❶ 深度学习的主要分类是什么呀这些网络cnn dbn dnm rnn是怎样的关系
简单来说:
1)深度学习(Deep Learning)只是机器学习(Machine Learning)的一种类别,一个子领域。机器学习 > 深度学习
2)大数据(Big Data)不是具体的方法,甚至不算具体的研究学科,而只是对某一类问题,或需处理的数据的描述
具体来说:
1)机器学习(Machine Learning)是一个大的方向,里面包括了很多种 approach,比如 deep learning, GMM, SVM, HMM, dictionary learning, knn, Adaboosting...不同的方法会使用不同的模型,不同的假设,不同的解法。这些模型可以是线性,也可以是非线性的。他们可能是基于统计的,也可能是基于稀疏的....
不过他们的共同点是:都是 data-driven 的模型,都是学习一种更加 abstract 的方式来表达特定的数据,假设和模型都对特定数据广泛适用。好处是,这种学习出来的表达方式可以帮助我们更好的理解和分析数据,挖掘数据隐藏的结构和关系。
Machine Learning 的任务也可以不同,可以是预测(prediction),分类(classification),聚类(clustering),识别(recognition),重建(reconstruction),约束(regularization),甚至降噪(denoising),超分辨(super-resolution),除马赛克(Demosaicing)等等....
2)深度学习(Deep Learning)是机器学习的一个子类,一般特指学习高层数的网络结构。这个结构中通常会结合线性和非线性的关系。
Deep Learning 也会分各种不同的模型,比如 CNN, RNN, DBN...他们的解法也会不同。
Deep Learning 目前非常流行,因为他们在图像,视觉,语音等各种应用中表现出了很好的 empirical performance。并且利用 gpu 的并行运算,在模型相当复杂,数据特别大量的情况下,依然可以达到很理想的学习速度。
因为 Deep Learning 往往会构建多层数,多节点,多复杂度的模型,人们依然缺乏多里面学习的结构模型的理解。很多时候,Deep Learning 甚至会被认为拥有类似于人类神经网络的结构,并且这种类似性被当做 deep learning 居然更大 potential 的依据。但答主个人认为,其实这略有些牵强...听起来更像是先有了这种 network 的结构,再找一个类似性。当然,这仅仅是个人观点...(私货私货)
3)大数据(Big Data,我们也叫他逼格数据....)是对数据和问题的描述。通常被广泛接受的定义是 3 个 V 上的“大”:Volume(数据量), Velocity(数据速度)还有 variety(数据类别)。大数据问题(Big-data problem)可以指那种在这三个 V 上因为大而带来的挑战。
Volume 很好理解。一般也可以认为是 Large-scale data(其实学术上用这个更准确,只是我们出去吹逼的时候就都叫 big data 了...)。“大”可以是数据的维度,也可以是数据的 size。一般 claim 自己是 big-data 的算法会比较 scalable,复杂度上对这两个不敏感。算法和系统上,人们喜欢选择并行(Parallel),分布(distributed)等属性的方法来增加 capability。
ITjob----采集
❷ 有哪些深度神经网络模型
目前经常使用的深度神经网络模型主要有卷积神经网络(CNN) 、递归神经网络(RNN)、深信度网络(DBN) 、深度自动编码器(AutoEncoder) 和生成对抗网络(GAN) 等。
递归神经网络实际.上包含了两种神经网络。一种是循环神经网络(Recurrent NeuralNetwork) ;另一种是结构递归神经网络(Recursive Neural Network),它使用相似的网络结构递归形成更加复杂的深度网络。RNN它们都可以处理有序列的问题,比如时间序列等且RNN有“记忆”能力,可以“模拟”数据间的依赖关系。卷积网络的精髓就是适合处理结构化数据。
关于深度神经网络模型的相关学习,推荐CDA数据师的相关课程,课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。这种教学方式能够引发学员的独立思考及主观能动性,学员掌握的技能知识可以快速转化为自身能够灵活应用的技能,在面对不同场景时能够自由发挥。点击预约免费试听课。
