导航:首页 > 网络营销 > 网络爬虫抓取策略有哪些

网络爬虫抓取策略有哪些

发布时间:2023-07-28 04:41:10

A. 大数据爬虫技术有什么功能

网络爬虫是Spider(或Robots、Crawler)等词的意译,是一种高效的信息抓取工具,它集成了搜索引擎技术,并通过技术手段进行优化,用以从互联网搜索、抓取并保存任何通过HTML(超文本标记语言)进行标准化的网页信息。其作用机理是:发送请求给互联网特定站点,在建立连接后与该站点交互,获取HTML格式的信息,随后转移到下一个站点,并重复以上流程。通过这种自动化的工作机制,将目标数据保存在本地数据中,以供使用。网络爬虫在访问一个超文本链接时,可以从HTML标签中自动获取指向其他网页的地址信息,因而可以自动实现高效、标准化的信息获取。随着互联网在人类经济社会中的应用日益广泛,其所涵盖的信息规模呈指数增长,信息的形式和分布具有多样化、全球化特征,传统搜索引擎技术已经无法满足日益精细化、专业化的信息获取和加工需求,正面临着巨大的挑战。网络爬虫自诞生以来,就发展迅猛,并成为信息技术领域的主要研究热点。当前,主流的网络爬虫搜索策略有如下几种。

B. 网络爬虫是什么具体要学哪些内容

网络爬虫是从网络上获取数据信息的程序。需要了解前端div标签,正则内容,Python模块库,多线程等。

C. 现在的网络爬虫的研究成果和存在的问题有哪些

网络爬虫是Spider(或Robots、Crawler)等词的意译,是一种高效的信息抓取工具,它集成了搜索引擎技术,并通过技术手段进行优化,用以从互联网搜索、抓取并保存任何通过HTML(超文本标记语言)进行标准化的网页信息。

其作用机理是:发送请求给互联网特定站点,在建立连接后与该站点交互,获取HTML格式的信息,随后转移到下一个站点,并重复以上流程。通过这种自动化的工作机制,将目标数据保存在本地数据中,以供使用。网络爬虫在访问一个超文本链接时,可以从HTML标签中自动获取指向其他网页的地址信息,因而可以自动实现高效、标准化的信息获取。

随着互联网在人类经济社会中的应用日益广泛,其所涵盖的信息规模呈指数增长,信息的形式和分布具有多样化、全球化特征,传统搜索引擎技术已经无法满足日益精细化、专业化的信息获取和加工需求,正面临着巨大的挑战。网络爬虫自诞生以来,就发展迅猛,并成为信息技术领域的主要研究热点。当前,主流的网络爬虫搜索策略有如下几种。

>>>>
深度优先搜索策略

早期的爬虫开发采用较多的搜索策略是以深度优先的,即在一个HTML文件中,挑选其中一个超链接标签进行深度搜索,直至遍历这条超链接到最底层时,由逻辑运算判断本层搜索结束,随后退出本层循环,返回上层循环并开始搜索其他的超链接标签,直至初始文件内的超链接被遍历。

深度优先搜索策略的优点是可以将一个Web站点的所有信息全部搜索,对嵌套较深的文档集尤其适用;而缺点是在数据结构日益复杂的情况下,站点的纵向层级会无限增加且不同层级之间会出现交叉引用,会发生无限循环的情况,只有强行关闭程序才能退出遍历,而得到的信息由于大量的重复和冗余,质量很难保证。

>>>>
宽度优先搜索策略

与深度优先搜索策略相对应的是宽度优先搜索策略,其作用机理是从顶层向底层开始循环,先就一级页面中的所有超链接进行搜索,完成一级页面遍历后再开始二级页面的搜索循环,直到底层为止。当某一层中的所有超链接都被选择过,才会基于该层信息检索过程中所获得的下一级超链接(并将其作为种子)开始新的一轮检索,优先处理浅层的链接。

这种模式的一个优点是:无论搜索对象的纵向结构层级有多么复杂,都会极大程度上避免死循环;另一个优势则在于,它拥有特定的算法,可以找到两个HTML文件间最短的路径。一般来讲,我们期望爬虫所具有的大多数功能目前均可以采用宽度优先搜索策略较容易的实现,所以它被认为是最优的。

