导航:首页 > 网络营销 > 网络释放drb的原因有哪些

网络释放drb的原因有哪些

发布时间:2023-08-11 16:40:44

Ⅰ 网络崩溃的原因有哪些什么

1、硬件问题
硬件问题可能发生在维护时期,交通拥堵,或意外事件,如鼠标咀嚼经过服务器的电力电缆。你的托管提供商必须避免单点硬件问题关闭你的商业网站。此外,你的托管提供商应当进行演习,以便IT团队知道怎么应对硬件问题。你的供货商也应当定时备份你的文件,最佳是到物理机器上。
2/3
2、软件问题
软件问题,崩溃你的网站可能是出于不一样的因素。有时,数据中心操作运用一个旧的操作体系(OS)作为一种节约本钱的办法,和旧的操作体系发出。同时,未经测验补丁发送从软件提供者能够糜烂的应用程序,使体系不可用。软件问题的另一个因素包含病毒和别的类型的恶意软件。当你树立一个网站或更新现有的,保证你避免这些失利经过查看您的托管提供商的数据中心运用最新的操作体系从受信任的供货商,并请求你托管提供商需求安全办法来维护你的应用程序和数据。
3/3
3、电源问题
网站崩溃停电是元兇巨恶。灾祸像火灾,龙卷风、飓风和冬季的风暴是大停电的因素。飓风没有托管提供商能够推延,但他们能够把维护来坚持你的网站发动和运转。
牢靠的电源。除了具有牢靠的公用事业服务提供商,您的主机应当不间断电源(upi)服务器,这让他们在短时间内发动和运转,直到现场备用发电机开端运转。此外,发电机应定时维护和查看,这么它们就不会失利了因为电力。
运用监控。过度运用会过载电路,形成本地,有时大范围的停电。你的托管提供商应当监控机的运用和警报设置正告他们对于电路过载。
温度操控的方案。当电力数据中心的冷却体系,机器发生的热量会致使设备问题。您的主机的数据中心应当衔接upi的冷却体系,并且它应当坚持一个额定的冷冻水储罐参展商采购数据中心一段时间,直到发电机开端。也,其冷却体系应当被规划来处理温度比正常的才能,这么下来很快,一旦电力恢复。

