导航:首页 > 网络营销 > 有哪些神经网络

有哪些神经网络

发布时间:2022-01-07 12:02:38

1. 常用的人工神经网络软件哪些

matlab。
spss里面也有的。

2. 有人可以介绍一下什么是"神经网络"吗

由于神经网络是多学科交叉的产物,各个相关的学科领域对神经网络
都有各自的看法,因此,关于神经网络的定义,在科学界存在许多不同的
见解。目前使用得最广泛的是T.Koholen的定义,即"神经网络是由具有适
应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经
系统对真实世界物体所作出的交互反应。"

如果我们将人脑神经信息活动的特点与现行冯·诺依曼计算机的工作方
式进行比较,就可以看出人脑具有以下鲜明特征:

1. 巨量并行性。
在冯·诺依曼机中,信息处理的方式是集中、串行的,即所有的程序指
令都必须调到CPU中后再一条一条地执行。而人在识别一幅图像或作出一项
决策时,存在于脑中的多方面的知识和经验会同时并发作用以迅速作出解答。
据研究,人脑中约有多达10^(10)~10^(11)数量级的神经元,每一个神经元
具有103数量级的连接,这就提供了巨大的存储容量,在需要时能以很高的
反应速度作出判断。

2. 信息处理和存储单元结合在一起。
在冯·诺依曼机中,存储内容和存储地址是分开的,必须先找出存储器的
地址,然后才能查出所存储的内容。一旦存储器发生了硬件故障,存储器中
存储的所有信息就都将受到毁坏。而人脑神经元既有信息处理能力又有存储
功能,所以它在进行回忆时不仅不用先找存储地址再调出所存内容,而且可
以由一部分内容恢复全部内容。当发生"硬件"故障(例如头部受伤)时,并
不是所有存储的信息都失效,而是仅有被损坏得最严重的那部分信息丢失。

3. 自组织自学习功能。
冯·诺依曼机没有主动学习能力和自适应能力,它只能不折不扣地按照
人们已经编制好的程序步骤来进行相应的数值计算或逻辑计算。而人脑能够
通过内部自组织、自学习的能力,不断地适应外界环境,从而可以有效地处
理各种模拟的、模糊的或随机的问题。

神经网络研究的主要发展过程大致可分为四个阶段:

1. 第一阶段是在五十年代中期之前。

西班牙解剖学家Cajal于十九世纪末创立了神经元学说,该学说认为神经
元的形状呈两极,其细胞体和树突从其他神经元接受冲动,而轴索则将信号
向远离细胞体的方向传递。在他之后发明的各种染色技术和微电极技术不断
提供了有关神经元的主要特征及其电学性质。

1943年,美国的心理学家W.S.McCulloch和数学家W.A.Pitts在论文《神经
活动中所蕴含思想的逻辑活动》中,提出了一个非常简单的神经元模型,即
M-P模型。该模型将神经元当作一个功能逻辑器件来对待,从而开创了神经
网络模型的理论研究。

1949年,心理学家D.O. Hebb写了一本题为《行为的组织》的书,在这本
书中他提出了神经元之间连接强度变化的规则,即后来所谓的Hebb学习法则。
Hebb写道:"当神经细胞A的轴突足够靠近细胞B并能使之兴奋时,如果A重
复或持续地激发B,那么这两个细胞或其中一个细胞上必然有某种生长或代
谢过程上的变化,这种变化使A激活B的效率有所增加。"简单地说,就是
如果两个神经元都处于兴奋状态,那么它们之间的突触连接强度将会得到增
强。

五十年代初,生理学家Hodykin和数学家Huxley在研究神经细胞膜等效电
路时,将膜上离子的迁移变化分别等效为可变的Na+电阻和K+电阻,从而建
立了着名的Hodykin-Huxley方程。

这些先驱者的工作激发了许多学者从事这一领域的研究,从而为神经计
算的出现打下了基础。

2. 第二阶段从五十年代中期到六十年代末。

1958年,F.Rosenblatt等人研制出了历史上第一个具有学习型神经网络
特点的模式识别装置,即代号为Mark I的感知机(Perceptron),这一重
大事件是神经网络研究进入第二阶段的标志。对于最简单的没有中间层的
感知机,Rosenblatt证明了一种学习算法的收敛性,这种学习算法通过迭代
地改变连接权来使网络执行预期的计算。

