① ip带宽控制上行和下行什么意思
1、上行,计算机网络术语,指从用户电脑向网络传送信息。上行速率是指用户电脑向网络发送信息时的数据传输速率;
2、下行,计算机网络术语,指从网络向用户电脑传送信息。下行速率是指网络向用户电脑发送信息时的数据传输速率;
3、ip带宽控制上行和下行即为控制单个ip的上传和下载的速度。
② 计算机网络带宽
这种说法的确在网络界很常见。
例如,当10 Mb/s以太网升级到100 Mb/s时,这种100 Mb/s的以太网就称为快速以太网,表明速率提高了。当调制解调器每秒能够传送更多的比特时就称为高速调制解调器。当网络中的链路带宽增加时,也常说成是链路的速率提高了。因此在计算机网络领域,“速率”和“带宽”有时是代表同样的意思。
但我们必须对网络的“速度”有正确的理解。。
我们早已在物理课程中学过,速率(或速度)的单位是“米/秒”。我们谈到“高速火车”是指这种火车在单位时间内行驶的距离增大了。但“网络提速”并不是指信号在网络上传播得更快了(更多的“米/秒”),而是说网络的传输速率(更多的“比特/秒”)提高了。
这里特别要注意,“传播”(propagation或propagate)和“传输”(transmission或transmit)这两个中文名词仅一字之差,但意思却差别很大。
传播速率:信号比特在传输媒体上的传播速率就是电磁波在单位时间内能够在传输媒体上的走多少距离。这个速率大约只有电磁波在真空中的传播速率的2/3左右。或者说,信号比特在传输媒体上1微秒可传播200米左右的距离。
传输速率:计算机每秒钟可以向所连接的媒体或网络注入(也就是发送)多少个比特则是传输速率。若计算机在单位时间内能够发送更多的比特也就是“发送速率提高了”,但一定要弄清,这里的“速率”指的“比特/秒”而不是指“米/秒(传播速率)”。
由此可见,当我们使用“速率”表示“比特/秒”时,就应当将其理解为主机向链路(或网络)发送比特的速率。这也就是比特进入链路(或网络)的速率。
同理,传播时延和传输时延的意思也是完全不同的。由于传输时延很容易和传播时延弄混,因此最好使用发送时延来代替传输时延这个名词。请记住:
发送时延 = 传输时延 �8�2 传播时延
③ 网速的上行和下行是什么意思啊
上行速率一般是指从你的电脑上传的速度,也就说别人从你的电脑进行通讯的速率。
下行速率一般是你从网络上的主机下载速度。
上行是指用户到电信服务提供商方向,例如上传文件。
下行是指从电信服务提供商到用户的方向,例如下载文件。
考虑到数据传输中的各种损耗和电脑终端的性能,网速是不可能达到理论数值的,如工信部数据显示,截止2016年11底,固定宽带接入速率达到了48Mbps,而宽带发展联盟发布了第14期《中国宽带速率状况报告》显示,2016年第四季度我国固定宽带网络平均下载速率达到11.90 Mbps。
互联网的网络带宽是动态变化的,它的实时使用带宽主要取决于以下方面:
1、运营商骨干出口带宽;
2、运营商提供给客户的接入带宽;
3、客户所访问的内容提供商的带宽;
4、线路和设备衰耗;
5、同时在线的人数;
6、用户自建局域网。
④ 计算机网络的题目,通信信道带宽为1Gb/s, 端到端传播时延为10ms, ,tcp的发送窗口为65535字节。
答案是:
发送时延=数据长度/信道带宽=65535*8bit/1Gb/s=0.52428*10^3 s=0.52428ms;
传播往返时延=2*10=20ms (发送数据和接收确认);
所以每发送一个窗口大小的流量需要,总时延=发送时延+传播往返时延=0.52428+20=20.52428ms。
故每秒钟可以产生1000/20.52428=48.7个窗口,
因此最大数据吞吐量=65535*8*48.7=255443769bit/s=25.5Mb/s
信道的利用率=25.5(Mb/s)/1(Gbit/s)=2.55%
⑤ 计算机网络的服务器消息响应测试是 分为下行消息和上行消息 ,下行和上行分别代表什么意思,谢谢了!
