导航:首页 > 网络营销 > 你还了解哪些神经网络

你还了解哪些神经网络

发布时间:2024-08-22 09:52:31

㈠ 循环神经网络(RNN)简介

循环神经网络英文名称为 ( Recurrent Neural Network, RNN ),其通过使用带自反馈的神经元,能够处理任意长度的 时序 数据。

给定输入时序序列

式中, 表示一段时序数据, 为时间长度

以一段英文段落为例,其时序数据可以表示为:

若是一段视频,将其每一帧通过CNN网络处理得到相应的编码向量

循环神经网络通过以下公式更新隐藏层的活性值

循环神经网络图示

RNN的基本模型如下图所示,为便于理解,图中将RNN的模型展开,按照时序方向对其前向传播流程进行介绍

RNN的基本模型

利用数学表达式整个过程可以变得更加清晰,RNN的前向传播公式如下:

将上述过程整合到一个RNN cell中,可以表示为如下图所示的过程:

RNN的前向传播示意图

缺陷:

没有利用到模型后续的信息,可以通过双向RNN网络进行优化

RNN主要有两种计算梯度的方式:随时间反向传播(BPTT)和实时循环学习法(RTRL)算法

本文中主要介绍随时间反向传播的方法 ( BackPropagation Through Time

RNN的损失函数与任务有关,对于同步的序列对序列任务,其loss可以用交叉熵公式表示

然后通过BPTT算法便可以进行梯度的反向传播计算

梯度爆炸的解决方法:梯度修剪

梯度消失的解决方法:增加长程依赖 LSTM,GRU

GRU的基本思路:增加相关门(Relate Gate)和更新门(Update Gate),进而使得RNN单元具有记忆能力

首先从数学角度对GRU的前向传播过程进行介绍,具体公式如下:

公式中各变量的含义:

将上述数学公式转化为图像,可得

GRU Cell的前向传播流程

LSTM意为长短时记忆网络 (Long Short-Term Memory Network,LSTM) ,可以有效地解决简单神经网络的梯度消失和爆炸问题

在LSTM中,与GRU主要有两点不同

同样,先从数学公式入手,对LSTM的前向传播过程进行了解

基于数学公式的过程,可将LSTM CELL的前向传播过程总结为(图片借用于nndl):

LSTM Cell的前向传播示意图

从上图中可以看出,LSTM在前向传播的过程中传输了两个状态:内部状态 以及外部状态 ,在整个传播过程中 外部状态(隐状态) 每个时刻都会被重写,因此可以看作一种 短时记忆 ,而 内部状态 可以在某个时刻捕捉一些关键信息,并将此信息保存一段时间间隔,可以看作一种 长时记忆 (长的短时记忆)

此外,在LSTM网络初始化训练的时候,需要手动将遗忘门的数值设置的大一些,否则在参数初始化的时候,遗忘门的数据会被初始化为一个很小的值,前一时刻的内部状态 大部分都会丢失,这样网络很难获取到长距离的依赖信息,并且相邻时间间隔的梯度会非常小,导致 梯度弥散 问题,因此遗忘门的 偏置变量 的初始值 一般很大,取 1或2

将 设置为1即可,但是长度非常的大的时候会造成记忆单元的饱和,降低性能

三个门不仅依赖于 和 ,也依赖于

将两者合并为一个门,即:

首先,我们要理解什么是深层的RNN,对于单个的RNN cell,若将其在时间维度上展开,其深度与时间维度的长度成正比,但若将一个RNN cell看作为单个从 的映射函数,则单个cell实际上是很浅显的一层,因此深层循环神经网络要做的就是把多个RNN cell组合起来,换句话说,就是增加从输入 到输出 的路径,使得网络的深度更深。

如何增加从输入 到输出 的路径呢?两种途径:

堆叠循环神经网络示意图

将网络带入到实际应用场景中:假如我们要翻译一段句子

在这里,is和are实际上是由后面的Lucy和they所决定的,而这种单向的按照时序进行传播的方式没有利用到后面的信息。因此诞生了双向循环网络

双向循环神经网络示意图

双向循环神经网络实际上就是简单的双层循环神经网络,只不过第二层网络的传播方式为按时序的逆向传播,其传播公式为:

㈡ 机器学习算法之神经网络

在学习了机器学习的相关知识以后,我们知道其中的算法有很多种,比如回归算法、K近邻算法等等,这些都是需要大家掌握的算法,而神经网络算法是一个十分实用的算法,在这篇文章中我们就给大家介绍一下机器学习算法中的神经网络算法知识。
那么什么是神经网络算法呢?其实神经网络也称之为人工神经网络,简单就是ANN,而算法是80年代机器学习界非常流行的算法,不过在90年代中途衰落。现在,随着深度学习的发展,神经网络再次出现在大家的视野中,重新成为最强大的机器学习算法之一。而神经网络的诞生起源于对大脑工作机理的研究。早期生物界学者们使用神经网络来模拟大脑。机器学习的学者们使用神经网络进行机器学习的实验,发现在视觉与语音的识别上效果都相当好。
那么神经网络的学习机理是什么呢?简单来说,就是分解与整合。我们可以通过一个例子进行解答这个问题,比如说,我们可以把一个正方形分解为四个折线进入视觉处理的下一层中。四个神经元分别处理一个折线。每个折线再继续被分解为两条直线,每条直线再被分解为黑白两个面。于是,一个复杂的图像变成了大量的细节进入神经元,神经元处理以后再进行整合,最后得出了看到的是正方形的结论。这就是大脑视觉识别的机理,也是神经网络工作的机理。
那么神经网络的逻辑架构是什么呢?其实一个简单的神经网络的逻辑架构分成输入层,隐藏层,和输出层。输入层负责接收信号,隐藏层负责对数据的分解与处理,最后的结果被整合到输出层。每层中的一个圆代表一个处理单元,可以认为是模拟了一个神经元,若干个处理单元组成了一个层,若干个层再组成了一个网络,这就是所谓的神经网络知识。
当然,在神经网络中,其实每一个处理单元事实上就是一个逻辑回归模型,逻辑回归模型接收上层的输入,这样,把模型的预测结果作为输出传输到下一个层次。这些过程,神经网络可以完成非常复杂的非线性分类。在神经网络在图像识别领域的一个着名应用,而这个程序叫做LeNet,是一个基于多个隐层构建的神经网络。通过LeNet可以识别多种手写数字,并且达到很高的识别精度与拥有较好的鲁棒性。这也是神经网络中最着名的应用。
在这篇文章中我们给大家介绍了很多关于神经网络的相关知识,通过这些知识我们可以更好地了解神经网络算法。当然,我们要想了解机器学习还需要掌握更多的算法。

㈢ 一文看懂卷积神经网络-CNN(基本原理+独特价值+实际应用)

在 CNN 出现之前,图像对于人工智能来说是一个难题,有2个原因:

图像需要处理的数据量太大,导致成本很高,效率很低

图像在数字化的过程中很难保留原有的特征,导致图像处理的准确率不高

下面就详细说明一下这2个问题:

图像是由像素构成的,每个像素又是由颜色构成的。

现在随随便便一张图片都是 1000×1000 像素以上的, 每个像素都有RGB 3个参数来表示颜色信息。

假如我们处理一张 1000×1000 像素的图片,我们就需要处理3百万个参数!

1000×1000×3=3,000,000

这么大量的数据处理起来是非常消耗资源的,而且这只是一张不算太大的图片!

卷积神经网络 – CNN 解决的第一个问题就是“将复杂问题简化”,把大量参数降维成少量参数,再做处理。

更重要的是:我们在大部分场景下,降维并不会影响结果。比如1000像素的图片缩小成200像素,并不影响肉眼认出来图片中是一只猫还是一只狗,机器也是如此。

图片数字化的传统方式我们简化一下,就类似下图的过程:

假如有圆形是1,没有圆形是0,那么圆形的位置不同就会产生完全不同的数据表达。但是从视觉的角度来看, 图像的内容(本质)并没有发生变化,只是位置发生了变化 。

所以当我们移动图像中的物体,用传统的方式的得出来的参数会差异很大!这是不符合图像处理的要求的。

而 CNN 解决了这个问题,他用类似视觉的方式保留了图像的特征,当图像做翻转,旋转或者变换位置时,它也能有效的识别出来是类似的图像。

那么卷积神经网络是如何实现的呢?在我们了解 CNN 原理之前,先来看看人类的视觉原理是什么?