Ⅱ 你能说说影响网络安全的因素有哪些吗

我们将所有影响网络正常运行的因素称为网络安全威胁,从这个角度讲,网络安全威胁既包括环境因素和灾害因素,也包括人为因素和系统自身因素。
1.环境因素和灾害因素
网络设备所处环境的温度、湿度、供电、静电、灰尘、强电磁场、电磁脉冲等,自然灾害中的火灾、水灾、地震、雷电等,均会影响和破坏网络系统的正常工作。针对这些非人为的环境因素和灾害因素目前已有比较好的应对策略。
2-人为因素
多数网络安全事件是由于人员的疏忽或黑客的主动攻击造成的,也就是人为因素,丰要包括:
(1)有意:人为的恶意攻击、违纪、违法和犯罪等。
(2)无意:工作疏忽造成失误(配置不当等),对网络系统造成不良后果。
网络安全技术主要针对此类网络安全威胁进行防护。
3.系统自身因素
系统自身因素是指网络中的计算机系统或网络设备因自身的原因导致网络不安全,主要包括:
1)计算机硬件系统的故障。
2)各类计算机软件故障或安全缺陷,包括系统软件(如操作系统)、支撑软件(各种中间件、数据库管理系统等)和应用软件。
3)网络和通信协议自身的缺陷也会导致网络安全问题,1.4节将详细分析互联网协议的安全问题。
系统自身的脆弱和不足(或称为安全漏洞)是造成信息系统安全问题的内部根源,攻击者正是利用系统的脆弱性使各种威胁变成现实。
一般来说,在系统的设计、开发过程中有很多因素会导致系统漏洞,主要包括:
1)系统基础设计错误导致漏洞,例如互联网在设计时没有认证机制,使假冒IP地址很容易。
2)编码错误导致漏洞,例如缓冲区溢出、格式化字符串漏洞、脚本漏洞等都是在编程实现时没有实施严格的安全检查而产生的漏洞。
3)安全策略实施错误导致漏洞,例如在设计访问控制策略时,没有对每一处访问都进行访问控制检查。
4)实施安全策略对象歧义导致漏洞,即实施安全策略时,处理的对象和最终操作处理的对象不一致,如IE浏览器的解码漏洞。
5)系统开发人员刻意留下的后门。 些后门是开发人员为了调试用的,而另一些则是开发人员为了以后非法控制用的,这些后门一旦被攻击者获悉,则将严重威胁系统的安全。
除了上述在设计实现过程中产生的系统安全漏洞外,很多安全事故是因为不正确的安全配置造成的,例如短口令、开放Guest用户、安全策略配置不当等。
尽管人们逐渐意识到安全漏洞对网络安全所造成的严重威胁’,并采取很多措施来避免在系统中留下安全漏洞,但互联网上每天都在发 新的安全漏洞公告,漏洞不仅存在,而且层出不穷,为什么会这样呢?原因主要在于:
1)方案的设计可能存在缺陷。
2)从理论上证明一个程序的正确性是非常困难的。
3)一些产品测试不足就匆匆投入市场。
4)为了缩短研制时间,厂商常常将安全性置于次要地位。
5)系统中运行的应用程序越来越多,相应的漏洞也就不可避免地越来越多。
为了降低安全漏洞对网络安全造成的威胁,目前一般的处理措施就是打补丁,消除安全漏洞。但是,打补丁也不是万能的,主要原因是:
1)由于漏洞太多,相应的补丁也太多,补不胜补。
2)有的补丁会使某些已有的功能不能使用,导致拒绝服务。
3)有时补丁并非厂商们所宣称的那样解决问题。
4)很多补丁一经打上,就不能卸载。如果发现补丁因为这样或那样的原因不合适,就只好把整个软件卸载,然后重新安装软件,非常麻烦。
5)漏洞的发现到补丁的发布有一段时间差,此外,漏洞也可能被某些人发现而未被公开,这样就没有相应的补丁可用。
6)网络和网站增长太快,没有足够的合格的补丁管理员。
7)有时候打补丁需要离线操作,这就意味着关闭该计算机上的服务,这对很多关键的服务来说也许是致命的。
8)有时补丁并非总是可以获得的,特别是对于那些应用范围不广的系统而言,生产厂商可能没有足够的时间、精力和动力去开发补丁程序。
9)厂商可能在补丁中除解决已有问题之外添加很多的其他功能,这些额外的功能可能导致新的漏洞出现,系统性能下降,服务中断,或者出现集成问题和安全功能的暂时中断等。
1 0)补丁的成熟也需要一个过程,仓促而就的补丁常常会有这样或那样的问题,甚至还会带来新的安全漏洞。
1 1)自动安装补丁也有它的问题,很多自动安装程序不能正常运行。
网络对抗研究领域中一个最基础的研究方向就是漏洞挖掘,即通过测试、逆向分析等方法发现系统或软件中存在的未知安全漏洞,在其安全补丁发布之前开发出相应的攻击程序,并大规模应用。对于已发布补丁的软件,也可以通过补丁比较技术发现补丁所针对的安全漏洞的细节,以最短的时间开发出利用程序,在用户还没来得及打上补丁之前实施攻击。在这种情况下,补丁反而为攻击者提供了有用的信息。
总之,威胁网络安全的因素有很多,但最根本的原因是系统自身存在安全漏洞,从而给了攻击者可乘之机。

Ⅲ 网络丢包的原因有哪些

说起“丢包”,估计大家会觉得是丢失了某种包。而“网络丢包”,很多人应该就感到困惑了,不知道是什么。其实呢,“网络丢包”也算是挺常见的,只不过是这个术语有点专业,大家就感到陌生了。看完我接下来浅析“网络丢包”的原因,相信大家就会对它有所了解了。

网络丢包的原因解析

一、网络本身问题

网络本身问题可以这样分类:指所管辖范围以外区域的网络故障及ISP网络问题。

二、物理线路故障

发现广域网线路时通时断,发生这种情况时,有可能是线路出现故障,也可能是用户方面的原因。为了分清是否是线路故障,可以做如下测试。如果广域网线路是通过路由器实现的,可以登录到路由器,通过扩展ping向对端路由器广域网接口发送大量的数据包进行测试。如果线路是通过三层交换机实现,可在线路两端分别接一台计算机,并将IP地址分别设为本端三层路由交换机的广域网接口地址,使用“ping对端计算机地址-t”命令进行测试。如果上述测试没有发生丢包现象,则说明线路运营商提供的线路是好的,引起故障的原因在于用户自身,需要进一步查找。如果上述测试发生丢包现象,则说明故障是由线路供应商提供的线路引起的,需要与线路供应商联系尽快解决问题。由物理线路引起的丢包现象还有很多,如光纤连接问题,跳线没有对准设备接口,双绞线及RJ-45接头有问题等。另外,通信线路受到随机噪声或者突发噪声造成的数据报错误,射频信号的干扰和信号的衰减等都可能造成数据包的丢失。可以借助网络测试仪来检查线路的质量。