稍后于Rosenblatt,B.Widrow等人创造出了一种不同类型的会学习的神经
网络处理单元,即自适应线性元件Adaline,并且还为Adaline找出了一种有
力的学习规则,这个规则至今仍被广泛应用。Widrow还建立了第一家神经计
算机硬件公司,并在六十年代中期实际生产商用神经计算机和神经计算机软
件。

除Rosenblatt和Widrow外,在这个阶段还有许多人在神经计算的结构和
实现思想方面作出了很大的贡献。例如,K.Steinbuch研究了称为学习矩阵
的一种二进制联想网络结构及其硬件实现。N.Nilsson于1965年出版的
《机器学习》一书对这一时期的活动作了总结。

3. 第三阶段从六十年代末到八十年代初。

第三阶段开始的标志是1969年M.Minsky和S.Papert所着的《感知机》一书
的出版。该书对单层神经网络进行了深入分析,并且从数学上证明了这种网
络功能有限,甚至不能解决象"异或"这样的简单逻辑运算问题。同时,他们
还发现有许多模式是不能用单层网络训练的,而多层网络是否可行还很值得
怀疑。

由于M.Minsky在人工智能领域中的巨大威望,他在论着中作出的悲观结论
给当时神经网络沿感知机方向的研究泼了一盆冷水。在《感知机》一书出版
后,美国联邦基金有15年之久没有资助神经网络方面的研究工作,前苏联也
取消了几项有前途的研究计划。

但是,即使在这个低潮期里,仍有一些研究者继续从事神经网络的研究工
作,如美国波士顿大学的S.Grossberg、芬兰赫尔辛基技术大学的T.Kohonen
以及日本东京大学的甘利俊一等人。他们坚持不懈的工作为神经网络研究的
复兴开辟了道路。

4. 第四阶段从八十年代初至今。

1982年,美国加州理工学院的生物物理学家J.J.Hopfield采用全互连型
神经网络模型,利用所定义的计算能量函数,成功地求解了计算复杂度为
NP完全型的旅行商问题(Travelling Salesman Problem,简称TSP)。这
项突破性进展标志着神经网络方面的研究进入了第四阶段,也是蓬勃发展
的阶段。

Hopfield模型提出后,许多研究者力图扩展该模型,使之更接近人脑的
功能特性。1983年,T.Sejnowski和G.Hinton提出了"隐单元"的概念,并且
研制出了Boltzmann机。日本的福岛邦房在Rosenblatt的感知机的基础上,
增加隐层单元,构造出了可以实现联想学习的"认知机"。Kohonen应用3000
个阈器件构造神经网络实现了二维网络的联想式学习功能。1986年,
D.Rumelhart和J.McClelland出版了具有轰动性的着作《并行分布处理-认知
微结构的探索》,该书的问世宣告神经网络的研究进入了高潮。

1987年,首届国际神经网络大会在圣地亚哥召开,国际神经网络联合会
(INNS)成立。随后INNS创办了刊物《Journal Neural Networks》,其他
专业杂志如《Neural Computation》,《IEEE Transactions on Neural
Networks》,《International Journal of Neural Systems》等也纷纷
问世。世界上许多着名大学相继宣布成立神经计算研究所并制订有关教育
计划,许多国家也陆续成立了神经网络学会,并召开了多种地区性、国际性
会议,优秀论着、重大成果不断涌现。

今天,在经过多年的准备与探索之后,神经网络的研究工作已进入了决
定性的阶段。日本、美国及西欧各国均制订了有关的研究规划。

日本制订了一个"人类前沿科学计划"。这项计划为期15-20年,仅
初期投资就超过了1万亿日元。在该计划中,神经网络和脑功能的研究占有
重要地位,因为所谓"人类前沿科学"首先指的就是有关人类大脑以及通过
借鉴人脑而研制新一代计算机的科学领域。

在美国,神经网络的研究得到了军方的强有力的支持。美国国防部投资
4亿美元,由国防部高级研究计划局(DAPRA)制订了一个8年研究计划,
并成立了相应的组织和指导委员会。同时,海军研究办公室(ONR)、空军
科研办公室(AFOSR)等也纷纷投入巨额资金进行神经网络的研究。DARPA认
为神经网络"看来是解决机器智能的唯一希望",并认为"这是一项比原子弹
工程更重要的技术"。美国国家科学基金会(NSF)、国家航空航天局(NASA)
等政府机构对神经网络的发展也都非常重视,它们以不同的形式支持了众多
的研究课题。

