Ⅰ 中心体由什么组成
中心体主要由什么构成
实质为蛋白质,称为微管蛋白.由微管蛋白构成一个单管,3个单管构成一组,9组构成一个中心粒工空间结构较复杂
中心体由什么组成?
中心粒周围物质包括聚集微管的γ微管蛋白复合物,组成纤维状网络结构,这种纤维状网络结构被称为中心体矩阵,中心体矩阵连接各种蛋白。中心粒周围物质围绕着中心粒组成中心体微管组织中心。
而中心粒本身就由微管蛋白组成,包括α/β/γ/δ/ε微管蛋白、中心体蛋白和丝状体以及与它们相连的结构蛋白。
所以中心粒及其周围物质在物质和功能上有一定的连续性。
不知道现在的教材中有没有加入卜拿细胞骨架这一概念。(可自行网络)
整个动物细胞是由大量微管、微丝、中间纤维组成细胞骨架,交织在一起,撑起来的。细胞内的每一个细胞器都在一定程度上粘附在细胞骨架上,不会随意流动。
中心体是什么?
中心体(centriole)是细胞中一种重要的无膜结构的细胞器,存在于动物及低等植物细胞中。每个中心体主要含有两个中心粒。它是细胞分裂时内部活动的中心。高中《生物》对“中心体和中心粒”是这样描述的:“动物细胞和低等植物细胞中都有中心体。它总是位于细胞核附近的细胞质中,接近于细胞的中心,因此叫中心体。在电子显微镜下可以看到,每个中心体含有两个中心粒,这两个中心粒相互垂直排列。中心体与细胞的有丝分裂有关。”
中心体的基本结构、功能在超微结构水平,典型的真核细胞中心体由一对中心粒组成。中心粒周围为云状电子致密物,称为中心粒周围物质(PericentriolesMaterial,PCM),中心粒周围物质围绕2个中心粒。中心粒由9组三联体微管组成,型族搭形成一桶状结构。中心粒的直径为0.16~0.23μm,长度变动于0.16~0.56μm之间,成对相互垂直排列。微管长度约为0.4μm,由微管蛋白组成,包括α/β/γ/δ/ε微穗神管蛋白、中心体蛋白
centrin和tektin丝状体以及与它们相连的结构蛋白。中心粒周围物质组成纤维状网络结构,这种纤维状网络结构被称为中心体矩阵,中心体矩阵连接各种蛋白。包括聚集微管的γ微管蛋白复合物。中心粒周围物质围绕着中心粒组成中心体微管组织中心(MicrotubuleOrganizingCenter,MTOC)。中心粒不直接参与细胞质微管的形成。在哺乳动物细胞,中心体是主要的微管组织中心。中心体在间期细胞中调节微管的数量、稳定性、极性和空间分布。在有丝分裂中,中心体建立两极纺锤体,确保细胞分裂过程的对称性和双极性,而这一功能对染色体的精确分离是必需的。在维持整个细胞的极性、为骸胞器的定向运输提供建筑框、参与细胞的成型和运动上,中心体和微管都起着主要作用。
Ⅱ 网织红细胞的网织结构成分是
网织红细胞的山困网织结构由以下组成:双膜层、蛋白骨架、细胞膜蛋白,如高尔基体蛋白、谷胱庆衫甘肽转运蛋白、红细胞穿梭蛋白等,以及细胞分子酶、维生素、氨逗差念基酸和其他物质。
Ⅲ 网络的构成都有哪三部分,