深度学习的许多研究成果,离不开对大脑认知原理的研究,尤其是视觉原理的研究。

1981 年的诺贝尔医学奖,颁发给了 David Hubel(出生于加拿大的美国神经生物学家) 和TorstenWiesel,以及 Roger Sperry。前两位的主要贡献,是“ 发现了视觉系统的信息处理 ”,可视皮层是分级的。

人类的视觉原理如下:从原始信号摄入开始(瞳孔摄入像素 Pixels),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定,眼前的物体的形状,是圆形的),然后进一步抽象(大脑进一步判定该物体是只气球)。下面是人脑进行人脸识别的一个示例:

对于不同的物体,人类视觉也是通过这样逐层分级,来进行认知的:

我们可以看到,在最底层特征基本上是类似的,就是各种边缘,越往上,越能提取出此类物体的一些特征(轮子、眼睛、躯干等),到最上层,不同的高级特征最终组合成相应的图像,从而能够让人类准确的区分不同的物体。

那么我们可以很自然的想到:可以不可以模仿人类大脑的这个特点,构造多层的神经网络,较低层的识别初级的图像特征,若干底层特征组成更上一层特征,最终通过多个层级的组合,最终在顶层做出分类呢?

答案是肯定的,这也是许多深度学习算法(包括CNN)的灵感来源。

典型的 CNN 由3个部分构成:

卷积层

池化层

全连接层

如果简单来描述的话:

卷积层负责提取图像中的局部特征;池化层用来大幅降低参数量级(降维);全连接层类似传统神经网络的部分,用来输出想要的结果。

下面的原理解释为了通俗易懂,忽略了很多技术细节,如果大家对详细的原理感兴趣,可以看这个视频《 卷积神经网络基础 》。

卷积层的运算过程如下图,用一个卷积核扫完整张图片:

这个过程我们可以理解为我们使用一个过滤器(卷积核)来过滤图像的各个小区域,从而得到这些小区域的特征值。

在具体应用中,往往有多个卷积核,可以认为,每个卷积核代表了一种图像模式,如果某个图像块与此卷积核卷积出的值大,则认为此图像块十分接近于此卷积核。如果我们设计了6个卷积核,可以理解:我们认为这个图像上有6种底层纹理模式,也就是我们用6中基础模式就能描绘出一副图像。以下就是25种不同的卷积核的示例:

总结:卷积层的通过卷积核的过滤提取出图片中局部的特征,跟上面提到的人类视觉的特征提取类似。

池化层简单说就是下采样,他可以大大降低数据的维度。其过程如下:

上图中,我们可以看到,原始图片是20×20的,我们对其进行下采样,采样窗口为10×10,最终将其下采样成为一个2×2大小的特征图。

之所以这么做的原因,是因为即使做完了卷积,图像仍然很大(因为卷积核比较小),所以为了降低数据维度,就进行下采样。

总结:池化层相比卷积层可以更有效的降低数据维度,这么做不但可以大大减少运算量,还可以有效的避免过拟合。

这个部分就是最后一步了,经过卷积层和池化层处理过的数据输入到全连接层,得到最终想要的结果。

经过卷积层和池化层降维过的数据,全连接层才能”跑得动”,不然数据量太大,计算成本高,效率低下。

典型的 CNN 并非只是上面提到的3层结构,而是多层结构,例如 LeNet-5 的结构就如下图所示:

卷积层 – 池化层- 卷积层 – 池化层 – 卷积层 – 全连接层

在了解了 CNN 的基本原理后,我们重点说一下 CNN 的实际应用有哪些

卷积神经网络 – CNN 很擅长处理图像。而视频是图像的叠加,所以同样擅长处理视频内容。下面给大家列一些比较成熟的应用�:

图像分类、检索

图像分类是比较基础的应用,他可以节省大量的人工成本,将图像进行有效的分类。对于一些特定领域的图片,分类的准确率可以达到 95%+,已经算是一个可用性很高的应用了。

典型场景:图像搜索…

目标定位检测

可以在图像中定位目标,并确定目标的位置及大小。

典型场景:自动驾驶、安防、医疗…

目标分割

简单理解就是一个像素级的分类。

他可以对前景和背景进行像素级的区分、再高级一点还可以识别出目标并且对目标进行分类。

典型场景:美图秀秀、视频后期加工、图像生成…

人脸识别

人脸识别已经是一个非常普及的应用了,在很多领域都有广泛的应用。

典型场景:安防、金融、生活…

骨骼识别

骨骼识别是可以识别身体的关键骨骼,以及追踪骨骼的动作。

典型场景:安防、电影、图像视频生成、游戏…

今天我们介绍了 CNN 的价值、基本原理和应用场景,简单总结如下:

CNN 的价值:

能够将大数据量的图片有效的降维成小数据量(并不影响结果)

能够保留图片的特征,类似人类的视觉原理

CNN 的基本原理:

卷积层 – 主要作用是保留图片的特征

池化层 – 主要作用是把数据降维,可以有效的避免过拟合

全连接层 – 根据不同任务输出我们想要的结果

CNN 的实际应用:

图片分类、检索

目标定位检测

目标分割

人脸识别

骨骼识别

本文首发在 easyAI - 人工智能知识库

《 一文看懂卷积神经网络-CNN(基本原理+独特价值+实际应用) 》

㈣ 一文看懂四种基本的神经网络架构

原文链接:
http://blackblog.tech/2018/02/23/Eight-Neural-Network/

更多干货就在我的个人博客 http://blackblog.tech 欢迎关注

刚刚入门神经网络,往往会对众多的神经网络架构感到困惑,神经网络看起来复杂多样,但是这么多架构无非也就是三类,前馈神经网络,循环网络,对称连接网络,本文将介绍四种常见的神经网络,分别是CNN,RNN,DBN,GAN。通过这四种基本的神经网络架构,我们来对神经网络进行一定的了解。

神经网络是机器学习中的一种模型,是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
一般来说,神经网络的架构可以分为三类:

前馈神经网络:
这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。如果有多个隐藏层,我们称之为“深度”神经网络。他们计算出一系列改变样本相似性的变换。各层神经元的活动是前一层活动的非线性函数。

循环网络:
循环网络在他们的连接图中定向了循环,这意味着你可以按照箭头回到你开始的地方。他们可以有复杂的动态,使其很难训练。他们更具有生物真实性。
循环网络的目的使用来处理序列数据。在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多问题却无能无力。例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。
循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。

对称连接网络:
对称连接网络有点像循环网络,但是单元之间的连接是对称的(它们在两个方向上权重相同)。比起循环网络,对称连接网络更容易分析。这个网络中有更多的限制,因为它们遵守能量函数定律。没有隐藏单元的对称连接网络被称为“Hopfield 网络”。有隐藏单元的对称连接的网络被称为玻尔兹曼机。

其实之前的帖子讲过一些关于感知机的内容,这里再复述一下。
首先还是这张图
这是一个M-P神经元

一个神经元有n个输入,每一个输入对应一个权值w,神经元内会对输入与权重做乘法后求和,求和的结果与偏置做差,最终将结果放入激活函数中,由激活函数给出最后的输出,输出往往是二进制的,0 状态代表抑制,1 状态代表激活。

可以把感知机看作是 n 维实例空间中的超平面决策面,对于超平面一侧的样本,感知器输出 1,对于另一侧的实例输出 0,这个决策超平面方程是 w⋅x=0。 那些可以被某一个超平面分割的正反样例集合称为线性可分(linearly separable)样例集合,它们就可以使用图中的感知机表示。
与、或、非问题都是线性可分的问题,使用一个有两输入的感知机能容易地表示,而异或并不是一个线性可分的问题,所以使用单层感知机是不行的,这时候就要使用多层感知机来解决疑惑问题了。