欧共体也制订了相应的研究计划。在其ESPRIT计划中,就有一个项目是
"神经网络在欧洲工业中的应用",除了英、德两国的原子能机构外,还有多
个欧洲大公司卷进这个研究项目,如英国航天航空公司、德国西门子公司等。
此外,西欧一些国家还有自己的研究计划,如德国从1988年就开始进行一个
叫作"神经信息论"的研究计划。

我国从1986年开始,先后召开了多次非正式的神经网络研讨会。1990年
12月,由中国计算机学会、电子学会、人工智能学会、自动化学会、通信学
会、物理学会、生物物理学会和心理学会等八个学会联合在北京召开了"中
国神经网络首届学术会议",从而开创了我国神经网络研究的新纪元。

3. 有哪些深度神经网络模型

目前经常使用的深度神经网络模型主要有卷积神经网络(CNN) 、递归神经网络(RNN)、深信度网络(DBN) 、深度自动编码器(AutoEncoder) 和生成对抗网络(GAN) 等。

递归神经网络实际.上包含了两种神经网络。一种是循环神经网络(Recurrent NeuralNetwork) ;另一种是结构递归神经网络(Recursive Neural Network),它使用相似的网络结构递归形成更加复杂的深度网络。RNN它们都可以处理有序列的问题,比如时间序列等且RNN有“记忆”能力,可以“模拟”数据间的依赖关系。卷积网络的精髓就是适合处理结构化数据。

关于深度神经网络模型的相关学习,推荐CDA数据师的相关课程,课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。这种教学方式能够引发学员的独立思考及主观能动性,学员掌握的技能知识可以快速转化为自身能够灵活应用的技能,在面对不同场景时能够自由发挥。点击预约免费试听课。

4. 什么是神经网络

隐层节点数在BP 网络中,隐层节点数的选择非常重要,它不仅对建立的神经网络模型的性能影响很大,而且是训练时出现“过拟合”的直接原因,但是目前理论上还没有一种科学的和普遍的确定方法。 目前多数文献中提出的确定隐层节点数的计算公式都是针对训练样本任意多的情况,而且多数是针对最不利的情况,一般工程实践中很难满足,不宜采用。事实上,各种计算公式得到的隐层节点数有时相差几倍甚至上百倍。为尽可能避免训练时出现“过拟合”现象,保证足够高的网络性能和泛化能力,确定隐层节点数的最基本原则是:在满足精度要求的前提下取尽可能紧凑的结构,即取尽可能少的隐层节点数。研究表明,隐层节点数不仅与输入/输出层的节点数有关,更与需解决的问题的复杂程度和转换函数的型式以及样本数据的特性等因素有关。在确定隐层节点数时必须满足下列条件:(1)隐层节点数必须小于N-1(其中N为训练样本数),否则,网络模型的系统误差与训练样本的特性无关而趋于零,即建立的网络模型没有泛化能力,也没有任何实用价值。同理可推得:输入层的节点数(变量数)必须小于N-1。(2) 训练样本数必须多于网络模型的连接权数,一般为2~10倍,否则,样本必须分成几部分并采用“轮流训练”的方法才可能得到可靠的神经网络模型。 总之,若隐层节点数太少,网络可能根本不能训练或网络性能很差;若隐层节点数太多,虽然可使网络的系统误差减小,但一方面使网络训练时间延长,另一方面,训练容易陷入局部极小点而得不到最优点,也是训练时出现“过拟合”的内在原因。因此,合理隐层节点数应在综合考虑网络结构复杂程度和误差大小的情况下用节点删除法和扩张法确定。

