导航:首页 > 网络营销 > 人工神经元网络包括哪些

人工神经元网络包括哪些

发布时间:2023-05-04 11:15:18

1. 人工神经网络由哪几部分构成

"人工神经网络"共有13个神经元构成,4个为输入神经元,1个为输 出神经元。也就是说,这个程序最多能处理一个四元关系(包含了二元, 三元)。

2. 人工神经网络的分类 ann和bp是什么意思

人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等.目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等.
ann:人工神经网络(Artificial Neural Networks)
bp:Back Propagation网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一.BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程.它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小.BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer).

3. 人工神经元网络的拓扑结构主要有哪几种谢谢大侠~~~

神经网络的拓扑结构包括网络层数、各层神经元数量以及各神经元之间相互连接的方式。

人工神经网络的模型从其拓扑结构角度去看,可分为层次型和互连型。层次型模型是将神经网络分为输入层(Input Layer)、隐层(Hidden Layer)和输出层(Output Layer),各层顺序连接。其中,输入层神经元负责接收来自外界的输入信息,并将其传递给隐层神经元。隐层负责神经网络内部的信息处理、信息变换。通常会根据变换的需要,将隐层设计为一层或多层。

(3)人工神经元网络包括哪些扩展阅读:

人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。

人工神经网络采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结构化信息方面的缺陷,具有自适应、自组织和实时学习的特点。

4. 人工神经网络有哪些类型

人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。根据连接的拓扑结构,神经网络模型可以分为:

(1)前向网络 网络中各个神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示。这种网络实现信号从输入空间到输出空间的变换,它的信息处理能力来自于简单非线性函数的多次复合。网络结构简单,易于实现。反传网络是一种典型的前向网络。

(2)反馈网络 网络内神经元间有反馈,可以用一个无向的完备图表示。这种神经网络的信息处理是状态的变换,可以用动力学系统理论处理。系统的稳定性与联想记忆功能有密切关系。Hopfield网络、波耳兹曼机均属于这种类型。

学习是神经网络研究的一个重要内容,它的适应性是通过学习实现的。根据环境的变化,对权值进行调整,改善系统的行为。由Hebb提出的Hebb学习规则为神经网络的学习算法奠定了基础。Hebb规则认为学习过程最终发生在神经元之间的突触部位,突触的联系强度随着突触前后神经元的活动而变化。在此基础上,人们提出了各种学习规则和算法,以适应不同网络模型的需要。有效的学习算法,使得神经网络能够通过连接权值的调整,构造客观世界的内在表示,形成具有特色的信息处理方法,信息存储和处理体现在网络的连接中。
根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。在监督学习中,将训练样本的数据加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经多次训练后收敛到一个确定的权值。当样本情况发生变化时,经学习可以修改权值以适应新的环境。使用监督学习的神经网络模型有反传网络、感知器等。非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学习阶段与工作阶段成为一体。此时,学习规律的变化服从连接权值的演变方程。非监督学习最简单的例子是Hebb学习规则。竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。自组织映射、适应谐振理论网络等都是与竞争学习有关的典型模型。
研究神经网络的非线性动力学性质,主要采用动力学系统理论、非线性规划理论和统计理论,来分析神经网络的演化过程和吸引子的性质,探索神经网络的协同行为和集体计算功能,了解神经信息处理机制。为了探讨神经网络在整体性和模糊性方面处理信息的可能,混沌理论的概念和方法将会发挥作用。混沌是一个相当难以精确定义的数学概念。一般而言,“混沌”是指由确定性方程描述的动力学系统中表现出的非确定性行为,或称之为确定的随机性。“确定性”是因为它由内在的原因而不是外来的噪声或干扰所产生,而“随机性”是指其不规则的、不能预测的行为,只可能用统计的方法描述。混沌动力学系统的主要特征是其状态对初始条件的灵敏依赖性,混沌反映其内在的随机性。混沌理论是指描述具有混沌行为的非线性动力学系统的基本理论、概念、方法,它把动力学系统的复杂行为理解为其自身与其在同外界进行物质、能量和信息交换过程中内在的有结构的行为,而不是外来的和偶然的行为,混沌状态是一种定态。混沌动力学系统的定态包括:静止、平稳量、周期性、准同期性和混沌解。混沌轨线是整体上稳定与局部不稳定相结合的结果,称之为奇异吸引子。