三、网络设备故障及网络瓶颈

设备故障主要是指设备硬件方面的故障,不包含软件配置不当造成的丢包。如网卡是坏的,交换机的某个端口出现了物理故障,光纤收发器的电端口与网络设备接口,或两端设备接口的双工模式不匹配。

网络拥塞造成丢包率上升的原因很多,主要是路由器资源被大量占用造成的。如交换机会对所有接收到的数据包进行CRC错误检测和长度校验,将检查出有错误的包丢弃,正确的包转发出去。但这个过程中有些有错误的包在CRC错误检测和长度校验中都均未检测出错误,这样的包在转发过程中不会被发送出去,也不会被丢弃,它们将会堆积在动态缓存中,永远无法发送出去,等到缓存中堆积满了,就会造成交换机 死机 的现象。最终结果是,数据包无法到达目的主机。

网络瓶颈指的是影响网络传输性能及稳定性的一些相关因素,如网络拓扑结构,网线,网卡,服务器配置,网络连接设备等:

四、网络攻击

网络攻击,其实非常普遍,同时也是难于避免的行为,不管是什么样的攻击行为,蠕虫、木马攻击、DOS攻击等,这些具有一定特征库的攻击行为很容易逃过防火墙或IDS的检测,进入到内网,从而造成网络瘫痪、丢包甚至断网。当遭遇网络丢包的时候,如何才能分析出是否是由于网络攻击行为导致的呢?在此,就需要借助网络分析工具,通过对网络中所有通讯的数据包的采集和分析,就可以检测出这样一些攻击行为导致的故障。

五、网络环路

网络环路,通常是由于错误的网络接线或者网络配置所导致,如果网络中有环路,那么可能会产生广播风暴,进而导致网络丢包、延时等故障。网络分析工具对这类故障的分析中,可以主要从以下几方面入手:在诊断视图查看是否有ICMP网络重定向这样的事件产生、通过数据包解码查看每个IP数据包的IP标识符、TTL等这样一些关键参数,如果是由于网络配置错误,如路由表设置错误导致的环路的故障检测请参考相关手册,其次,如果是由于网络接线产生的环路,那么在数据包解码视图中,可以对数据包的IP标识符以及TTL这两个参数进行分析和比较,看是否符合网络环路的相关特征。

六、广播风暴

广播风暴的检测相对简单,通过科来网络分析系统的概要统计视图,我们可以看到网络广播流量、广播数据包等信息,通常情况下,如果广播流量占到了很大的比例,那么肯定会影响正常的网络通讯,造成网络拥塞,从而导致网络延时、丢包等问题。

七、网络流量占用较大

网络流量的占用问题通常也是导致网络丢包的重要原因之一。特别是P2P下载所产生的流量,对网络的影响是非常大的。据一项权威的调查指出,目前互联网上70%的流量都是由于P2P下载产生。所以,对流量的监控,可以说是网络管理中的一项基本工作,虽然现在很多产品都能实现对流量的监控,但是却并不是非常全面。通过网络分析工具,能够检测多种流量类型,如网络总流量、广播/组播流量、单个VLAN的流量、单个IP或MAC的流量等,此外,对网络中每个业务应用的流量占用也能够详细的展现。所以,当在遭遇网络丢包的故障时,首先可以检查流量占用问题,看是否是由于一些异常的流量占用导致网络带宽不足,从而导致故障产生。

综上所述,“网络丢包”能由各种情况造成。通过以上的浅析,相信大家对“网络丢包”已经有了概念,而对造成“网络丢包”的原因也有了一定程度的了解。所以,我相信大家遇到“网络丢包”这种情况时,应该懂得如何解决。还有,当有人跟你谈起“丢包”时,你不会再觉得是丢失了某种包。必要时,还可以对不了解情况的朋友“扫扫盲”,让他们也长下知识哦!

