㈠ 神经网络能干什么
神经网络利用现有的数据找出输入与输出之间得权值关系(近似),然后利用这样的权值关系进行仿真,例如输入一组数据仿真出输出结果,当然你的输入要和训练时采用的数据集在一个范畴之内。
例如预报天气:
温度 湿度 气压等作为输入 天气情况作为输出
利用历史得输入输出关系训练出神经网络,然后利用这样的神经网络输入今天的温度 湿度 气压等 得出即将得天气情况
当然这样的例子不够精确,但是神经网络得典型应用了。
㈡ 人工神经网络在模式识别方面有哪些应用仅仅是用来分类嘛
不仅仅是分类,用途非常广泛。经过多年的研究和发展,模式识别已成为当前比较先进的技术,被广泛应用到文字识别、语音识别、指纹识别、遥感图像识别、人脸识别、手写体字符的识别、工业故障检测、精确制导等方面。
模式识别的定义:是对表征事物或现象的各种形式的信息进行处理和分析,来对事物或现象进行描述、辨认、分类和解释的过程。该技术以贝叶斯概率论和申农的信息论为理论基础,对信息的处理过程更接近人类大脑的逻辑思维过程。
现在有两种基本的模式识别方法,即统计模式识别方法和结构模式识别方法。人工神经网络是模式识别中的常用方法,近年来发展起来的人工神经网络模式的识别方法逐渐取代传统的模式识别方法。
㈢ 神经网络技术有什么功能
神经网络技术对完成对微弱信号的检验和对各传感器信息实时处理,具有自适应自学习功能,能自动掌握环境特征,实现自动目标识别及容错性好,抗干扰能力强等优点。神经网络技术特别适用于密集信号环境的信息处理、数据收集目标识别、图像处理、无源探测与定位以及人机接口等方面,因而在作战指挥方面有广泛的应用前景。