5. 人工神经网络(ANN)简述

我们从下面四点认识人工神经网络(ANN: Artificial Neutral Network):神经元结构、神经元的激活函数、神经网络拓扑结构、神经网络选择权值和学习算法。

1. 神经元:
我们先来看一组对比图就能了解是怎样从生物神经元建模为人工神经元。

下面分别讲述:
生物神经元的组成包括细胞体、树突、轴突、突触。树突可以看作输入端,接收从其他细胞传递过来的电信号;轴突可以看作输出端,传递电荷给其他细胞;突触可以看作I/O接口,连接神经元,单个神经元可以和上千个神经元连接。细胞体内有膜电位,从外界传递过来的电流使膜电位发生变化,并且不断累加,当膜电位升高到超过一个阈值时,神经元被激活,产生一个脉冲,传递到下一个神经元。

为了更形象理解神经元传递信号过程,把一个神经元比作一个水桶。水桶下侧连着多根水管(树突),水管既可以把桶里的水排出去(抑制性),又可以将其他水桶的水输进来(兴奋性),水管的粗细不同,对桶中水的影响程度不同(权重),水管对水桶水位(膜电位)的改变就是水桶内水位的改变,当桶中水达到一定高度时,就能通过另一条管道(轴突)排出去。

按照这个原理,科学家提出了M-P模型(取自两个提出者的姓名首字母),M-P模型是对生物神经元的建模,作为人工神经网络中的一个神经元。

由MP模型的示意图,我们可以看到与生物神经元的相似之处,x_i表示多个输入,W_ij表示每个输入的权值,其正负模拟了生物神经元中突出的兴奋和抑制;sigma表示将全部输入信号进行累加整合,f为激活函数,O为输出。下图可以看到生物神经元和MP模型的类比:

往后诞生的各种神经元模型都是由MP模型演变过来。

2. 激活函数
激活函数可以看作滤波器,接收外界各种各样的信号,通过调整函数,输出期望值。ANN通常采用三类激活函数:阈值函数、分段函数、双极性连续函数(sigmoid,tanh):

3. 学习算法
神经网络的学习也称为训练,通过神经网络所在环境的刺激作用调整神经网络的自由参数(如连接权值),使神经网络以一种新的方式对外部环境做出反应的一个过程。每个神经网络都有一个激活函数y=f(x),训练过程就是通过给定的海量x数据和y数据,拟合出激活函数f。学习过程分为有导师学习和无导师学习,有导师学习是给定期望输出,通过对权值的调整使实际输出逼近期望输出;无导师学习给定表示方法质量的测量尺度,根据该尺度来优化参数。常见的有Hebb学习、纠错学习、基于记忆学习、随机学习、竞争学习。

4. 神经网络拓扑结构
常见的拓扑结构有单层前向网络、多层前向网络、反馈网络,随机神经网络、竞争神经网络。

5. 神经网络的发展

(不能贴公式不好解释啊 -_-!)sigma是误差信号,yita是学习率,net是输入之和,V是输入层到隐含层的权重矩阵,W是隐含层到输出层的权重矩阵。

之后还有几种

随着计算机硬件计算能力越来越强,用来训练的数据越来越多,神经网络变得越来越复杂。在人工智能领域常听到DNN(深度神经网络)、CNN(卷积神经网络)、RNN(递归神经网络)。其中,DNN是总称,指层数非常多的网络,通常有二十几层,具体可以是CNN或RNN等网络结构。

参考资料

6. 人工神经网络综述

文章主要分为:
一、人工神经网络的概念;
二、人工神经网络的发展历史;
三、人工神经网络的特点;
四、人工神经网络的结构。
。。

人工神经网络(Artificial Neural Network,ANN)简称神经网络(NN),是基于生物学中神经网络的基本原理,在理解和抽象了人脑结构和外界刺激响应机制后,以网络拓扑知识为理论基础,模拟人脑的神经系统对复杂信息的处理机制的一种数学模型。该模型以并行分布的处理能力、高容错性、智能化和自学习等能力为特征,将信息的加工和存储结合在一起,以其独特的知识表示方式和智能化的自适应学习能力,引起各学科领域的关注。它实际上是一个有大量简单元件相互连接而成的复杂网络,具有高度的非线性,能够进行复杂的逻辑操作和非线性关系实现的系统。