计算机网络在物理组成上可以分成两个部分:负责信息处理的计算机设备和负责数据通型戚信的通信线路及通信设备。与此对应,计算橘租伍机网络在逻辑上可以作为两个子网:资源子网和通信子网。网络硬件系统和网络软件系统是计算机网络系统赖以存在的基础。 网络硬件是构成计算机网络系统的物质基础。构造一台计算机网络系统,首先要将计算机及其附属硬件设备与网络中的其他计算机系统连接起来。随着计算机技术和网络技术的发展,网络硬件日趋多样化,提供的功能更强大更复杂。 构成计算机网络资源子网的硬件设备是各种计算机设备,包括服务器、客户计算机和各种附属硬件设备,主要用于信息处理、信息共享和信息存储服务。 构成计算机网络通信子网的硬件设施除了各种数据传输线路外,主要是用以实现网络连接和数据通信的各种数据通信设备,它们主要有集线器(Hub)、网络交换机(Switch)、网桥(Bridge)、路由器(Router)和网关(Gateway)等。 为了保障系统的正圆或常运转和服务,计算机网络系统需要通过专门软件,对网络中的各种资源进行全面的管理、调度和分配,并保障系统的安全。网络软件是实现网络功能的必不可缺的支撑环境。 网络软件通常指以下五种类型的软件:网络协议和协议软件、网络通信软件、网络操作系统软件、网络管理软件及网络应用软件。
Ⅳ 网络是由什么组成
计算机网络(Computer Network)是利用通信线路和通信设备,把分布在不同地理位置的具有独立功能的多台计算机、终端及其附属设备互相连接,按照网络协议进行数据通信,由功能完善的网络软件,实现资源共享和网络通信的计算机系统的集合。 计算机网络由硬件和软件两大部分组成。网络硬件负责数据处理和数据发,它为数据的传输提供一条可靠的传输通道。网络硬件包括计算机系统、通信线路和通信设备。其中各个组成部分的主要功能是: 计算机系统是网络的基本模块,是被连接的对象。它的主要作用是负责数据信息的收集、处理、存储和传播,它还可以提供共享资源和各种信息服务。 通信线路指的是通信介质及其介质连接部件,通信介质包括光缆、同轴电缆、双绞线、微波和卫星等,介质连接部件包括水晶头、T型接头等。通信设备是指网络连接设备和网络互连设备,包括网卡、集线器(HUB)、中继器(Repeater)、交换机(Switch)、网桥(Bridge)和路由器(Router)及Modem等其他的通信设备。使用通信线路和通信设备将计算机互连起来,在计算机之间建立一条物理通道,用于数据传输。通信线路和通信设备负责控制数据的发出、传送、接收或转发,包括信号转换、路径选择、编码与解码、差错校验、通信控制管理等,以便完成信息交换。通信线路和通信设备是连接计算机系统的桥梁,是数据传输的通道。
Ⅳ 聚乙烯分子式由小分子聚合成的高分子化合物,呈网状结构,是塑料的一种
呈网状结构是不对的,大部分都是线型或支链型,但也有网状的,比如硅烷交联聚乙烯(将普通聚乙烯在有机过氧化物存在下,经过一定的温度和机械力作用,使含有不饱和乙烯基和易于水解的烷氧基多官能团的硅烷接枝到聚乙烯的主链上。然后将此接枝物在水及硅醇缩合催化剂作用下,发生水解,并缩合形成~Si—O—Si~交联键,即得硅烷交联聚乙烯。)
聚乙烯分子式为(C2H4)n,由C2H4(乙烯)在引发剂作用下发用聚合反应得到的,但聚乙烯是高分子树脂,严格的说不叫塑料,塑料是由树脂和一些必要的添加剂、改性剂混合加工得到的,就是说聚乙烯是聚乙烯塑料中最最主要的成分,但不是塑料,我是学高分子的,可能说得细一点严格点。
Ⅵ 细胞核是细胞中心部分的什么物质液态稀稠浓密
细胞核是细胞中心部分的浓密物质,
其野消为真核细胞内最大、最重要的细胞器,含李是细胞遗传与代谢的调控中心。
从物理角度上看由乳浊液、胶体、不溶固体、非溶剂和溶剂溶液组成的多层次混合物。
生物学上颂老知其中有大量遗传物质、蛋白质和一些其他物质(水无机盐等)故为浓密。
Ⅶ 中心体成分是什么
中心体成分是蛋白质败旁和纤维。
