❶ 神经网络切负荷控制matlab代码是什么
摘要 你好!亲~p=[];t=[];
❷ 在matlab中怎样添加bpnet这个神经网络代码。
bp是训练算法的一种,你首先需要确定一个神经网络结构,这种结构可以是feed forward, layer recurrent, elman等等。首先你需要先初始化一个神经网络,net = newff(Input, target, layerConfig).然后使用相应的Back Propagation算法。
比如:
net.trainFcn = 'trainscg'。
你可以去matlab帮助文件里面搜索trainscg,然后就会出来所有的优化算法,大多数是BP的。
然后就可以使用, net = train(net, input, target),来训练神经网络,神经网络训练就会用你刚刚定义的算法。
然后可以使用sim(net, testInput),来试验神经网络输出。
❸ matlab中用RBF神经网络做预测的代码怎么写
clc;
clearall;
closeall;
%%----
c_1=[00];
c_2=[11];
c_3=[01];
c_4=[10];
n_L1=20;%numberoflabel1
n_L2=20;%numberoflabel2
A=zeros(n_L1*2,3);
A(:,3)=1;
B=zeros(n_L2*2,3);
B(:,3)=0;
%createrandompoints
fori=1:n_L1
A(i,1:2)=c_1+rand(1,2)/2;
A(i+n_L1,1:2)=c_2+rand(1,2)/2;
end
fori=1:n_L2
B(i,1:2)=c_3+rand(1,2)/2;
B(i+n_L2,1:2)=c_4+rand(1,2)/2;
end
%showpoints
scatter(A(:,1),A(:,2),[],'r');
holdon
scatter(B(:,1),B(:,2),[],'g');
X=[A;B];
data=X(:,1:2);
label=X(:,3);
%%Usingkmeanstofindcintervector
n_center_vec=10;
rng(1);
[idx,C]=kmeans(data,n_center_vec);
holdon
scatter(C(:,1),C(:,2),'b','LineWidth',2);
%%Calulatesigma
n_data=size(X,1);
%calculateK
K=zeros(n_center_vec,1);
fori=1:n_center_vec
K(i)=numel(find(idx==i));
end
%
%thencalucatesigma
sigma=zeros(n_center_vec,1);
fori=1:n_center_vec
[n,d]=knnsearch(data,C(i,:),'k',K(i));
L2=(bsxfun(@minus,data(n,:),C(i,:)).^2);
L2=sum(L2(:));
sigma(i)=sqrt(1/K(i)*L2);
end
%%Calutateweights
%kernelmatrix
k_mat=zeros(n_data,n_center_vec);
fori=1:n_center_vec
r=bsxfun(@minus,data,C(i,:)).^2;
r=sum(r,2);
k_mat(:,i)=exp((-r.^2)/(2*sigma(i)^2));
end
W=pinv(k_mat'*k_mat)*k_mat'*label;
y=k_mat*W;
%y(y>=0.5)=1;
%y(y<0.5)=0;
%%
[W1,sigma1,C1]=RBF_training(data,label,10);
y1=RBF_predict(data,W,sigma,C1);
[W2,sigma2,C2]=lazyRBF_training(data,label,2);
y2=RBF_predict(data,W2,sigma2,C2);
(3)matlap神经网络代码是什么扩展阅读
matlab的特点
1、具有完备的图形处理功能,实现计算结果和编程的可视化;
2、友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;
3、功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。
❹ 求一个4,8,1的bp神经网络模型的matlab代码
代码如下:直接运行就是了。
P=P=[-1,-2,3,1;-1,1,5,-3;-2,3,4,6;1,2,3,4];%初始训练值
%创建一个新的前向神经网络
net=newff(minmax(P),[8,1],{'tansig','purelin'},'traingdm')
%当前输入层权值和阈值
inputWeights=net.IW{1,1}
inputbias=net.b{1}
%当前网络层权值和阈值
layerWeights=net.LW{2,1}
layerbias=net.b{2}
%设置训练参数
net.trainParam.show=50;
net.trainParam.lr=0.05;
net.trainParam.mc=0.9;
net.trainParam.epochs=1000;
net.trainParam.goal=1e-3;
%调用TRAINGDM算法训练BP网络
[net,tr]=train(net,P,T);
%对BP网络进行仿真
A=sim(net,P)%最后结果
%计算仿真误差
E=T-A
MSE=mse(E)
❺ BP神经网络matlab源程序代码讲解
newff 创建前向BP网络格式:
net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)
其中:PR —— R维输入元素的R×2阶最大最小值矩阵; Si —— 第i层神经元的个数,共N1层; TFi——第i层的转移函数,默认‘tansig’; BTF—— BP网络的训练函数,默认‘trainlm’; BLF—— BP权值/偏差学习函数,默认’learngdm’ PF ——性能函数,默认‘mse’;(误差)
e.g.
P = [0 1 2 3 4 5 6 7 8 9 10];T = [0 1 2 3 4 3 2 1 2 3 4];
net = newff([0 10],[5 1],{'tansig' 'purelin'});net.trainparam.show=50; %每次循环50次net.trainParam.epochs = 500; %最大循环500次
net.trainparam.goal=0.01; %期望目标误差最小值
net = train(net,P,T); %对网络进行反复训练
Y = sim(net,P)Figure % 打开另外一个图形窗口
plot(P,T,P,Y,'o')
❻ matlab BP神经网络预测代码
P=[1;2;3;4;5];%月
P=[P/50];
T=[2;3;4;5;6];%月训练样本
T=[T/50];
threshold=[0 1;0 1;0 1;0 1;0 1;0 1;0 1];
net=newff(threshold,[15,7],{'tansig','logsig'},'trainlm');
net.trainParam.epochs=2000;
net.trainParam.goal=0.001;
LP.lr=0.1;
net=train(net,P,T);
P_test=[6月]';%6月数据预测7月
P_test=[P_test/50];
y=sim(net,P_test)
y=[y*50]
❼ 用matlab编BP神经网络预测代码
matlab编写BP神经网络很方便的,这个工作不用像编程序的C什么的那样还要编写算法
这个算法早已经在软件的库里提供了。你只要用一条语句就出来了。把参数,深度和节点固定的往里一代数就可以了。
还有一点,注意最后结果的收敛性,神经网络发展一直是曲折前进的,为什么这样,现在不太给力,因为面临着一个收敛的问题,实现起来效果不好。这些程序网上有很多,你借一本基本的神经网络的书里面也有。望采纳。