5. 神经网络有哪些主要分类规则并如何分类

神经网络模型的分类
人工神经网络的模型很多,可以按照不同的方法进行分类。其中,常见的两种分类方法是,按照网络连接的拓朴结构分类和按照网络内部的信息流向分类。
1
按照网络拓朴结构分类
网络的拓朴结构,即神经元之间的连接方式。按此划分,可将神经网络结构分为两大类:层次型结构和互联型结构。
层次型结构的神经网络将神经元按功能和顺序的不同分为输出层、中间层(隐层)、输出层。输出层各神经元负责接收来自外界的输入信息,并传给中间各隐层神经元;隐层是神经网络的内部信息处理层,负责信息变换。根据需要可设计为一层或多层;最后一个隐层将信息传递给输出层神经元经进一步处理后向外界输出信息处理结果。
而互连型网络结构中,任意两个节点之间都可能存在连接路径,因此可以根据网络中节点的连接程度将互连型网络细分为三种情况:全互连型、局部互连型和稀疏连接型
2
按照网络信息流向分类
从神经网络内部信息传递方向来看,可以分为两种类型:前馈型网络和反馈型网络。
单纯前馈网络的结构与分层网络结构相同,前馈是因网络信息处理的方向是从输入层到各隐层再到输出层逐层进行而得名的。前馈型网络中前一层的输出是下一层的输入,信息的处理具有逐层传递进行的方向性,一般不存在反馈环路。因此这类网络很容易串联起来建立多层前馈网络。
反馈型网络的结构与单层全互连结构网络相同。在反馈型网络中的所有节点都具有信息处理功能,而且每个节点既可以从外界接受输入,同时又可以向外界输出。

6. 神经网络的应用领域有哪些

医学领域
通过建立神经网络使检测仪器自动判断肿瘤为良性还是恶性
机械领域
自动化机器人(这个很多,大多都是试验应用,控制机器人自我学习)
自动驾驶汽车,通过安装摄像头,让计算机学习人类在各种路段(转弯,堵车,下坡,上坡)的驾驶动作(转向,刹车,减速,加速),从而达到自动驾驶。

7. 预测 一般有哪些方法 神经网络

时间序列预测只要能转化为训练样本,即可使用神经网络进行训练。目前常用的几类人工神经网络,如BP神经网络、Elman神经网络、RBF神经网络、GRNN神经网络、小波神经网络以及各类组合神经网络,都是可以应用在时间序列预测中的。
预测效果较好的一般有:1、GRNN神经网络、RBF神经网络。局部逼近网络由于只需调整局部权值,因此训练速度较快,拟合精度也较高。2、Elman神经网络。由于Elman神经网络的承接层的延时算子,使得网络可以记忆历史信息,这正好与时间序列预测的原理相同,极其适于应用于时间序列预测。

8. 神经网络具体是什么

神经网络由大量的神经元相互连接而成。每个神经元接受线性组合的输入后,最开始只是简单的线性加权,后来给每个神经元加上了非线性的激活函数,从而进行非线性变换后输出。每两个神经元之间的连接代表加权值,称之为权重(weight)。不同的权重和激活函数,则会导致神经网络不同的输出。 举个手写识别的例子,给定一个未知数字,让神经网络识别是什么数字。此时的神经网络的输入由一组被输入图像的像素所激活的输入神经元所定义。在通过非线性激活函数进行非线性变换后,神经元被激活然后被传递到其他神经元。重复这一过程,直到最后一个输出神经元被激活。从而识别当前数字是什么字。 神经网络的每个神经元如下

基本wx + b的形式,其中 x1、x2表示输入向量 w1、w2为权重,几个输入则意味着有几个权重,即每个输入都被赋予一个权重 b为偏置bias g(z) 为激活函数 a 为输出 如果只是上面这样一说,估计以前没接触过的十有八九又必定迷糊了。事实上,上述简单模型可以追溯到20世纪50/60年代的感知器,可以把感知器理解为一个根据不同因素、以及各个因素的重要性程度而做决策的模型。 举个例子,这周末北京有一草莓音乐节,那去不去呢?决定你是否去有二个因素,这二个因素可以对应二个输入,分别用x1、x2表示。此外,这二个因素对做决策的影响程度不一样,各自的影响程度用权重w1、w2表示。一般来说,音乐节的演唱嘉宾会非常影响你去不去,唱得好的前提下 即便没人陪同都可忍受,但如果唱得不好还不如你上台唱呢。所以,我们可以如下表示: x1:是否有喜欢的演唱嘉宾。x1 = 1 你喜欢这些嘉宾,x1 = 0 你不喜欢这些嘉宾。嘉宾因素的权重w1 = 7 x2:是否有人陪你同去。x2 = 1 有人陪你同去,x2 = 0 没人陪你同去。是否有人陪同的权重w2 = 3。 这样,咱们的决策模型便建立起来了:g(z) = g(w1x1 + w2x2 + b ),g表示激活函数,这里的b可以理解成 为更好达到目标而做调整的偏置项。 一开始为了简单,人们把激活函数定义成一个线性函数,即对于结果做一个线性变化,比如一个简单的线性激活函数是g(z) = z,输出都是输入的线性变换。后来实际应用中发现,线性激活函数太过局限,于是引入了非线性激活函数。