上行就是向网络上送出,下行就是从网络上获取。
⑥ 计算机网络中所有的计算机均连接到一条通信传输线路上
在计算机网络中,所有的计算机均连接到一条通信传输线路上,在线路两端连有防止信号反射的装置。这种连接结构被称为总线结构。
总线结构优点:
(1)组网费用低:从示意图可以看到这样的结构根本不需要另外的互联设备,是直接通过一条总线进行连接,所以组网费用较低;
(2)这种网络因为各节点是共用总线带宽的,所以在传输速度上会随着接入网络的用户的增多而下降;
(3)网络用户扩展较灵活:需要扩展用户时只需要添加一个接线器即可,但所能连接的用户数量有限;
(4)维护较容易:单个节点失效不影响整个网络的正常通信。但是如果总线一断,则整个网络或者相应主干网段就断了。
(6)计算机网络上行通道扩展阅读:
总线(Bus)是计算机各种功能部件之间传送信息的公共通信干线,它是由导线组成的传输线束, 按照计算机所传输的信息种类,计算机的总线可以划分为数据总线、地址总线和控制总线,分别用来传输数据、数据地址和控制信号。总线是一种内部结构,它是cpu、内存、输入、输出设备传递信息的公用通道,主机的各个部件通过总线相连接,外部设备通过相应的接口电路再与总线相连接,从而形成了计算机硬件系统。在计算机系统中,各个部件之间传送信息的公共通路叫总线,微型计算机是以总线结构来连接各个功能部件的。
总线结构这种网络拓扑结构中所有设备都直接与总线相连,它所采用的介质一般也是同轴电缆(包括粗缆和细缆),不过现在也有采用光缆作为总线型传输介质的,如后面我们将要讲的ATM网、Cable Modem所采用的网络等都属于总线型网络结构。
⑦ 计算机网络里面的链路是什么,
什么是链路层劫持
数据链路层处在OSI模型的第二层,它控制网络层与物理层之间的通信。数据链路层定义了如何让格式化数据以进行传输,以及如何让控制对物理介质的访问。它的主要功能是如何在不可靠的物理线路上进行数据的可靠传递,还提供错误检测和纠正,以确保数据的可靠传输。该层的作用包括:物理地址寻址、数据的成帧、流量控制、数据的检错、重发等。
链路层劫持是指第三方(可能是运营商、黑客)通过在用户至服务器之间,植入恶意设备或者控制网络设备的手段,侦听或篡改用户和服务器之间的数据,达到窃取用户重要数据(包括用户密码,用户身份数据等等)的目的。链路层劫持最明显的危害就是帐号、密码被窃取。
二、链路劫持案例分析
以下引用红黑联盟站内一项案例分析,说明链路劫持的现象。
案例现象描述:
有用户反馈访问公司部分业务的URL时被重定向至公司其他业务的URL,导致用户无法请求所需的服务,严重影响了用户体验以及用户利益。我们第一时间通过远控的方式复现了上述现象,并及时抓取了相关数据包以供分析,当然前期也采取了用户电脑杀毒、开发者工具分析等方式排除了用户端个人原因的可能性。从图1来看,初步判断是运营商某员工所为,意欲通过流量重定向来获取非法的流量分成,啥意思呢,被劫持的该业务的流量要经过联盟的该账户spm,使得公司再付费给联盟,归根结底还是为了盈利。
案例问题追踪:
通过分析抓取的样本数据发现,数据包在传输过程中出现异常TTL,目标机的正常TTL为51如图2。
⑧ 上网下行 和 上行是啥意思呀
上行:
计算机网络术语,指从用户电脑向网络传送信息。上行速率是指用户电脑向网络发送信息时的数据传输速率,比如用FTP上传文件到网上去,影响上传速度的就是"上行速率"。
下行
下行速率是指网络向用户电脑发送信息时的传输速率,从网上下载文件,影响下载速度的就是"下行速率"。
在实际上传下载过程中,线路、设备(含计算机及其他设备)等的质量也会对速度造成或多或少的影响。
目前我们使用的ADSL是非对称的传输方式,即上行速率不等于下行速率;ADSL上行速率640Kbps到1Mbps,下行速率1Mbps到8Mbps。普遍的是2Mbps,注意下行速率不等于下载速率,平时我们下载软件或者电影的时候经常只能达到220Kbps,而不是2Mbps,其实2M的宽带是2M位(Bit)的而不是2M字节(Byte)的。根据8位(Bit)=1字节(Byte)的公式我们来算一下:2MBit=2048KBit=256KByte,所以理论上2M的宽带下载最大速度应该是256K,再因为一些其他的因素,实际的下载速度在200K左右是正常的。
⑨ HFC上行通道是什么
HFC是混合的光纤同轴电缆,上行通道主要业务:cable modem、机顶盒、电缆电话、系统的状态监控、以及自动抄三表、防火防盗煤气泄漏报警等!上行频率范围从5Mhz-65Mhz!