但其缺点是:由于大量时间被耗费,宽度优先搜索策略则不太适用于要遍历特定站点和HTML文件深层嵌套的情况。

>>>>
聚焦搜索策略

与深度优先和宽度优先不同,聚焦搜索策略是根据“匹配优先原则”对数据源进行访问,基于特定的匹配算法,主动选择与需求主题相关的数据文档,并限定优先级,据以指导后续的数据抓取。

这类聚焦爬虫针对所访问任何页面中的超链接都会判定一个优先级评分,根据评分情况将该链接插入循环队列,此策略能够帮助爬虫优先跟踪潜在匹配程度更高的页面,直至获取足够数量和质量的目标信息。不难看出,聚焦爬虫搜索策略主要在于优先级评分模型的设计,亦即如何区分链接的价值,不同的评分模型针对同一链接会给出不同的评分,也就直接影响到信息搜集的效率和质量。

同样机制下,针对超链接标签的评分模型自然可以扩展到针对HTML页面的评价中,因为每一个网页都是由大量超链接标签所构成的,一般看来,链接价值越高,其所在页面的价值也越高,这就为搜索引擎的搜索专业化和应用广泛化提供了理论和技术支撑。当前,常见的聚焦搜索策略包括基于“巩固学习”和“语境图”两种。

从应用程度来看,当前国内主流搜索平台主要采用的是宽度优先搜索策略,主要是考虑到国内网络系统中信息的纵向价值密度较低,而横向价值密度较高。但是这样会明显地遗漏到一些引用率较小的网络文档,并且宽度优先搜索策略的横向价值富集效应,会导致这些链接量少的信息源被无限制的忽略下去。

而在此基础上补充采用线性搜索策略则会缓解这种状况,不断引入更新的数据信息到已有的数据仓库中,通过多轮的价值判断去决定是否继续保存该信息,而不是“简单粗暴”地遗漏下去,将新的信息阻滞在密闭循环之外。

>>>>
网页数据动态化

传统的网络爬虫技术主要局限于对静态页面信息的抓取,模式相对单一,而近年来,随着Web2.0/AJAX等技术成为主流,动态页面由于具有强大的交互能力,成为网络信息传播的主流,并已取代了静态页面成为了主流。AJAX采用了JavaScript驱动的异步(异步)请求和响应机制,在不经过网页整体刷新的情况下持续进行数据更新,而传统爬虫技术缺乏对JavaScript语义的接口和交互能力,难以触发动态无刷新页面的异步调用机制并解析返回的数据内容,无法保存所需信息。

此外,诸如JQuery等封装了JavaScript的各类前端框架会对DOM结构进行大量调整,甚至网页上的主要动态内容均不必在首次建立请求时就以静态标签的形式从服务器端发送到客户端,而是不断对用户的操作进行回应并通过异步调用的机制动态绘制出来。这种模式一方面极大地优化了用户体验,另一方面很大程度上减轻了服务器的交互负担,但却对习惯了DOM结构(相对不变的静态页面)的爬虫程序提出了巨大挑战。

传统爬虫程序主要基于“协议驱动”,而在互联网2.0时代,基于AJAX的动态交互技术环境下,爬虫引擎必须依赖“事件驱动”才有可能获得数据服务器源源不断的数据反馈。而要实现事件驱动,爬虫程序必须解决三项技术问题:第一,JavaScript的交互分析和解释;第二,DOM事件的处理和解释分发;第三,动态DOM内容语义的抽取。

前嗅的ForeSpider数据采集系统全方位支持各种动态网站,大部分网站通过可视化的操作就可以获取。对于反爬虫机制严格的网站,通过ForeSpider内部的脚本语言系统,通过简单的脚本语言,就可以轻松获取。

>>>>
数据采集分布化

分布式爬虫系统是在计算机集群之上运转的爬虫系统,集群每一个节点上运行的爬虫程序与集中式爬虫系统的工作原理相同,所不同的是分布式需要协调不同计算机之间的任务分工、资源分配、信息整合。分布式爬虫系统的某一台计算机终端中植入了一个主节点,并通过它来调用本地的集中式爬虫进行工作,在此基础上,不同节点之间的信息交互就显得十分重要,所以决定分布式爬虫系统成功与否的关键在于能否设计和实现任务的协同。

此外,底层的硬件通信网络也十分重要。由于可以采用多节点抓取网页,并能够实现动态的资源分配,因此就搜索效率而言,分布式爬虫系统远高于集中式爬虫系统。

经过不断的演化,各类分布式爬虫系统在系统构成上各具特色,工作机制与存储结构不断推陈出新,但主流的分布式爬虫系统普遍运用了“主从结合”的内部构成,也就是由一个主节点通过任务分工、资源分配、信息整合来掌控其他从节点进行信息抓取。

