⑴ matlab神经网络工具箱预测一组数据,比如说 日期:1,2,3,4,5,6,7,8,9,10 数据:10,11,12,12,12,12,13,15
构造神经网络,将关系型数据转化为训练样本:输入样本前几个数据,输出后2个,滑动生成。最后采用后面的数据对11,12日的数据进行预测 。
⑵ RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测|附代码数据
在2017年,R语言引入了名为Keras的包,这是一个在Tensorflow基础上的强大工具,支持CPU和GPU运算,为R用户提供了丰富的机器学习功能。本文将着重展示如何利用这种便利,通过R和LSTM(长短期记忆网络)来实现时间序列长期利率预测的实践操作。
时间序列分析关注的是按时间顺序排列的数据,我们用xt表示单个变量,t代表时间索引,可以是离散或连续的。这里我们以离散时间序列为例进行讨论。常规RNN在处理长序列时,存在梯度消失的问题,这限制了它们处理长期依赖关系的能力。
LSTM通过特殊的结构解决了这个问题。LSTM网络由记忆块(单元)组成,这些单元内包含了单元状态Ct和隐藏状态ht。通过门机制,使用sigmoid和tanh激活函数,LSTM能够控制信息的增删,尤其是sigmoid函数的输出范围在0到1,允许有选择地保留或遗忘单元状态中的信息。
LSTM中的门机制涉及当前输入xt和前一时间步ht-1的处理,通过权重矩阵W进行点乘,并添加偏置b。主要有三种门:输入门、遗忘门和输出门,它们协同工作以控制信息流动。
为了进行实际操作,首先需要在R中加载必要的库,如Tensorflow和数据集。本文将使用一个长期利率数据集,该数据集从2007年1月持续到2018年3月,每月一次的利率数据。以下是数据集的前五个观察样本...
⑶ 如何用神经网络进行时间序列预测
神经网络是可以用来预测时间序列。例如神经网络人口预测。已知1990至2009年的某地区人口数[11 28 30 42 44 56 49 60 50 63 56 74 76 65 92 105 124 117 132 128]。预测2010-2016年的某地区人口数。
具体实施过程:
%已知数据
t=1990:2009;
x=[11 28 30 42 44 56 49 60 50 63 56 74 76 65 92 105 124 117 132 128];
% 自回归阶数
lag=3;
%预测步数为fn
fn=length(t);
%输出数据
[f_out,iinput]=BP(x,lag,fn); %BP()神经网络预测函数
[x' iinput']
R2=corrcoef(x,iinput)
%预测年份或某一时间段
%t1=2015:2016;
t1=length(x)+1:length(x)+7;
%预测步数为fn
fn=length(t1);
[f_out,iinput]=BP(x,lag,fn);
P=vpa(f_out,5);
%预测数据
t1=2010:2016;
[t1' P']
% 画出预测图
figure(6),plot(t,x,'b*-'),hold on
plot(t(end):t1(end),[iinput(end),f_out],'rp-'),grid on
title('BP神经网络预测某地区人口数')
xlabel('年份'),ylabel('人口数');
legend('2009-2014年人口变化数','2014-2016年人口预测数');
⑷ bp神经网络预测一组数据
关键在于输入向量的制定:可选择前3年的数据作为输入,输入节点设为3;第4年的数据为输出,输出节点数设为1;隐层节点数设为4左右。这样便形成了样本,用这些样本去训练bp神经网络,将训练好的网络用于预测。
最后是以06、07、08的数据作为输入,去预测09的数据。再滚动迭代下去,直至将2012的数据预测出来。
附件是一个电力负荷的预测实例,按照我上面所说,稍微修改一下样本和节点数即可应用。