⑩ 计算机网络中一些概念区别
中文名称:
信道
英文名称:
channel
定义:
在两点之间用于收发信号的单向或双向通路。-----传送信息的通道
传送信息的物理性通道。信息是抽象的,但传送信息必须通过具体的媒质。例如二人对话,靠声波通过二人间的空气来传送,因而二人间的空气部分就是信道。邮政通信的信道是指运载工具及其经过的设施。-----传送信息的通道
传输媒体是通信网络中发送方和接收方之间的物理通路,计算机网络中采用的传输媒体可分为有线和元线两大类。双绞线、同轴电缆和光纤是常用的三种有线传输媒体;无线电通信、微波通信、红外通信以及激光通信的信息载体都属于无线传输媒体。
传输媒体的特性对网络数据通信质量有很大影响,这些特性是:
(1)物理特性。说明传输媒体的特征。
(2)传输特性。包括信号形式、调制技术、传输速率及频带宽度等内容。
(3)连通性。采用点到点连接还是多点连接。
(4)地理范围。网上各点间的最大距离。
(5)抗干扰性。防止噪音、电磁干扰对数据传输影响的能力。
(6)相对价格。以元件、安装和维护的价格为基础。
下面分别介绍几种常用的传输媒体的特性。
1.双绞线
由螺旋状扭在一起的两根绝缘导线组成,线对扭在一起可以减少相互间的辐射电磁干扰。双绞线是最常用的传输媒体,早就用于电话通信中的模拟信号传输,也可用于数字信号的传输。
(1)物理特性。双绞线芯一般是铜质的,能提供良好的传导率。
(2)传输特性。双绞线既可以用于传输模拟信号,也可以用于传输数字信号。
对于模拟信号来说,大约每5~6公里需要一个放大器;对于数字信号来说,每2~3公里使用一个中继器。双绞线最常用于声音的模拟传输。虽然声音的频谱在20Hz~20l吐fz之间,但是进行可理解的语音传输所需要的带宽却窄得多。一条全双工语音通道的标准带宽是300Hz~4KE毡,即只要约4l吐fz的带宽。双绞线带宽可达268KHz,因而可以使用频分多路复用技术实现多个语音通道的复用。即使在通道之间留有适当的隔离,这种双绞线仍具有复用24路语音通道的容量。使用调制解调器后,作为模拟音频通道的双绞线也可传输数字数据。根据目前的调制解调器设计技术,若使用移相键控法PSK,可使每路线有效传输速率达到9600bps以上,这样,在一条24通道的双绞线上,总的数据传输速率便可达230kbps。
双绞线上也可直接传送数字信号,使用T1线路的总数据传输速率可达1.544Mbpso达到更高数据传输率也是可能的,但与距离有关。
双绞线也可用于局域网,如10BASE一T和100BASE-T总线,可分别提供10Mbps和100Mbps的数据传输速率。通常将多对双绞线封装于一个绝缘套里组成双绞线电缆,局域网中常用的3类双绞线和5类双绞线电缆均由4对双绞线组成,其中3类双绞线通常用于10BASE-T总线局域网,5类双绞线通常用于100BASE-T总线局域网。
(3)连通性。双绞线普遍用于点到点的连接,也可以用于多点的连接。作为多点媒体使用时,双绞线比同轴电缆的价格低,但性能较差,而且只能支持很少几个站。
(4)地理范围。双绞线可以很容易地在15公里或更大范围内提供数据传输。局域网的双绞线主要用于一个建筑物内或几个建筑物间的通信,在10016ps速率下传输距离可达1公里。但10Mbps和100Mbps传输速率的1OBASE-T和100BASE-T总线传输距离均不超过100米。
(5)抗干扰性。在低频传输时,双绞线的抗干扰性相当于或高于同轴电缆,但在超过10~100ldfZ时,同轴电缆就比双绞线明显优越。