在工作方式上,基于云平台的廉价和高效特点,分布式爬虫系统广泛采用云计算方式来降低成本,大规模降低软硬件平台构建所需要的成本投入。在存储方式方面,当前比较流行的是分布式信息存储,即将文件存储在分布式的网络系统上,这样管理多个节点上的数据更加方便。通常情况下使用的分布式文件系统为基于Hadoop的HDFS系统。

目前市场上的可视化通用性爬虫,大都牺牲了性能去换取简易的可视化操作。但前嗅的ForeSpider爬虫不是。ForeSpider采用C++编程,普通台式机日采集量超过500万条/天,服务器超过4000万条/天。是市场上其他可视化爬虫的10倍以上。同时,ForeSpider内嵌前嗅自主研发的ForeLib数据库,免费的同时支持千万量级以上的数据存储。

>>>>
通用型和主题型网络爬虫

依据采集目标的类型,网络爬虫可以归纳为“通用型网络爬虫”和“主题型网络爬虫”两种。

通用型网络爬虫侧重于采集更大的数据规模和更宽的数据范围,并不考虑网页采集的顺序和目标网页的主题匹配情况。在当前网络信息规模呈现指数增长的背景下,通用型网络爬虫的使用受到信息采集速度、信息价值密度、信息专业程度的限制。

为缓解这种状况,主题型网络爬虫诞生了。不同于通用型网络爬虫,主题型网络爬虫更专注采集目标与网页信息的匹配程度,避免无关的冗余信息,这一筛选过程是动态的,贯穿于主题型网络爬虫技术的整个工作流程。

目前市面上的通用性爬虫的采集能力有限,采集能力不高,网页结构复杂的页面无法采集。前嗅ForeSpider爬虫是通用型的网络爬虫,可以采集几乎100%的网页,并且内部支持可视化筛选、正则表达式、脚本等多种筛选,可以100%过滤无关冗余内容,按条件筛选内容。相对主题型爬虫只能采集一类网站而言,通用型的爬虫有着更强的采集范围,更加经济合理。

D. Python有哪些常见的,好用的爬虫框架

网络爬虫的抓取策略有很多种,按照系统结构和实现技术,大致可以分为以下几种:通用网络爬虫(GeneralPurposeWebCrawler)、聚焦网络爬虫(FocusedWebCrawler)、增量式网络爬虫(IncrementalWebCrawler)、深层网络爬虫(DeepWebCrawler)。
增量式网络爬虫是指对已下载网页采取增量式更新和只爬行新产生的或者已经发生变化网页的爬虫,它能够在一定程度上保证所爬行的页面是尽可能新的页面。
一般网络爬虫的爬行范围和数量很大,爬行速度和存储空间要求很高,爬行页面的顺序也比较低。同时,由于需要刷新的页面太多,通常采用并行工作,但刷新一页需要很长时间。
聚焦网络爬虫是指选择性地爬行与预定义主题相关的网络爬虫。与普通网络爬虫相比,聚焦爬虫只需爬行与主题相关的网页,大大节省了硬件和网络资源,保存的网页也因数量少而更新快,还能很好地满足一些特定人群对特定领域信息的需求。
DeepWeb爬虫,也就是深层网页爬虫,在深层网页容量是表层网页的数百倍,是互联网上最大、发展最快的新信息资源。

E. 怎么用VBA或网络爬虫程序抓取网站数据

VBA网抓常用方法
1、xmlhttp/winhttp法:
用xmlhttp/winhttp模拟向服务器发送请求,接收服务器返回的数据。
优点:效率高,基本无兼容性问题。
缺点:需要借助如fiddler的工具来模拟http请求。
2、IE/webbrowser法:
创建IE控件或webbrowser控件,结合htmlfile对象的方法和属性,模拟浏览器操作,获取浏览器页面的数据。
优点:这个方法可以模拟大部分的浏览器操作。所见即所得,浏览器能看到的数据就能用代码获取。
缺点:各种弹窗相当烦人,兼容性也确实是个很伤脑筋的问题。上传文件在IE里根本无法实现。
3、QueryTables法:
因为它是excel自带,所以勉强也算是一种方法。其实此法和xmlhttp类似,也是GET或POST方式发送请求,然后得到服务器的response返回到单元格内。
优点:excel自带,可以通过录制宏得到代码,处理table很方便
。代码简短,适合快速获取一些存在于源代码的table里的数据。
缺点:无法模拟referer等发包头