真核细胞中心体由一对中心粒组成。中心粒周围为云状电子致密物,称为中心粒周围物质,中心粒周围物质围绕2个中心粒。
中心粒由9组三联体微管组成,形成一桶状结构。中心粒的直径为0.16~0.23μm,长度变动于0.16~0.56μm之间,成对相互垂直排列。
微管长度约为0.4μm,由微管基和蛋白组成,包括α/β/γ/δ/ε微管蛋白、中心体蛋白centrin和tektin丝状体以及与它们相连的结构蛋白。
中心粒周围物质组成纤维状网络结构,这种纤维状网络结构被称为中心体矩阵,中心体矩阵连接各种蛋白。包括聚集微管的γ微管蛋白复合物。
(7)哪些物质是网络结构扩展阅读:
中心体的分布:
一般分布于动物细胞和低等植物细胞中,位于细胞核附近的细胞质中,接近于细胞的中心。
中心体一般位于细胞核旁,高尔基区中央。
在细胞分裂前,中心体完成自身复制成两个,然后分别向细胞两极移动;到中期时,两个中心体分别移到细胞两极;到细胞分裂后期、末期,随细胞的分裂分配到两个子细胞中。
而且,绝大多数动物细胞的中心是细胞核区,而中心体只是位于细胞核一侧的察锋橡高尔基区的中央。
Ⅷ 从资源构成上看计算机网络系统由什么组成
网络的构成
计算机网络的构成
计算机网络系统是由网络硬件和网络软件组成的。在网络系统中,硬件的选择对网络起着决定的作用,而网络软件则是挖掘网络潜力的工具。
网络硬件
网络硬件是计算机网络系统的物质基础。要构成一个计算机网络系统,首先要将计算机及其附属硬件设备与网络中的其他计算机系统连接起来,实现物理连接。不同的计算机网络系统,在硬件方面是有差别的。随着计算机技术和网络技术的发展,网络硬件日趋多样化,且功能更强,更复杂。常见的网络硬件有服务器、工作站、网络接口卡、集中器、调制解调器、终端及传输介质等。
服务器
在计算机网络中,分散在不同地点担负一定数据处理任务和提供资源的计算机被称为服务器。服务器是网络运行、管理和提供服务的中枢,它影响着网络的整体性能。一般在大型网络中采用大型机、中型机和小型机作为网络服务器,可以保证网络的可靠性。对于网点不多、网络通信量不大、数据的安全可靠性要求不高的网络,可以选用高档微机作网络服务器。
工作站
在计算机局域网中,网络工作站是通过网卡连接到网络上的一台个人计算机,它仍保持原有计算机的功能,作为独立的个人计算机为用户服务,同时它又可以按照被授予的一定权限访问服务器。工作站之间可以进行通信,可以共享网络的其他资源。
网络接口卡
网络接口卡也称为网卡或网板,是计算机与传输介质进行数据交互的中间部件,主要进行编码转换。在接收传输介质上传送的信息时,网卡把传来的信息按照网络上信号编码要求和帧的格式接受并交给主机处理。在主机向网络发送信息时,网卡把发送的信息按照网络传送的要求装配成帧的格式,然后采用网络编码信号向网络发送出去。
调制解调器
调制解调器(MODEM)是调制器和解调器的简称,是实现计算机通信的外部设备。调制解调器是一种进行数字信号与模拟信号转换的设备。计算机处理的是数字信号,而电话线传输的是模拟信号,在计算机和电话线之间需要一个连接设备,将计算机输出的数字信号变换为适合电话线传输的模拟信号,在接收端再将接收到的模拟信号变换为数字信号由计算机处理。因此,调制解调器成对使用。
终端
终端设备是用户进行网络操作所使用的设备,它的种类很多,可以是具有键盘及显示功能的一般终端,也可以是一台计算机。
传输介质