(6)价格。双绞线比同轴电缆或光导纤维都要便宜得多。
2.同轴电缆
同轴电缆也像双绞线一样由一对导体组成,但它们是按"同轴"形式构成线对,其结构如图2.17所示。最里层是内芯,向外依次为绝缘层、屏蔽层,最外则是起保护作用的塑料外套,内芯和屏蔽层构成一对导体。同轴电缆分为基带同轴电缆(阻抗500)和宽带同轴电缆(阻抗750)。基带同轴电缆又可分为粗缆和细缆两种,都用于直接传输数字信号;宽带同轴电缆用于频分多路复用的模拟信号传输,也可用于不使用频分多路复用的高速数字信号和模拟信号传输。闭路电视所使用的CATV电缆就是宽带同轴电缆。
(1)物理特性。单根同轴电缆的直径约为1.02~2.54cm,可在较宽的频率范围内工作。
(2)传输特性。基带同轴电缆仅用于数字传输,并使用曼彻斯特编码,数据传输速率最高可达1OMbps。宽带同轴电缆既可用于模拟信号传输又可用于数字信号传输,对于模拟信号,带宽可达300~450阳也。一般,在CATV电缆上,每个电视通道分配6阳也带宽,每个广播通道需要的带宽要窄得多,因此在同轴电缆上使用频分多路复用技术可以支持大量的视、音频通道。
(3)连通性。同轴电缆适用于点到点和多点连接。基带500电缆每段可支持几百台设备,在大系统中还可以用转接器将各段连接起来;宽带750电缆可以支持数千台设备,但在高数据传输率下(50Mbp@)使用宽带电缆时,设备数目限制在20~30台。
(4)地理范围。传输距离取决于传输的信号形式和传输的速率,典型基带电缆的最大距离限制在几公里,在同样数据速率条件下,粗缆的传输距离较细缆的长。宽带电缆的传输距离可达几十公里。
(5)抗干扰性。同轴电缆的抗干扰性能比双绞线强。
(6)价格。安装同轴电缆的费用比双绞线贵,但比光导纤维便宜。
3.光纤
光纤是光导纤维的简称,它由能传导光波的石英玻璃纤维外加保护层构成。相对于金属导线来说具有重量轻、线径细的特点。用光纤传输电信号时,在发送端先要将其转换成光信号,而在接收端又要由光检测器还原成电信号。光纤的电信号传送过程如图2.18所示。
光源可以采用发光二极管LED (Light Emitting Diode)和注入型激光二极管ILD(II1·jeCHon Laser Diode)。发光二极管LED是一种价格较便宜的固态器件,电流通过时就产生可见光,但定向性较差,是通过在光纤石英玻璃媒体内不断反射而向前传播的,这种光纤称为多模光纤(Multimode Fiber);注入型激光二极管ILD也是一种固态器件,它根据激光器原理进行工作,即以激励量子电子效应来产生一个窄带的超辐射光束,产生的是激光。由于激光的定向性好,它可沿着光导纤维直接传播,减少了折射和损耗,效率更高,也能传播更大的距离,而且可以保持很高的数据传输率,这种光纤称为单模光纤(Single-Mode Fiber)。在接收端用来把光波转换为电能的检波器是一个光电二极管,目前常用的两种固态器件是PIN检波器和APD检波器。PIN光电二极管是在二极管的P层和N层之间增加一小段纯(I)硅;雪崩光电二极管(APD)的外部特性和PIN类似,但是使用了较强的电磁场。PIN的价格便宜,但是不如APD灵敏。对光载波的调制属于移幅键控法ASK,也称亮度调制(Intensity Molation)。典型的做法是在给定的频率下,以光的出现和消失来表示两个二进制数字。发光二极管LED和注入型激光二极管ILD的信号都可用这种方法调制,PIN和APD检波器直接响应亮度调制。