也可以利用采集工具进行采集网页端的数据,无需写代码。

F. 网络爬虫技术的概述与研究

爬虫技术概述
网络爬虫(Web crawler),是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本,它们被广泛用于互联网搜索引擎或其他类似网站,可以自动采集所有其能够访问到的页面内容,以获取或更新这些网站的内容和检索方式。从功能上来讲,爬虫一般分为数据采集,处理,储存三个部分。
传统爬虫从一个或若干初始网页的URL开始,获得初始网页上的URL,在抓取网页的过程中,不断从当前页面上抽取新的URL放入队列,直到满足系统的一定停止条件。聚焦爬虫的工作流程较为复杂,需要根据一定的网页分析算法过滤与主题无关的链接,保留有用的链接并将其放入等待抓取的URL队列。然后,它将根据一定的搜索策略从队列中选择下一步要抓取的网页URL,并重复上述过程,直到达到系统的某一条件时停止。另外,所有被爬虫抓取的网页将会被系统存贮,进行一定的分析、过滤,并建立索引,以便之后的查询和检索;对于聚焦爬虫来说,这一过程所得到的分析结果还可能对以后的抓取过程给出反馈和指导。
相对于通用网络爬虫,聚焦爬虫还需要解决三个主要问题:
(1) 对抓取目标的描述或定义;
(2) 对网页或数据的分析与过滤;
(3) 对URL的搜索策略。

G. 蜘蛛爬行策略有哪些

1、深度优先(策略):一直往前爬,直到没有链接,再返回第一层爬向下一个入口
2、广度优先(策略):先把这一层所有入口爬完,再爬下一层。
3、吸引蜘蛛:
1)搜索引擎认为重要的页面爬行深度高,会有更多页面被收录 2)页面更新度,有规律
3)、导入链接数量0(导入到自己网站页面的链接)
4)、与首页点击距离
5)、c结构(链接比较好)
4、地址库:为了避免重复查询或抓取网址,搜索引擎会建立一个地址库记录已经被发现、但还没被抓取的页面,以及被抓取的页面。

1)来源、人工录入的种子网站。
2)、蜘蛛抓取页面后,从HTML中解析出新的链接URL,与地址库中的数据库相比,如果是地址库中没有的网址,就存入待访问的的地址库。
3)、站长通过搜索引擎页面提交表格提交进来的网址
4)、站长通过XML网站地图、站长平台提交的网址

H. 如何应对网站反爬虫策略如何高效地爬大量数据

一般有一下几种

一些常用的方法
IP代理

对于IP代理,各个语言的Native Request API都提供的IP代理响应的API, 需要解决的主要就是IP源的问题了.
网络上有廉价的代理IP(1元4000个左右), 我做过简单的测试, 100个IP中, 平均可用的在40-60左右, 访问延迟均在200以上.
网络有高质量的代理IP出售, 前提是你有渠道.
因为使用IP代理后, 延迟加大, 失败率提高, 所以可以将爬虫框架中将请求设计为异步, 将请求任务加入请求队列(RabbitMQ,Kafka,Redis), 调用成功后再进行回调处理, 失败则重新加入队列. 每次请求都从IP池中取IP, 如果请求失败则从IP池中删除该失效的IP.
Cookies

有一些网站是基于cookies做反爬虫, 这个基本上就是如 @朱添一 所说的, 维护一套Cookies池
注意研究下目标网站的cookies过期事件, 可以模拟浏览器, 定时生成cookies
限速访问

像开多线程,循环无休眠的的暴力爬取数据, 那真是分分钟被封IP的事, 限速访问实现起来也挺简单(用任务队列实现), 效率问题也不用担心, 一般结合IP代理已经可以很快地实现爬去目标内容.

一些坑

大批量爬取目标网站的内容后, 难免碰到红线触发对方的反爬虫机制. 所以适当的告警提示爬虫失效是很有必有的.
一般被反爬虫后, 请求返回的HttpCode为403的失败页面, 有些网站还会返回输入验证码(如豆瓣), 所以检测到403调用失败, 就发送报警, 可以结合一些监控框架, 如Metrics等, 设置短时间内, 告警到达一定阀值后, 给你发邮件,短信等.
当然, 单纯的检测403错误并不能解决所有情况. 有一些网站比较奇葩, 反爬虫后返回的页面仍然是200的(如去哪儿), 这时候往往爬虫任务会进入解析阶段, 解析失败是必然的. 应对这些办法, 也只能在解析失败的时候, 发送报警, 当告警短时间到达一定阀值, 再触发通知事件.
当然这个解决部分并不完美, 因为有时候, 因为网站结构改变, 而导致解析失败, 同样回触发告警. 而你并不能很简单地区分, 告警是由于哪个原因引起的.