网络丢包的相关 文章 :

1. 什么是网络丢包

2. 电脑丢包率测试和解决

3. 网络丢包是什么?怎么解决

4. 网络丢包是什么

Ⅳ DT路测在GSM的事件分析怎么做

1.1 覆盖类问题
1.1.1 地形环境导致弱覆盖
【问题现象】路测表现为:主被叫手机当前小区和所有邻区RSRP均小于-110dbm,无主服务小区导致SINR<-3dbm,无线环境恶化,导致掉线、切换失败、接入失败等异常事件频发。

【问题分析】结合现场环境和基站拓扑图,对周边所有基站进行逐个勘察和验证覆盖,对于地形原因导致无法彻底解决的区段,提交后续工程建设方案。
【解决方案】:
1:核查局方站点规划方案,如果有规划站点,提高建设开通优先级,如果无建设规划,提交建站方案;
2:测试2G网络覆盖情况,对于2覆盖良好情况下,开启SRVCC功能;同时确保2G侧FR功能开启,确保及时回落4G。
3:对于有测试考核要求的情况下,采取规避路线,减少异常事件发生概率;
1.1.2 邻区漏配导致弱覆盖
【问题现象】
DT测试中,此类问题主要表象为如下几种情况:
1. 频发A3事件而无法切换;
2. 通常伴随主被叫占用小区不同,RSRP相差较大;
3. 切换链紊乱;
4. 容易引发掉线、重建立、切换失败等事件
如下图:

【问题分析】
1:前台测试分析,核对A3事件上报小区信息是否包含在RRCConnectionReconfiguration。如未包含,则确定为漏配邻区。核对基站拓扑图,判断是否需要添加该邻区,排除过覆盖、针状覆盖小区(室分泄露小区、非道路覆盖小区等)尤其需要慎重添加,防止切换后无法及时切出问题发生。
如下图所示,两个基站相距200m,并且为相邻基站,所以建议补充邻区关系

2:后台IMSI跟踪信令分析,可以通过UDA工具筛选UnknowPciNotify,对于持续上报未定义PCI的现象要重点结合基站拓扑图来进一步确定是否添加邻区。
如下图,后台信令分析同样发现上报多个测量报告切换候补邻区为486,结合拓扑图,最终建议添加邻区关系

【解决方案】:
1:近距离相邻基站通常采用添加遗漏邻区方案;
2:过覆盖小区优先控制覆盖;
3:针状覆盖场景不建议添加,此问题一般影响较短路面,优先控制覆盖;
1.1.2.1 实例1
【问题现象】
主被叫占用新开基站983529133(PCI149)后无邻区关系导致无线环境恶化;
【问题分析】
下图为主被叫占用该小区后,RSRP由强到弱,无线环境逐步恶化,A3事件频繁上报但是未发起切换,查看邻区配置发现该站仅仅配置自身2个小区为邻区关系,通过了解,此站点为新建基站,未实施单验和入网优化工作,因此在此路段频繁导致掉话、重建立等事件发生

【解决方案】
1:及时开展单站优化和邻区关系补充,确保单站业务性能通过验收;
2:开通站点第一时间通知优化团队进行参数核查、邻区核查、性能测试,确保入网后正常投入网络运行。

1.1.3 站点故障导致弱覆盖
【问题现象】
测试中,此问题表现为:无法占用附近基站,会伴随邻区漏配、过覆盖情况发生,易导致未接通、掉线、切换链紊乱等现象;
如下图,基站462682位于麓枫路和咸嘉湖西路十字口,为该两条主干道主服务小区,测试到该路段后始终未占用该基站,RSRP下降到-110dbm以下,切换链紊乱,导致掉线。

【问题分析】
站点“长沙阳明山庄23栋(地华梅溪湖拉远)ZL-B8300462682PT”因纠纷暂时下网,导致周边无主覆盖小区;
【解决方案】:
需尽快恢复“长沙阳明山庄23栋(地华梅溪湖拉远)ZL-B8300462682PT”;对周边小区开启SRVCC切换。
1.1.4 越区覆盖导致无法切换
【问题现象】
过覆盖问题主要表象为:
未占用过覆盖小区情况下,当前小区可能会发生SINR恶化,伴随上报测量报告包含周边未知PCI。
占用过覆盖小区情况下,RSRP变化较大,伴随上行信号异常,邻区漏配现象,易导致掉线、接入失败、切换失败等异常事件。
如下图,手机占用PCI=121小区,enodeid=471089,无法向周边PCI=110切换,最终导致掉话;