神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激活函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight),神经网络就是通过这种方式来模拟人类的记忆。网络的输出则取决于网络的结构、网络的连接方式、权重和激活函数。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。神经网络的构筑理念是受到生物的神经网络运作启发而产生的。人工神经网络则是把对生物神经网络的认识与数学统计模型相结合,借助数学统计工具来实现。另一方面在人工智能学的人工感知领域,我们通过数学统计学的方法,使神经网络能够具备类似于人的决定能力和简单的判断能力,这种方法是对传统逻辑学演算的进一步延伸。

人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。人工神经网络是一种非程序化、适应性、大脑风格的信息处理,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。

神经网络,是一种应用类似于大脑神经突触连接结构进行信息处理的数学模型,它是在人类对自身大脑组织结合和思维机制的认识理解基础之上模拟出来的,它是根植于神经科学、数学、思维科学、人工智能、统计学、物理学、计算机科学以及工程科学的一门技术。

在介绍神经网络的发展历史之前,首先介绍一下神经网络的概念。神经网络主要是指一种仿造人脑设计的简化的计算模型,这种模型中包含了大量的用于计算的神经元,这些神经元之间会通过一些带有权重的连边以一种层次化的方式组织在一起。每一层的神经元之间可以进行大规模的并行计算,层与层之间进行消息的传递。

下图展示了整个神经网络的发展历程:

神经网络的发展有悠久的历史。其发展过程大致可以概括为如下4个阶段。

(1)、M-P神经网络模型:20世纪40年代,人们就开始了对神经网络的研究。1943 年,美国心理学家麦克洛奇(Mcculloch)和数学家皮兹(Pitts)提出了M-P模型,此模型比较简单,但是意义重大。在模型中,通过把神经元看作个功能逻辑器件来实现算法,从此开创了神经网络模型的理论研究。
(2)、Hebb规则:1949 年,心理学家赫布(Hebb)出版了《The Organization of Behavior》(行为组织学),他在书中提出了突触连接强度可变的假设。这个假设认为学习过程最终发生在神经元之间的突触部位,突触的连接强度随之突触前后神经元的活动而变化。这一假设发展成为后来神经网络中非常着名的Hebb规则。这一法则告诉人们,神经元之间突触的联系强度是可变的,这种可变性是学习和记忆的基础。Hebb法则为构造有学习功能的神经网络模型奠定了基础。
(3)、感知器模型:1957 年,罗森勃拉特(Rosenblatt)以M-P 模型为基础,提出了感知器(Perceptron)模型。感知器模型具有现代神经网络的基本原则,并且它的结构非常符合神经生理学。这是一个具有连续可调权值矢量的MP神经网络模型,经过训练可以达到对一定的输入矢量模式进行分类和识别的目的,它虽然比较简单,却是第一个真正意义上的神经网络。Rosenblatt 证明了两层感知器能够对输入进行分类,他还提出了带隐层处理元件的三层感知器这一重要的研究方向。Rosenblatt 的神经网络模型包含了一些现代神经计算机的基本原理,从而形成神经网络方法和技术的重大突破。
(4)、ADALINE网络模型: 1959年,美国着名工程师威德罗(B.Widrow)和霍夫(M.Hoff)等人提出了自适应线性元件(Adaptive linear element,简称Adaline)和Widrow-Hoff学习规则(又称最小均方差算法或称δ规则)的神经网络训练方法,并将其应用于实际工程,成为第一个用于解决实际问题的人工神经网络,促进了神经网络的研究应用和发展。ADALINE网络模型是一种连续取值的自适应线性神经元网络模型,可以用于自适应系统。

人工智能的创始人之一Minsky和Papert对以感知器为代表的网络系统的功能及局限性从数学上做了深入研究,于1969年发表了轰动一时《Perceptrons》一书,指出简单的线性感知器的功能是有限的,它无法解决线性不可分的两类样本的分类问题,如简单的线性感知器不可能实现“异或”的逻辑关系等。这一论断给当时人工神经元网络的研究带来沉重的打击。开始了神经网络发展史上长达10年的低潮期。
(1)、自组织神经网络SOM模型:1972年,芬兰的KohonenT.教授,提出了自组织神经网络SOM(Self-Organizing feature map)。后来的神经网络主要是根据KohonenT.的工作来实现的。SOM网络是一类无导师学习网络,主要用于模式识别﹑语音识别及分类问题。它采用一种“胜者为王”的竞争学习算法,与先前提出的感知器有很大的不同,同时它的学习训练方式是无指导训练,是一种自组织网络。这种学习训练方式往往是在不知道有哪些分类类型存在时,用作提取分类信息的一种训练。
(2)、自适应共振理论ART:1976年,美国Grossberg教授提出了着名的自适应共振理论ART(Adaptive Resonance Theory),其学习过程具有自组织和自稳定的特征。