如果我们要训练一个感知机,应该怎么办呢?
我们会从随机的权值开始,反复地应用这个感知机到每个训练样例,只要它误分类样例就修改感知机的权值。重复这个过程,直到感知机正确分类所有的样例。每一步根据感知机训练法则来修改权值,也就是修改与输入 xi 对应的权 wi,法则如下:

这里 t 是当前训练样例的目标输出,o 是感知机的输出,η 是一个正的常数称为学习速率。学习速率的作用是缓和每一步调整权的程度,它通常被设为一个小的数值(例如 0.1),而且有时会使其随着权调整次数的增加而衰减。

多层感知机,或者说是多层神经网络无非就是在输入层与输出层之间加了多个隐藏层而已,后续的CNN,DBN等神经网络只不过是将重新设计了每一层的类型。感知机可以说是神经网络的基础,后续更为复杂的神经网络都离不开最简单的感知机的模型,

谈到机器学习,我们往往还会跟上一个词语,叫做模式识别,但是真实环境中的模式识别往往会出现各种问题。比如:
图像分割:真实场景中总是掺杂着其它物体。很难判断哪些部分属于同一个对象。对象的某些部分可以隐藏在其他对象的后面。
物体光照:像素的强度被光照强烈影响。
图像变形:物体可以以各种非仿射方式变形。例如,手写也可以有一个大的圆圈或只是一个尖头。
情景支持:物体所属类别通常由它们的使用方式来定义。例如,椅子是为了让人们坐在上面而设计的,因此它们具有各种各样的物理形状。
卷积神经网络与普通神经网络的区别在于,卷积神经网络包含了一个由卷积层和子采样层构成的特征抽取器。在卷积神经网络的卷积层中,一个神经元只与部分邻层神经元连接。在CNN的一个卷积层中,通常包含若干个特征平面(featureMap),每个特征平面由一些矩形排列的的神经元组成,同一特征平面的神经元共享权值,这里共享的权值就是卷积核。卷积核一般以随机小数矩阵的形式初始化,在网络的训练过程中卷积核将学习得到合理的权值。共享权值(卷积核)带来的直接好处是减少网络各层之间的连接,同时又降低了过拟合的风险。子采样也叫做池化(pooling),通常有均值子采样(mean pooling)和最大值子采样(max pooling)两种形式。子采样可以看作一种特殊的卷积过程。卷积和子采样大大简化了模型复杂度,减少了模型的参数。
卷积神经网络由三部分构成。第一部分是输入层。第二部分由n个卷积层和池化层的组合组成。第三部分由一个全连结的多层感知机分类器构成。
这里举AlexNet为例:

·输入:224×224大小的图片,3通道
·第一层卷积:11×11大小的卷积核96个,每个GPU上48个。
·第一层max-pooling:2×2的核。
·第二层卷积:5×5卷积核256个,每个GPU上128个。
·第二层max-pooling:2×2的核。
·第三层卷积:与上一层是全连接,3*3的卷积核384个。分到两个GPU上个192个。
·第四层卷积:3×3的卷积核384个,两个GPU各192个。该层与上一层连接没有经过pooling层。
·第五层卷积:3×3的卷积核256个,两个GPU上个128个。
·第五层max-pooling:2×2的核。
·第一层全连接:4096维,将第五层max-pooling的输出连接成为一个一维向量,作为该层的输入。
·第二层全连接:4096维
·Softmax层:输出为1000,输出的每一维都是图片属于该类别的概率。

卷积神经网络在模式识别领域有着重要应用,当然这里只是对卷积神经网络做了最简单的讲解,卷积神经网络中仍然有很多知识,比如局部感受野,权值共享,多卷积核等内容,后续有机会再进行讲解。

传统的神经网络对于很多问题难以处理,比如你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。RNN之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。理论上,RNN能够对任何长度的序列数据进行处理。
这是一个简单的RNN的结构,可以看到隐藏层自己是可以跟自己进行连接的。