【问题分析】
此类问题需要结合周边道路测试分析和基站拓扑关系来判断问题小区为周边哪个区域的主覆盖小区,进而采取优化手段进行调整;
如下图描述,问题点区域最近4次切换链为1、2、3、4次切换,其中2、3、4切换和PCI=121有关,同时分析周边道路主服务小区并无PCI=121,查看拓扑图发现该站位于周边较远区域,同时前往PCI=121测试发现,经纬度正确,主要原因是地势较高导致;

【解决方案】:
针对周边过覆盖小区,采用调整俯仰角、天线挂高、基站分布等手段;
对于特殊场景建设的基站,比如此案例中该站实际主要覆盖附近风景区,但是地势原因导致信号无法彻底控制,可以采取单向删除过远基站邻区,避免孤岛效应。
1.1.4.1 实例1 岳华路长房和园附近长沙观沙岭消防队2小区越区覆盖
【问题描述】
UE从4625062到4620931切换不及时导致重建

【问题分析】
1、增强4625333、4620931在此处的覆盖;
2、压低4625062下倾角2-3°。
已调整4625333、4620931小区方位角及下倾角至该路口覆盖,但覆盖方向存在部分阻挡,已达最大优化调整,调整后测试效果不明显,后调整新开站点长沙岳麓大道与岳华路交叉口-3小区覆盖至该片区域,调整后覆盖得到一定增强,如需彻底解决该片区域覆盖问题,需开通该区域规划站址长沙绿洲小区景观塔。
【解决方案和复测结果】
通过上述调整,该站点及时切换到983474,越区覆盖小区此处信号减弱。

1.1.5 切换参数设置错误导致无法切换
【问题现象】
车辆由东向西行驶在茶子山,当于基站462514退服后不能及时向附近小区切换,使得该路段RSRP差,最终导致掉话。如下图

对比前期测试该路段正常,如下图:

【问题分析】
从路测占用小区来看,即使该站断站,如果可以向462576-2(PCI=259中心频点1895Mhz)切换,信号可以保持在-105dbm,不会发生掉话现象。查看未切换到462576-2原因,从路测信令来看,A2事件上报后,重配消息中没有携带该异频邻区,首先认为没有配置该邻区关系。但是后台核查邻区列表后发现已经添加该邻区,进一步排查为什么重配消息中未携带该邻区关系,发现【EUtranCellMeasurementTDD】表中的“eutranMeasParas_interCarriFreq”异频载频里面没有配置1895导致,补充添加后可以正常切换。
【解决方案】
1:主因是由于基站462514退服导致跨站切换不顺畅,因此优先解决故障站点
2:从该事件发现,如果测量参数【EUtranCellMeasurementTDD】中漏配异频频点,也会导致无法下发该异频频点邻区,即使配置了邻区关系也是无效,所以需要日常优化中定期核查【EUtranCellMeasurementTDD】表中的“eutranMeasParas_interCarriFreq”是否包含邻区定义的频点。
1.1.6 异频重定向
【问题现象】
终端上报A3测量事件后,基站直接发送重定向的RRCrelease消息,导致掉话
【问题分析】

图中可以看到,终端上发A3事件后,系统直接发送了重定向到37900的RRC release消息,导致此次掉话。
【解决方案】:
1、 通过后台参数,打开邻区切换功能,解决配置了邻区但没打开切换功能的重定向。
1.2 干扰类问题
【问题现象】
测试中一般表现为RSRP良好但SINR偏差,干扰严重区域容易导致掉线、切换失败等各类异常事件发生。
【问题分析方法】
干扰类问题涉及方面较多,有系统内干扰和系统外干扰,详细排查方法可以参考排查指导文档,这里仅仅对现场发现的案例进行描述。
1.2.1 实例1:PCI规划不合理导致
下图中,测试区域发现信号RSRP良好同时伴随SINR较差,优先排查PCI规划问题,发现近距离有同PCI基站,如下图:

1.2.2 实例2:重叠覆盖引发干扰
网格17内西二环路段存在同频基站分布密集,存在200-300米路段SINR差,此段路段发生重建概率较高,是掉话隐患点,23日测试发生1起主叫掉话。