传输介质是传送信号的载体,在计算机网络中通常使用的传输介质有双绞线、同轴电缆、光纤、微波及卫星通信等。它们可以支持不同的网络类型,具有不同的传输速率和传输距离。
网络软件
在网络系统中,网络中的每个用户都可享用系统中的各种资源,所以系统必须对用户进行控制,否则就会造成系统混乱,造成信息数据的破坏和丢失。为了协调系统资源,系统需要通过软件工具对网络资源进行全面的管理,进行合理的调度和分配,并采取一系列的保密安全措施,防止用户不合理的对数据和信息的访问,防止数据和信息的破坏与丢失。
网络软件是实现网络功能所不可缺少的软环境。通常网络软件包括网络协议软件、网络通信软件和网络操作系统。
网络结构
在不同的网络系统中,网络结构及所选择使用的网络软件是有差别的。对于实用的网络系统来说,选择什么硬件和软件是根据系统的规模、系统的结构决定的。比如Novell局域网,如果网络系统所涉及的地理范围小,同时系统所拥有的数据量和通信数据量不大,那么只要一台网络服务器,并具备系统所规定的工作站数,选择适当的通信介质和相匹配的网络接口卡、网络软件、网络操作系统就可以建立起一个完整的网络系统。
在一个远程网络系统中所需要的设备和技术更为复杂。在远程通信网中,服务器与工作站、服务器通过集中器与工作站直接通信的部分是短程通信;而服务器与各工作站通信需要经过调制解调器或前端处理机的通信部分属于远程通信。
计算机网络结构通常有星型结构、总线型结构、环型结构、树型结构和网状结构。
星型结构
星型结构是以一个节点为中心的处理系统,各种类型的入网机器均与该中心处理机有物理链路直接相连,与其他节点间不能直接通信,与其他节点通信时需要通过该中心处理机转发,因此中心节点必须有较强的功能和较高的可靠性。
星型结构的优点是结构简单、建网容易、控制相对简单。其缺点是属集中控制,主机负载过重,可靠性低,通信线路利用率低。
总线结构
将所有的入网计算机均接入到一条通信传输线上,为防止信号反射,一般在总线两端连有终结器匹配线路阻抗。总线结构的优点是信道利用率较高,结构简单,价格相对便宜。缺点是同一时刻只能有两个网络节点在相互通信,网络延伸距离有限,网络容纳节点数有限。在总线上只要有一个节点连接出现问题,会影响整个网络的正常运行。目前在局域网中多采用此种结构。
环型结构
环型结构将各个连网的计算机由通信线路连接成一个闭合的环。在环型结构的网络中,信息按固定方向流动,或顺时针方向,或逆时针方向。其传输控制机制较为简单,实时性强,但可靠性较差,网络扩充复杂。
树型结构
树型结构实际上星型结构的一种变形,它将原来用单独链路直接连接的节点通过多级处理主机进行分级连接。这种结构与星型结构相比降低了通信线路的成本,但增加了网络复杂性。网络中除最低层节点及其连线外,任一节点或连线的故障均影响其所在支路网络的正常工作。
网状结构
网状结构其优点是节点间路径多,碰撞和阻塞可大大减少,局部的故障不会影响整个网络的正常工作,可靠性高;网络扩充和主机入网比较灵活、简单。但这种网络关系复杂,建网不易,网络控制机制复杂。广域网中一般用网状结构。
网络拓扑结构图
常用的网络拓扑结构图如下,在组建局域网时常采用星型、环型、总线型和树型结构。树型和网状结构在广域网中比较常见。但是在一个实际的网络中,可能是上述几种网络构型的混合。
星型结构图 总线型结构图
环型结构图 树型结构图
网状结构图
Ⅸ 什么是IPN