那么RNN为什么隐藏层能够看到上一刻的隐藏层的输出呢,其实我们把这个网络展开来开就很清晰了。

从上面的公式我们可以看出,循环层和全连接层的区别就是循环层多了一个权重矩阵 W。
如果反复把式2带入到式1,我们将得到:

在讲DBN之前,我们需要对DBN的基本组成单位有一定的了解,那就是RBM,受限玻尔兹曼机。
首先什么是玻尔兹曼机?
[图片上传失败...(image-d36b31-1519636788074)]
如图所示为一个玻尔兹曼机,其蓝色节点为隐层,白色节点为输入层。
玻尔兹曼机和递归神经网络相比,区别体现在以下几点:
1、递归神经网络本质是学习一个函数,因此有输入和输出层的概念,而玻尔兹曼机的用处在于学习一组数据的“内在表示”,因此其没有输出层的概念。
2、递归神经网络各节点链接为有向环,而玻尔兹曼机各节点连接成无向完全图。

而受限玻尔兹曼机是什么呢?
最简单的来说就是加入了限制,这个限制就是将完全图变成了二分图。即由一个显层和一个隐层构成,显层与隐层的神经元之间为双向全连接。

h表示隐藏层,v表示显层
在RBM中,任意两个相连的神经元之间有一个权值w表示其连接强度,每个神经元自身有一个偏置系数b(对显层神经元)和c(对隐层神经元)来表示其自身权重。
具体的公式推导在这里就不展示了

DBN是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布,对P(Observation|Label)和 P(Label|Observation)都做了评估,而判别模型仅仅而已评估了后者,也就是P(Label|Observation)。
DBN由多个限制玻尔兹曼机(Restricted Boltzmann Machines)层组成,一个典型的神经网络类型如图所示。这些网络被“限制”为一个可视层和一个隐层,层间存在连接,但层内的单元间不存在连接。隐层单元被训练去捕捉在可视层表现出来的高阶数据的相关性。

生成对抗网络其实在之前的帖子中做过讲解,这里在说明一下。
生成对抗网络的目标在于生成,我们传统的网络结构往往都是判别模型,即判断一个样本的真实性。而生成模型能够根据所提供的样本生成类似的新样本,注意这些样本是由计算机学习而来的。
GAN一般由两个网络组成,生成模型网络,判别模型网络。
生成模型 G 捕捉样本数据的分布,用服从某一分布(均匀分布,高斯分布等)的噪声 z 生成一个类似真实训练数据的样本,追求效果是越像真实样本越好;判别模型 D 是一个二分类器,估计一个样本来自于训练数据(而非生成数据)的概率,如果样本来自于真实的训练数据,D 输出大概率,否则,D 输出小概率。
举个例子:生成网络 G 好比假币制造团伙,专门制造假币,判别网络 D 好比警察,专门检测使用的货币是真币还是假币,G 的目标是想方设法生成和真币一样的货币,使得 D 判别不出来,D 的目标是想方设法检测出来 G 生成的假币。
传统的判别网络:

生成对抗网络:

下面展示一个cDCGAN的例子(前面帖子中写过的)
生成网络

判别网络

最终结果,使用MNIST作为初始样本,通过学习后生成的数字,可以看到学习的效果还是不错的。

本文非常简单的介绍了四种神经网络的架构,CNN,RNN,DBN,GAN。当然也仅仅是简单的介绍,并没有深层次讲解其内涵。这四种神经网络的架构十分常见,应用也十分广泛。当然关于神经网络的知识,不可能几篇帖子就讲解完,这里知识讲解一些基础知识,帮助大家快速入(zhuang)门(bi)。后面的帖子将对深度自动编码器,Hopfield 网络长短期记忆网络(LSTM)进行讲解。

㈤ 人工神经网络(ANN)简述

我们从下面四点认识人工神经网络(ANN: Artificial Neutral Network):神经元结构、神经元的激活函数、神经网络拓扑结构、神经网络选择权值和学习算法。

