学习算法提出了重大挑战,因为图数据是不规则的。每张图大小不同、节点无序,一张图中的每个节点都有不同数目的邻近节点,使得一些在图像中容易计算的重要运算(如卷积)不能再直接应用于图。此外,现有机器学习算法的核心假设是实例彼此独立。然而,图数据中的每个实例都与周围的其它实例相关,含有一些复杂的连接信息,用于捕获数据之间的依赖关系,包括引用、朋友关系和相互作用。
最近,越来越多的研究开始将深度学习方法应用到图数据领域。受到深度学习领域进展的驱动,研究人员在设计图神经网络的架构时借鉴了卷积网络、循环网络和深度自编码器的思想。为了应对图数据的复杂性,重要运算的泛化和定义在过去几年中迅速发展。