(1)、Hopfield模型:1982年,美国物理学家霍普菲尔德(Hopfield)提出了一种离散神经网络,即离散Hopfield网络,从而有力地推动了神经网络的研究。在网络中,它首次将李雅普诺夫(Lyapunov)函数引入其中,后来的研究学者也将Lyapunov函数称为能量函数。证明了网络的稳定性。1984年,Hopfield 又提出了一种连续神经网络,将网络中神经元的激活函数由离散型改为连续型。1985 年,Hopfield和Tank利用Hopfield神经网络解决了着名的旅行推销商问题(Travelling Salesman Problem)。Hopfield神经网络是一组非线性微分方程。Hopfield的模型不仅对人工神经网络信息存储和提取功能进行了非线性数学概括,提出了动力方程和学习方程,还对网络算法提供了重要公式和参数,使人工神经网络的构造和学习有了理论指导,在Hopfield模型的影响下,大量学者又激发起研究神经网络的热情,积极投身于这一学术领域中。因为Hopfield 神经网络在众多方面具有巨大潜力,所以人们对神经网络的研究十分地重视,更多的人开始了研究神经网络,极大地推动了神经网络的发展。
(2)、Boltzmann机模型:1983年,Kirkpatrick等人认识到模拟退火算法可用于NP完全组合优化问题的求解,这种模拟高温物体退火过程来找寻全局最优解的方法最早由Metropli等人1953年提出的。1984年,Hinton与年轻学者Sejnowski等合作提出了大规模并行网络学习机,并明确提出隐单元的概念,这种学习机后来被称为Boltzmann机。
Hinton和Sejnowsky利用统计物理学的感念和方法,首次提出的多层网络的学习算法,称为Boltzmann 机模型。
(3)、BP神经网络模型:1986年,儒默哈特(D.E.Ru melhart)等人在多层神经网络模型的基础上,提出了多层神经网络权值修正的反向传播学习算法----BP算法(Error Back-Propagation),解决了多层前向神经网络的学习问题,证明了多层神经网络具有很强的学习能力,它可以完成许多学习任务,解决许多实际问题。
(4)、并行分布处理理论:1986年,由Rumelhart和McCkekkand主编的《Parallel Distributed Processing:Exploration in the Microstructures of Cognition》,该书中,他们建立了并行分布处理理论,主要致力于认知的微观研究,同时对具有非线性连续转移函数的多层前馈网络的误差反向传播算法即BP算法进行了详尽的分析,解决了长期以来没有权值调整有效算法的难题。可以求解感知机所不能解决的问题,回答了《Perceptrons》一书中关于神经网络局限性的问题,从实践上证实了人工神经网络有很强的运算能力。
(5)、细胞神经网络模型:1988年,Chua和Yang提出了细胞神经网络(CNN)模型,它是一个细胞自动机特性的大规模非线性计算机仿真系统。Kosko建立了双向联想存储模型(BAM),它具有非监督学习能力。
(6)、Darwinism模型:Edelman提出的Darwinism模型在90年代初产生了很大的影响,他建立了一种神经网络系统理论。
(7)、1988年,Linsker对感知机网络提出了新的自组织理论,并在Shanon信息论的基础上形成了最大互信息理论,从而点燃了基于NN的信息应用理论的光芒。
(8)、1988年,Broomhead和Lowe用径向基函数(Radialbasis function, RBF)提出分层网络的设计方法,从而将NN的设计与数值分析和线性适应滤波相挂钩。
(9)、1991年,Haken把协同引入神经网络,在他的理论框架中,他认为,认知过程是自发的,并断言模式识别过程即是模式形成过程。
(10)、1994年,廖晓昕关于细胞神经网络的数学理论与基础的提出,带来了这个领域新的进展。通过拓广神经网络的激活函数类,给出了更一般的时滞细胞神经网络(DCNN)、Hopfield神经网络(HNN)、双向联想记忆网络(BAM)模型。
(11)、90年代初,Vapnik等提出了支持向量机(Supportvector machines, SVM)和VC(Vapnik-Chervonenkis)维数的概念。
经过多年的发展,已有上百种的神经网络模型被提出。