9. 神经网络算法实例说明有哪些

在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人、复杂系统控制等等。

纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。

10. 人工神经网络有哪些类型

人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。根据连接的拓扑结构,神经网络模型可以分为:

(1)前向网络 网络中各个神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示。这种网络实现信号从输入空间到输出空间的变换,它的信息处理能力来自于简单非线性函数的多次复合。网络结构简单,易于实现。反传网络是一种典型的前向网络。

(2)反馈网络 网络内神经元间有反馈,可以用一个无向的完备图表示。这种神经网络的信息处理是状态的变换,可以用动力学系统理论处理。系统的稳定性与联想记忆功能有密切关系。Hopfield网络、波耳兹曼机均属于这种类型。

学习是神经网络研究的一个重要内容,它的适应性是通过学习实现的。根据环境的变化,对权值进行调整,改善系统的行为。由Hebb提出的Hebb学习规则为神经网络的学习算法奠定了基础。Hebb规则认为学习过程最终发生在神经元之间的突触部位,突触的联系强度随着突触前后神经元的活动而变化。在此基础上,人们提出了各种学习规则和算法,以适应不同网络模型的需要。有效的学习算法,使得神经网络能够通过连接权值的调整,构造客观世界的内在表示,形成具有特色的信息处理方法,信息存储和处理体现在网络的连接中。
根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。在监督学习中,将训练样本的数据加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经多次训练后收敛到一个确定的权值。当样本情况发生变化时,经学习可以修改权值以适应新的环境。使用监督学习的神经网络模型有反传网络、感知器等。非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学习阶段与工作阶段成为一体。此时,学习规律的变化服从连接权值的演变方程。非监督学习最简单的例子是Hebb学习规则。竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。自组织映射、适应谐振理论网络等都是与竞争学习有关的典型模型。
研究神经网络的非线性动力学性质,主要采用动力学系统理论、非线性规划理论和统计理论,来分析神经网络的演化过程和吸引子的性质,探索神经网络的协同行为和集体计算功能,了解神经信息处理机制。为了探讨神经网络在整体性和模糊性方面处理信息的可能,混沌理论的概念和方法将会发挥作用。混沌是一个相当难以精确定义的数学概念。一般而言,“混沌”是指由确定性方程描述的动力学系统中表现出的非确定性行为,或称之为确定的随机性。“确定性”是因为它由内在的原因而不是外来的噪声或干扰所产生,而“随机性”是指其不规则的、不能预测的行为,只可能用统计的方法描述。混沌动力学系统的主要特征是其状态对初始条件的灵敏依赖性,混沌反映其内在的随机性。混沌理论是指描述具有混沌行为的非线性动力学系统的基本理论、概念、方法,它把动力学系统的复杂行为理解为其自身与其在同外界进行物质、能量和信息交换过程中内在的有结构的行为,而不是外来的和偶然的行为,混沌状态是一种定态。混沌动力学系统的定态包括:静止、平稳量、周期性、准同期性和混沌解。混沌轨线是整体上稳定与局部不稳定相结合的结果,称之为奇异吸引子。

阅读全文

与有哪些神经网络相关的资料

热点内容
专用网络和广域网哪个好 浏览:149
网络营销的心理障碍 浏览:131
老点的网络歌曲有哪些 浏览:701
网络安全公司排行 浏览:112
地铁乘车码需要移动网络吗 浏览:397
hp打印机设置网络打印 浏览:743
网络质量良好手机连不上网 浏览:853
手机连接到wifi却没网络 浏览:971
浅谈网络营销的应用 浏览:533
小米手机的网络速度在哪里设置 浏览:509
无线网络设置连接但不能上网 浏览:679
电脑重连网络后变得很卡怎么办 浏览:545
电脑网络发电机 浏览:376
如何做一名合格的网络评价人 浏览:976
usb共享手机网络没反应 浏览:215
企业进销存网络版软件 浏览:678
智能灯怎么连接无线网络 浏览:579
电信机顶盒换个网络插头怎么设置 浏览:776
丰田知识共享网络能带来很大效益 浏览:266
电脑网络连接的主要条件 浏览:39

友情链接