IPN(interpenetrating Polymer Network)即互拿衫穿聚合物网络结构,是两种或两种以上的共混聚合物,分子链相互贯穿,并至少一种聚合物分子链以化学键的方式交链而形成的网络结构。1914年Aylsworth首先在天然橡胶、硫和部分反应的苯酚甲醛树脂制成IPN结构聚合物。1941年J.J.P.Studinger申请了第一个IPN专利,在10年后制造表面光滑,透明塑料。1960年Miller首先使用IPN这名词。1970年起Sperling小组与Frisch兄弟小组,进行了大量研究,现在IPN已被广泛用作抗冲击材料。离子交换树脂、阻尼材料、热塑料弹性体等等的生产。我国国内,化工系统也已使用,但应用于印染助剂特别是印花粘合剂的,尚属空白。
IPN结构的最大特点是可以将热力学不相容的聚合物相混而形成至少在动力学上可以稳定的合金性质的物质,构成IPN结构的聚合物合金状态物质的各种聚合物本身均为连续相,相区一般为l0-l00nm,远远小于可见光的波长,故呈无色透明状腊渗。这种相结构使得两相的玻璃化转变区发生偏移并变宽,这种结构特征决定了它可能兼具良好的静态和动态的力学性能,以及较宽的使用温度范围。IPN不同于简单的共混,嵌段或接枝聚合物,在性能上IPN与上面三者的明显差异有两点。一是IPN在溶剂中溶胀但不能溶解。二是IPN不发生蠕变和流动。
由于存在着化学交联点,IPN在任何溶剂中都只能溶胀,不能溶解,IPN也不会发生蠕变和流动,从而使得IPN具有更好的粘接力,因此得到较高的色牢度。由于IPN的各种聚合物的Tg(玻璃化转变温度)是可选择的,我们可以选择其中一相有较低的Tg,从而使得粘合剂轮敏脊具有较好的弹性和柔软性,另一相的Tg较高,用以防止粘合剂发粘。
1970年代起Sperling等人采用乳液聚合物方法完成了IPN。即所谓的乳液互穿聚合物网络(Latex interpenetrating Polymer Network.简称LIPN)。合成LIPN时,儿乎总是采用分步乳化聚合,因而一般具有核壳结构。
采用乳液聚合法完成的LIPN不同于一般的IPN,它所以形成的网络都局限在各个乳胶粒范围内,所以也称为微观IPN。采用核壳乳液聚合物方法制备LIPN,兼具构成LIPN的各种聚合物的优良性能。对成膜性、膜强度、段裂强度、流变性能、抗拉伸强度等都有一定的改善。这些性能对于作为涂料印花的粘合剂都是十分有用的性质。而这些都是LIPN乳胶结构形态决定的。
综上所述,如果选择环保型原料可聚合的乳化剂和大分子乳化剂,选择合适的单体和交联剂,通过分步聚合的方法,可合成出具有核壳结构的LIPN型环保印花粘合剂。
Ⅹ 动物细胞的细胞骨架是什么物质
丝状蛋白质 类似纺锤丝的物质
狭义的细胞骨架是指真核细胞中的蛋白纤维网络结构.
动物细胞的细胞骨架巨大而复杂,是因为其功能非常的复杂和精细,并且几乎在细胞的整个生理活动中都扮演着重要作用.
细胞骨架不仅在维持细胞形态,承受外力、保持细胞内部结构的有序性方面起重要作用,而且还参与许多重要的生命活动,如:在细胞分裂中细胞骨架牵引染色体分离,在细胞物质运输中,各戚孙类小泡和细胞器可沿着细胞骨架定向转运;型仔历在卜搜肌肉细胞中,细胞骨架和它的结合蛋白组成动力系统;在白细胞(白血球)的迁移、精子的游动、神经细胞轴突和树突的伸展等方面都与细胞骨架有关.
总之,结构与功能是相互匹配的,真核细胞特别是动物细胞的生理活动相比低等生物要复杂得多,因此需要巨大而复杂的细胞骨架来支持这些功能的实现.