深度学习(Deep Learning,DL)由Hinton等人于2006年提出,是机器学习的一个新领域。深度学习本质上是构建含有多隐层的机器学习架构模型,通过大规模数据进行训练,得到大量更具代表性的特征信息。深度学习算法打破了传统神经网络对层数的限制,可根据设计者需要选择网络层数。

突触是神经元之间相互连接的接口部分,即一个神经元的神经末梢与另一个神经元的树突相接触的交界面,位于神经元的神经末梢尾端。突触是轴突的终端。
大脑可视作为1000多亿神经元组成的神经网络。神经元的信息传递和处理是一种电化学活动.树突由于电化学作用接受外界的刺激,通过胞体内的活动体现为轴突电位,当轴突电位达到一定的值则形成神经脉冲或动作电位;再通过轴突末梢传递给其它的神经元.从控制论的观点来看;这一过程可以看作一个多输入单输出非线性系统的动态过程。
神经元的功能特性:(1)时空整合功能;(2)神经元的动态极化性;(3)兴奋与抑制状态;(4)结构的可塑性;(5)脉冲与电位信号的转换;(6)突触延期和不应期;(7)学习、遗忘和疲劳。

神经网络从两个方面模拟大脑:
(1)、神经网络获取的知识是从外界环境中学习得来的。
(2)、内部神经元的连接强度,即突触权值,用于储存获取的知识。
神经网络系统由能够处理人类大脑不同部分之间信息传递的由大量神经元连接形成的拓扑结构组成,依赖于这些庞大的神经元数目和它们之间的联系,人类的大脑能够收到输入的信息的刺激由分布式并行处理的神经元相互连接进行非线性映射处理,从而实现复杂的信息处理和推理任务。
对于某个处理单元(神经元)来说,假设来自其他处理单元(神经元)i的信息为Xi,它们与本处理单元的互相作用强度即连接权值为Wi, i=0,1,…,n-1,处理单元的内部阈值为θ。那么本处理单元(神经元)的输入为:

,而处理单元的输出为:

式中,xi为第i个元素的输入,wi为第i个处理单元与本处理单元的互联权重即神经元连接权值。f称为激活函数或作用函数,它决定节点(神经元)的输出。θ表示隐含层神经节点的阈值。

神经网络的主要工作是建立模型和确定权值,一般有前向型和反馈型两种网络结构。通常神经网络的学习和训练需要一组输入数据和输出数据对,选择网络模型和传递、训练函数后,神经网络计算得到输出结果,根据实际输出和期望输出之间的误差进行权值的修正,在网络进行判断的时候就只有输入数据而没有预期的输出结果。神经网络一个相当重要的能力是其网络能通过它的神经元权值和阈值的不断调整从环境中进行学习,直到网络的输出误差达到预期的结果,就认为网络训练结束。

对于这样一种多输入、单输出的基本单元可以进一步从生物化学、电生物学、数学等方面给出描述其功能的模型。利用大量神经元相互连接组成的人工神经网络,将显示出人脑的若干特征,人工神经网络也具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重wij值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。人工神经网络是一个具有学习能力的系统,可以发展知识,以至超过设计者原有的知识水平。通常,它的学习(或训练)方式可分为两种,一种是有监督(supervised)或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督(unsupervised)学习或称无导师学习,这时,只规定学习方式或某些规则,而具体的学习内容随系统所处环境(即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似于人脑的功能。
在人工神经网络设计及应用研究中,通常需要考虑三个方面的内容,即神经元激活函数、神经元之间的连接形式和网络的学习(训练)。

7. 人工神经网络分层结构包括

品牌型号:华为MateBook D15
系统:Windows 11

人工神经网络分层结构包括神经元、层和网络三个部分。

1、神经元是人工神经网络最基本的单元。单元以层的方式组,每一层的每个神经元和前一层、后一层的神经元连接,共分为输入层、输出层和隐藏层,三层连接形成一个神经网络。

2、输入层只从外部环境接收信息,是由输入单元组成,而这些输入单元可接收样本中各种不同的特征信息。该层的每个神经元相当于自变量,不完成任何计算,只为下一层传递信息;隐藏层介于输入层和输出层之间,这些层完全用于分析,其函数联系输入层变量和输出层变量,使其更配适数据。而最后,输出层生成最终结果,每个输出单元会对应到某一种特定的分类,为网络送给外部系统的结果值,,整个网络由调整链接强度的程序来达成学习的目的。