下图圈中区域来自4个站点信号均在-95dbm~-100dbm,当切换到PCI=66/67后,SINR容易恶化,地势较为平坦,周边间距均在300-400m。

【解决方案】:
针对PCI规划不合理问题,建议重新规划和修改PCI。
针对重叠覆盖引发干扰问题,首先通过RF优化控制覆盖,减少重叠覆盖,其次采用异频组网方案解决。比如此西二环路段,PCI=66/67/68三个小区可以不用覆盖该路段,其他三个小区可以良好覆盖不同区段,引入PCI=66/67/68后易发生摸3干扰。
1.2.3 实例3:重叠覆盖引发干扰
主叫在清水路段462326附近收到近距离100m处小区4742163(PCI254)干扰,导致无法切换发起重建立,该路段基站覆盖过密集。

【解决方案】:
针对PCI规划不合理问题,建议重新规划和修改PCI。
针对重叠覆盖引发干扰问题,首先通过RF优化控制覆盖,减少重叠覆盖,其次采用异频组网方案解决。比如此西二环路段,PCI=66/67/68三个小区可以不用覆盖该路段,其他三个小区可以良好覆盖不同区段,引入PCI=66/67/68后易发生摸3干扰。
1.2.4 实例4:岳麓大道与岳华路交叉口东侧SINR值较差切换失败
【问题描述】
岳麓大道与岳华路交叉口东侧,UE占用4623813的SINR值较差,导致切换失败。

【问题分析】
1、添加4623813与983474133、462的邻区关系。
2、控制4623813在岳麓大道上的越区覆盖;
3、核查新开站983474133(170)背向覆盖与4750223(83)形成强模三干扰。
4、调整4623813下倾角2°至4°,方位角300°至290°,983474133下倾角2°至0°。
【复测结果】
通过控制覆盖、邻区关系优化,该路段干扰现象消失

1.3 基站版本问题
1.3.1 TM3\8切换后掉话
【问题现象】
从前台信令看掉话流程,终端的模式为TM3,然后上发A2测量,然后终端收到异频测量控制的重配消息,发送完成后下行链路失步,之后发起重建后掉话。此过程中,无线环境在RSRP -100,SINR 3左右。从后台信令分析,基站侧收到终端上发的A2,然后下发测量重配消息,紧接着发送TM8模式切换的重配消息,出现TM8的重配无法下发,用户面上报SRB1的RLC的ERRORIND导致释放而掉话
【问题分析】
12:09:14秒的重配置为TM3模式

12:09:14秒上发的是A2测量重配,然后广播消息,在12:09:26秒收到重建请求后被拒。

12:09:26秒终端上发BYE掉话。

基站侧12:09:18收到A2测量

12:09:18秒TM8模式转换的重配。

12:09:25秒出现错误的标示,该重配未下发,达到最大重传次数。

12:09:25秒文本释放。

【解决方案】:
此问题为已知版本问题,现场已升级至R5p版本,该问题验证通过;
1.4 核心网相关问题
1.4.1 QCI=5未建立
【问题现象】
主叫发起会话请求,无响应,导致未接通;
【问题描述】
主叫12:27:57发起invite,12:28:13 无响应之后未接通,检查DRB承载,发现优先级为9的承载有两条,如下图所示:

【解决方案】
HSS删除多余APN签约,之后恢复正常,如下图所示;

1.4.2 TAU过程中Paging问题
【问题现象】
10:28:22,主叫起呼发起invite request 之后QCI=1建立,被叫未收到此次呼叫的Paging;
【问题分析】
被叫10:28:23移动过程中发生小区重选,TAC改变发起TAU更新,未收到此次呼叫Paging导致的未接通事件;
此次未收到Paging是流程冲突,在寻呼的时候,收到TAU消息,我们会当做Pagingresponse处理,如果TAURequest消息中没有携带activeflag,那么用户面隧道是无法建立的,消息也无法投递

【解决方案】
核心网在下一个补丁中修正,会在TAU过程中无论UE是否携带了active flag都去建立用户面隧道;
1.4.3 从2G/3G回到4G核心网未发Paging
【问题描述】
主叫在4G起呼,被叫3G回到4G,核心网未下发Paging
【问题分析】
主叫16:23:39发起inviterequest 被叫从3G回到4G 16:23:49 ims注册成功未收到此次Paging,当用户在3G下,HSS已经做了域选择,此时用户重选到4G,是没有办法逆转的。该场景没有规范支撑