❸ 目前深度学习的模型有哪几种适用于哪些问题
核心有几个
卷积神经网络CNN,用来做图像处理的
循环神经网络RNN,用来处理带顺序关系的数据
对抗生成网络GAN,是一种概率生成模型
transformer注意力模型,用来做序列到序列计算的
更多的是他们的变种。数不清
❹ CNN卷积神经网络结构有哪些特点
局部连接,权值共享,池化操作,多层次结构。
1、局部连接使网络可以提取数据的局部特征;
2、权值共享大大降低了网络的训练难度,一个Filter只提取一个特征,在整个图片(或者语音/文本) 中进行卷积;
3、池化操作与多层次结构一起,实现了数据的降维,将低层次的局部特征组合成为较高层次的特征,从而对整个图片进行表示。
❺ CNN、RNN、DNN的内部网络结构有什么区别
从广义上来说,NN(或是更美的DNN)确实可以认为包含了CNN、RNN这些具体的变种形式。在实际应用中,所谓的深度神经网络DNN,往往融合了多种已知的结构,包括卷积层或是LSTM单元。但是就题主的意思来看,这里的DNN应该特指全连接的神经元结构,并不包含卷积单元或是时间上的关联。
因此,题主一定要将DNN、CNN、RNN等进行对比,也未尝不可。其实,如果我们顺着神经网络技术发展的脉络,就很容易弄清这几种网络结构发明的初衷,和他们之间本质的区别。神经网络技术起源于上世纪五、六十年代,当时叫感知机(perceptron),拥有输入层、输出层和一个隐含层。输入的特征向量通过隐含层变换达到输出层,在输出层得到分类结果。
早期感知机的推动者是Rosenblatt。(扯一个不相关的:由于计算技术的落后,当时感知器传输函数是用线拉动变阻器改变电阻的方法机械实现的,脑补一下科学家们扯着密密麻麻的导线的样子…)但是,Rosenblatt的单层感知机有一个严重得不能再严重的问题,即它对稍复杂一些的函数都无能为力(比如最为典型的“异或”操作)。
连异或都不能拟合,你还能指望这货有什么实际用途么。随着数学的发展,这个缺点直到上世纪八十年代才被Rumelhart、Williams、Hinton、LeCun等人(反正就是一票大牛)发明的多层感知机(multilayer perceptron)克服。多层感知机,顾名思义,就是有多个隐含层的感知机。
❻ 形色app用的卷积神经网络的什么模型
CNN卷积神经网络是一种深度模型。它其实老早就已经可以成功训练并且应用了(最近可能deep learning太火了,CNNs也往这里面靠。虽然CNNs也属于多层神经网络架构,但把它置身于DL家族,还是有不少人保留自己的理解的)。
它在原始的输入中应用可训练的滤波器trainable filters和局部邻域池化操作local neighborhood pooling operations,得到一个分级的且逐渐复杂的特征表示。有实践表示,如果采用合适的规则化项来训练,它可以达到非常好的效果。CNN还让人青睐的一点就是它会对例如姿势、光照和复杂背景存在不变性。
❼ CNN(卷积神经网络)是什么
在数字图像处理的时候我们用卷积来滤波是因为我们用的卷积模版在频域上确实是高通低通带通等等物理意义上的滤波器。然而在神经网络中,模版的参数是训练出来的,我认为是纯数学意义的东西,很难理解为在频域上还有什么意义,所以我不认为神经网络里的卷积有滤波的作用。接着谈一下个人的理解。首先不管是不是卷积神经网络,只要是神经网络,本质上就是在用一层层简单的函数(不管是sigmoid还是Relu)来拟合一个极其复杂的函数,而拟合的过程就是通过一次次back propagation来调参从而使代价函数最小。
❽ 图像识别深度学习用的模型有哪些
图像识别,是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。一般工业使用中,采用工业相机拍摄图片,然后再利用软件根据图片灰阶差做进一步识别处理,图像识别软件国外代表的有康耐视等,国内代表的有图智能等。另外在地理学中指将遥感图像进行分类的技术。
❾ 什么是CNN
CNN是美国有线电视新闻网(CABLE NEWS NETWORK)的英文简称,其创始人特德·特纳于60年代初接管了家庭的广告事业,到60年代末,他拥有了三家广播电台,1976年特纳买下了亚特兰大的一个小型的UHF电视台,后来又买下了北卡罗纳州夏洛特的一座电视台.70年代中期卫星已用于传送有线电视节目,特纳的小电视台由此实现了从地方电视台向潜在的全国性电视台的飞跃
❿ 主流的深度学习模型有哪些
主流的深度学习模型有很多CNN的各种变种,Bert,残差网络,生成对抗网络