3、神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。

8. 人工神经网络

本文讨论的神经网络是从生物学领域引入计算机科学和工程领域的一个仿生学概念,又称人工神经网络(英语:artificial neural network,缩写ANN)。是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。参考 wiki定义 。

如图,一个神经元通常具有多个树突,主要用来接受传入信息;而轴突只有一条,轴突尾端有许多轴突末梢可以给其他多个神经元传递信息。轴突末梢跟其他神经元的树突产生连接,从而传递信号。这个连接的位置在生物学上叫做“突触”。
基于此,1943年,心理学家McCulloch和数学家Pitts参考了生物神经元的结构,发表了抽象的神经元模型MP,神经元模型是一个包含输入,输出与计算功能的模型。输入可以类比为神经元的树突,而输出可以类比为神经元的轴突,计算则可以类比为细胞核。如下图:

图中X代表输入信号,W代表权重,∑代表将X和W的矩阵运算,ψ对运算结果应用sgn函数,最终得到输出y。
然而,改模型对权限W是通过指定好的,因此不存在在计算工程中动态调配权限W的能力,也就是不存在学习的能力。

1958年,计算科学家Rosenblatt提出了由两层神经元组成的神经网络:“感知器”(Perceptron)。

可以看到,一个感知器有如下组成部分:
输入权值: 一个感知器可以接收多个输入,每个输入上有一个权值,此外还有一个偏置项,就是上图中的。
激活函数: 感知器的激活函数可以有很多选择,比如我们可以选择Sigmoid函数来作为激活函数。
其中,因为生物学上,外接信号传导到神经元上,神经元不会立刻做出反应,而是会抑制输入,直到输入增强,强大到可以触发输出。也就是说,在产生输出之前,输入必须达到一个阈值。在数学上,这种随着变量值增大,函数值发生跳跃的函数成为激活函数。下图是一个常用的激活函数,Sigmoid函数曲线图:

上节我们看到,感知器其实是单层的神经网络,神经网络可以理解成多个感知器组合而成的一个结构,如下图:

神经网络的学习过程就是对权重矩阵的更新过程。所谓的训练过程就是比较当前网络的预测值和我们真正想要的目标值,再根据两者差异来更新每一层的权重矩阵。因此,必须先定义好如何比较预测值和目标值的差异,这便是损失函数(loss function)。损失函数输出值loss越高表示差异性越大,神经网络的训练就变成了尽可能的缩小loss的过程。

所谓梯度下降法,就是通过使loss值向当前点对应梯度点反方向不断移动,来降低loss。一次移动多少通过学习率(learning rate)控制。
通俗来讲,所谓梯度下降法,其实就如同漆黑的夜晚拿着手电筒站在山顶,每次只能看到眼前的一米远距离,想要下到山脚,我们采用每次都选择最陡峭的地方向下挪动,反复这一过程,最终到达山脚。

阅读全文

与人工神经元网络包括哪些相关的资料

热点内容
悦盒连接无线网络 浏览:164
中国电信改移动网络 浏览:287
如果网线没接好网络会出什么问题 浏览:590
疫情期间网络异常活跃 浏览:844
网络打车平台投诉找哪个部门 浏览:680
抢单软件显示网络异常是咋回事 浏览:786
网络分析仪测量相位校准设置 浏览:254
mp3电脑传歌需要网络吗 浏览:28
不能拉黑的网络电话哪个好 浏览:264
周口下楼无线网络管理中心 浏览:695
网络欺诈金额多少钱才能立案 浏览:746
如何做一张网络虚拟电话卡 浏览:45
如何打开共享网络搜索 浏览:28
如何看待网络的普及和危害 浏览:536
苹果xr玩游戏网络卡顿 浏览:366
邢台淘宝网络运营电话多少 浏览:539
手机的网络经常断开 浏览:574
黑鲨手机wifi网络连接受限 浏览:361
怎么查看同一网络下的其他电脑 浏览:71
网络核相仪公司有哪些 浏览:177

友情链接