【解决方案】
核心网答复,暂时无协议支撑
1.4.4 跨TAC之后 QCI=1被删除
【问题描述】
跨TAC后,在462696-2小区15:46:24呼叫建立之2s,核心网S1ap上收到两条ERAB释放(QCI=1/QCI=5)的指示后掉话
【问题分析】
SGW把会话误删了,导致eNB收到了error Indication,然后发起了释放。现网SGW确实有个已知的问题,在“MME改变,SGW没有改变的短时间内4切3再切4”过程中,SGW会删除上下文导致用户掉线

【解决方案】

需SGW升级版本解决
1.4.5 起呼过程中伴随切换,ACCEPT消息丢失导致的QCI=1释放;
【问题描述】
终端在起呼过程中伴随切换,终端透传给核心网的ACT消息超时没有被核心网接收到导致的释放;
【问题分析】
21:01:23,主叫UE发起寻呼,被叫UE收到后发起ERAB承载,建立完成;21:01:26,被叫UE收到RRC重配置消息中要求去激活QCI1的承载,随后被叫UE上报INVITE580(precondition failure),导致本次未接通。

【解决方案】
DT消息没有等到(丢了),核心网有没有保护机制,需核心网解决;
1.5 终端异常
1.5.1 终端异常主动挂机导致未接通事件
【问题现象】
被叫向主叫发180振铃消息,主叫端也成功收到被叫180振铃消息,但在被叫发出180消息后,紧接着3秒后向主叫发406用户忙消息(见下图),核心网收到后给主叫放音,然后释放,相同的现象,两次呼叫未接通。

从信令上看,被叫发486用户忙消息,是终端主动拒绝的原因,和网络无关。至于被叫为什么在振铃3秒后发用户忙和拒绝消息,终端问题,需要终端解决。
1.5.2 终端不上报TAU请求
【问题现象】
主叫正常呼叫后从PCI=17,TAU=29580小区切换到PCI=64,TAU=29482小区后不主动发起TAU请求后RRC释放,重新接入到其它小区,3次重复这样过程后,终端主动发BYE,被叫终端TAU正常。由于对于不同TAU切换后手机终端需要上报TAU请求,此处终端始终未发起TAU,为终端原因

1.6 测试软件统计
1.6.1 异常统计掉话
【问题现象】
被叫在2G下人工释放,上报DISCONNECT,挂机流程结束,此时主叫在4G下收到IMS下发BYE,并去激活了QCI=1承载,并标记为normal call clearing,但仍会统计为dropped ,此时主叫继续正常释放流程,为软件统计问题。

1.7 eSRVCC切换问题分析
1.7.1 GSM邻区参数错误导致掉话
【问题现象】
手机在LTE覆盖弱场,收到B2测量的重配消息后,手机发起Measurementreport(B2事件)后收到网络下发的RRC Connection Release,重定向到2G后掉话。
【问题分析】
当UE上报A2测量报告后,eNB下发B2重配消息给UE,根据B2重配消息,UE测量满足B2-1和B2-2条件并上报B2事件,上报的B2事件包含准备切换的目标2G小区BCCH/NCC/BCC,见下图:

1. 正常情况下,eNB收到该B2事件测量报告后下发mobilityFromEUTRACommand消息给UE,切换到该GSM邻区;
2. 异常情况下网络下发RRC Connection Release消息使UE重定向到BCCH为512的GSM小区,如下图:

随后主叫重定向到GSM网络,在2G网络手机状态是空闲态,统计为掉话,如下图:

通过以上现象分析可知UEVoLTE业务eSRVCCC切换到BCCH 525(BSIC 12)的G网邻区失败,核查网管中该G网邻区参数配置,发现该邻区BSIC配置为7,与实际UE测量的BSIC 12不一致,修改网管中该G网邻区BSIC为12后,可正常切换到该小区,掉话解决
【解决方案】:
同步LTE-->GSM网络邻区定义和实际GSM网络规划数据,如上案例,LTE-->GSM邻区定义中BSCI配置为7,而实际UE测量的BSIC为12,将LTE定义GSM邻区中BSIC改为12后,正常eSRVCC。
1.7.2 切换准备失败
【问题现象】
UE空口表现为发起多次B2测量后无法进行eSRVCC,最终易导致重建立和掉话事件发生;
eNB侧表现为接收到手机上报B2测量并发起切换请求,但是收到来自核心网的切换准备失败消息;
【问题分析】
正常情况下,eNB收到该B2事件测量报告后下发mobilityFromEUTRACommand消息给UE,UE会收到mobilityFromEUTRACommand并实施切换;
异常情况下,UE发起多个B2事件而未收到mobilityFromEUTRACommand,此时可能涉及空口无线环境恶化导致B2事件测量报告未上报给eNB,需要结合eNB侧信令分析。如下图:

当eNB收到B2测报后向MME发送handoverrequire消息(为eSRVCC切换准备资源),但随后收到了切换准备失败的回复。见下图:

导致此类失败的原因通常是核心网没有对目标小区配置eSRVCC相关功能参数的原因,需要核心网检查目标网络小区相关参数是否生效或正确配置。
【解决方案】:
导致此类失败的原因通常是核心网未配置SRVCC功能、未配置目标MSC、未配置TAU等原因,需要同核心网及目标网络核查相关配置是否生效。
1.7.3 GSM邻区频点配置不全
【问题现象】
UE上报A2事件后,网络下发B2重配消息并成功上报网络后,手机RSRP满足B2-1判决门限却始终未上报B2事件测量报告,最终容易导致重定向、掉话事件发生
【问题分析】
实际网络中会存在由于无线环境的改变、G网参数优化后同步不及时或RF优化等原因,导致LTE小区的GSM邻区频点配置不够准确,对于A2重配里下发的GSM频点在终端测量后,不满足B2-2事件,导致无法触发eSRVCC。如下图:

其他可能原因:需要检查系统间邻区是否已经设置为“支持切换”,如下图

【解决方案】:
完善和及时更新LTE邻区定义中的GSM邻区关系和参数定义;
对于问题点,建议进行GSM网络扫频或者结合GSM测试数据分析,检查这些频点是否已包含在后台配置中
1.7.4 手机原因导致无法SRVCC切换
【问题现象】
主被叫手机在相同小区,主叫手机上报A2后重配消息包含B2门限和异系统频点信息,而被叫手机上报A2后重配消息未包含异系统配置信息,进而导致被叫没有进行SRVCC,主叫正常SRVCC。如下图

【问题分析】
由于一个小区下两种不同行为,首先需要排查手机上报能力,从UE附着请求消息或TAU(TrackingArea Updates)消息中发现被叫手机上报的UE能力不包含SRVCC能力消息,并描述不支持GSM频带。主叫包含,因此重点排查手机哪方面出现了异常,由于前期测试无此问题,怀疑测试期间手机误设置为锁定LTE导致,因此将手机设定为锁定LTE和支持2、3、4G模式对比验证。
下图是未锁定LTE情况下TrackingArea Updates信令描述,包含手机支持SRVCC能力指示

下图是被叫锁定LTE网络后,TrackingArea Updates信令,标示手机不支持E-GSMor R-GSM。没有支持SRVCC标示。

【解决方案】:
此类问题需要检查手机设置和实际支持能力,确保上报支持能力。
1.8 其他
1.8.1 参数配置问题导致异常返回GSM
【问题现象】
主叫手机占用462502基站发起INVITErequest和servicerequest后手机进入GSM网络发起后续接入流程。
【问题分析】
如下图所示,主被叫占用相同小区,无线环境良好,主叫无法驻留在LTE进行呼叫,被叫正常,占用其他基站无此问题,手机调换后对比测试问题依旧存在主叫流程异常,和手机关系不大。

阅读全文

与网络释放drb的原因有哪些相关的资料

热点内容
大疆御连接网络固件更新 浏览:377
网络通信安全密码口令 浏览:584
同一网络两个手机直播 浏览:433
移动网络的投屏慢 浏览:940
电脑网络设备状态异常 浏览:309
秋明网络游戏有哪些 浏览:92
电信联通移动哪个网络号 浏览:502
wifi网络拒绝存储 浏览:147
无线网络有感叹号能上网 浏览:257
什么是软文网络营销 浏览:777
联想bios网络唤醒设置 浏览:894
网络电视用哪个品牌好 浏览:177
河南干部网络学院学员有多少 浏览:502
苹果更换网络会让输入id密码 浏览:559
计算机网络计算题习题 浏览:803
e信网络断开后重新连接 浏览:194
游戏开发网络连接 浏览:937
手机网络机顶盒怎么用转换线 浏览:467
苹果手机添加隐藏wifi网络 浏览:923
微信网络推广有哪些特点 浏览:794

友情链接