I. 网络爬虫采用的是哪种算法策略

在爬虫系统中,待抓取URL队列是很重要的一部分。待抓取URL队列中的URL以什么样的顺序排列也是一个很重要的问题,因为这涉及到先抓取那个页面,后抓取哪个页面。而决定这些URL排列顺序的方法,叫做抓取策略。下面重点介绍几种常见的抓取策略:

1.深度优先遍历策略

深度优先遍历策略是指网络爬虫会从起始页开始,一个链接一个链接跟踪下去,处理完这条线路之后再转入下一个起始页,继续跟踪链接。我们以下面的图为例: 遍历的路径:A-F-G E-H-I B C D 2.宽度优先遍历策略 宽度优先遍历策略的基本思路是,将新下载网页中发现的链接直接插入待抓取URL队列的末尾。也就是指网络爬虫会先抓取起始网页中链接的所有网页,然后再选择其中的一个链接网页,继续抓取在此网页中链接的所有网页。还是以上面的图为例: 遍历路径:A-B-C-D-E-F G H I 3.反向链接数策略 反向链接数是指一个网页被其他网页链接指向的数量。反向链接数表示的是一个网页的内容受到其他人的推荐的程度。因此,很多时候搜索引擎的抓取系统会使用这个指标来评价网页的重要程度,从而决定不同网页的抓取先后顺序。 在真实的网络环境中,由于广告链接、作弊链接的存在,反向链接数不能完全等他我那个也的重要程度。因此,搜索引擎往往考虑一些可靠的反向链接数。 4.Partial PageRank策略 Partial PageRank算法借鉴了PageRank算法的思想:对于已经下载的网页,连同待抓取URL队列中的URL,形成网页集合,计算每个页面的PageRank值,计算完之后,将待抓取URL队列中的URL按照PageRank值的大小排列,并按照该顺序抓取页面。 如果每次抓取一个页面,就重新计算PageRank值,一种折中方案是:每抓取K个页面后,重新计算一次PageRank值。但是这种情况还会有一个问题:对于已经下载下来的页面中分析出的链接,也就是我们之前提到的未知网页那一部分,暂时是没有PageRank值的。为了解决这个问题,会给这些页面一个临时的PageRank值:将这个网页所有入链传递进来的PageRank值进行汇总,这样就形成了该未知页面的PageRank值,从而参与排序。下面举例说明: 5.OPIC策略策略 该算法实际上也是对页面进行一个重要性打分。在算法开始前,给所有页面一个相同的初始现金(cash)。当下载了某个页面P之后,将P的现金分摊给所有从P中分析出的链接,并且将P的现金清空。对于待抓取URL队列中的所有页面按照现金数进行排序。 6.大站优先策略 对于待抓取URL队列中的所有网页,根据所属的网站进行分类。对于待下载页面数多的网站,优先下载。这个策略也因此叫做大站优先策略。

阅读全文

与网络爬虫抓取策略有哪些相关的资料

热点内容
iphone两个网络怎么设置三网 浏览:850
杭州搜狗网络推广渠道有哪些 浏览:143
windows7如何换网络 浏览:593
手机没网络了怎样上网 浏览:890
软件网络安全方案 浏览:917
搬家移动网络怎么转移珠海 浏览:178
网络贷款投诉找哪里 浏览:205
电脑不可用的无线网络怎么连接 浏览:22
斐讯路由器设置网络速度 浏览:19
配对手机不可以共享网络怎么操作 浏览:372
路由器背面网络地址 浏览:14
戳爷是什么网络用语 浏览:394
移动网络联通后为什么还是2g 浏览:944
快手小店订单网络异常 浏览:242
家庭座机改无线网络 浏览:252
网络连接共享怎样删除 浏览:88
下载完软件就没网络 浏览:371
xp网络打印机怎么共享的打印机 浏览:827
天翼校园网手机蓝牙共享网络 浏览:770
网络探头如何使用 浏览:243

友情链接