1. 神经元:
我们先来看一组对比图就能了解是怎样从生物神经元建模为人工神经元。

下面分别讲述:
生物神经元的组成包括细胞体、树突、轴突、突触。树突可以看作输入端,接收从其他细胞传递过来的电信号;轴突可以看作输出端,传递电荷给其他细胞;突触可以看作I/O接口,连接神经元,单个神经元可以和上千个神经元连接。细胞体内有膜电位,从外界传递过来的电流使膜电位发生变化,并且不断累加,当膜电位升高到超过一个阈值时,神经元被激活,产生一个脉冲,传递到下一个神经元。

为了更形象理解神经元传递信号过程,把一个神经元比作一个水桶。水桶下侧连着多根水管(树突),水管既可以把桶里的水排出去(抑制性),又可以将其他水桶的水输进来(兴奋性),水管的粗细不同,对桶中水的影响程度不同(权重),水管对水桶水位(膜电位)的改变就是水桶内水位的改变,当桶中水达到一定高度时,就能通过另一条管道(轴突)排出去。

按照这个原理,科学家提出了M-P模型(取自两个提出者的姓名首字母),M-P模型是对生物神经元的建模,作为人工神经网络中的一个神经元。

由MP模型的示意图,我们可以看到与生物神经元的相似之处,x_i表示多个输入,W_ij表示每个输入的权值,其正负模拟了生物神经元中突出的兴奋和抑制;sigma表示将全部输入信号进行累加整合,f为激活函数,O为输出。下图可以看到生物神经元和MP模型的类比:

往后诞生的各种神经元模型都是由MP模型演变过来。

2. 激活函数
激活函数可以看作滤波器,接收外界各种各样的信号,通过调整函数,输出期望值。ANN通常采用三类激活函数:阈值函数、分段函数、双极性连续函数(sigmoid,tanh):

3. 学习算法
神经网络的学习也称为训练,通过神经网络所在环境的刺激作用调整神经网络的自由参数(如连接权值),使神经网络以一种新的方式对外部环境做出反应的一个过程。每个神经网络都有一个激活函数y=f(x),训练过程就是通过给定的海量x数据和y数据,拟合出激活函数f。学习过程分为有导师学习和无导师学习,有导师学习是给定期望输出,通过对权值的调整使实际输出逼近期望输出;无导师学习给定表示方法质量的测量尺度,根据该尺度来优化参数。常见的有Hebb学习、纠错学习、基于记忆学习、随机学习、竞争学习。

4. 神经网络拓扑结构
常见的拓扑结构有单层前向网络、多层前向网络、反馈网络,随机神经网络、竞争神经网络。

5. 神经网络的发展

(不能贴公式不好解释啊 -_-!)sigma是误差信号,yita是学习率,net是输入之和,V是输入层到隐含层的权重矩阵,W是隐含层到输出层的权重矩阵。

之后还有几种

随着计算机硬件计算能力越来越强,用来训练的数据越来越多,神经网络变得越来越复杂。在人工智能领域常听到DNN(深度神经网络)、CNN(卷积神经网络)、RNN(递归神经网络)。其中,DNN是总称,指层数非常多的网络,通常有二十几层,具体可以是CNN或RNN等网络结构。

参考资料

阅读全文

与你还了解哪些神经网络相关的资料

热点内容
哪个手机号4g网络 浏览:253
个人站长如何做好网络安全 浏览:948
监控连接电视后网络卡顿 浏览:458
永杰无线网络延迟 浏览:360
路由器不好用有网络不能上网 浏览:505
撕票是什么意思网络词语 浏览:342
网络信号为什么有时很弱 浏览:766
炎魂网络在哪里 浏览:694
电脑喜欢显示无网络 浏览:611
网络营销促销方面 浏览:692
网络直播间亏了12万怎么办 浏览:616
家里网络不好路由器如何改 浏览:151
工业网络服务多少钱 浏览:521
免费wifi流量网络机顶盒 浏览:110
手机热点的网络适配器 浏览:577
宽带猫的无线网络要不要关 浏览:200
网络多少个设备连接才不可用 浏览:5
先科网络机顶盒怎样连接路由器 浏览:569
手机网络费用怎么收费 浏览:676
初学网络营销哪个好 浏览:206

友情链接