(1)物理特性。在计算机网络中均采用两根光纤(一来一去)组成传输系统。按波长范围(近红外范围内)可分为三种:0.85IAIn波长区(0.8~0.91im)、1.3lim波长区(1.25~1.351Am)和1.551im波长区(1.53~1.5811m)。不同的波长范围光纤损耗特性也不同,其中0.85IAIn波长区为多模光纤通信方式,1.5§IAm波长区为单模光纤通信方式,1.31im波长区有多模和单模两种方式。
(2)传输特性。光纤通过内部的全反射来传输一束经过编码的光信号,内部的全反射可以在任何折射指数高于包层媒体折射指数的透明媒体中进行。实际上光纤作为频率范围从1014~1015险的波导管,这一范围覆盖了可见光谱和部分红外光谱。光纤的数据传输率可达Gbps级,传输距离达数十公里。目前,一条光纤线路上只能传输一个载波,随着技术进一步发展,会出现实用的多路复用光纤。
(3)连通性。光纤普遍用于点到点的链路。总线拓扑结构的实验性多点系统已经建成,但是价格还太贵。原则上讲,由于光纤功率损失小、衰减少的特性以及有较大的带宽潜力,因此一段光纤能够支持的分接头数比双绞线或同轴电缆多得多。
(4)地理范围。从目前的技术来看,可以在6~8公里的距离内不用中继器传输,因此光纤适合于在几个建筑物之间通过点到点的链路连接局域网络。
(5)抗干扰性。光纤具有不受电磁干扰或噪声影响的独有特征,适宜在长距离内保持高数据传输率,而且能够提供很好的安全性。
(6)价格。就每米的价格和所需部件(发送器、接收器、连接器)来说,光纤比双绞线和同轴电缆都要贵,但是双绞线和同轴电缆的价格不大可能再下降,而光纤的价格将随着工程技术的进步会大大下降,使它能与同轴电缆的价格相竞争。
由于光纤通信具有损耗低、频带宽、数据传输率高、抗电磁干扰强等特点,对高速率、距离较远的局域网也是很适用的。目前采用一种波分技术,可以在一条光纤上复用多路传输,每路使用不同的波长,这种波分复用技术WDM (Wavelength Division Multiplexing)是一种新的数据传输系统。
4.无线传输媒体
无线传输媒体通过空间传输,不需要架设或铺埋电缆或光纤,目前常用的技术有:无线电波、微波、红外线和激光。便携式计算机的出现,以及在军事、野外等特殊场合下移动式通信联网的需要,促进了数字化元线移动通信的发展,现在已开始出现无线局域网产品。
微波通信的载波频率为2GHz~40GHz范围。因为频率很高,可同时传送大量信息,如一个带宽为2阳fz的频段可容纳500条话音线路,用来传输数字数据,速率可达数Mbps。微波通信的工作频率很高,与通常的无线电波不一样,是沿直线传播的。由于地球表面是曲面,微波在地面的传播距离有限。直接传播的距离与天线的高度有关,天线越高传播距离越远,超过一定距离后就要用中继站来接力。红外通信和激光通信也像微波通信一样,有很强的方向性,都是沿直线传播的。这三种技术都需要在发送方和接收方之间有一条视线(Lineof Sight)通路,故它们统称为视线媒体。所不同的是,红外通信和激光通信把要传输的信号分别转换为红外光信号和激光信号直接在空间传播。这三种视线媒体由于都不需要铺设电缆,对于连接不同建筑物内的局域网特别有用。这三种技术对环境气候较为敏感,例如雨、雾和雷电。相对来说,微波对一般雨和雾的敏感度较低。
卫星通信是微波通信中的特殊形式,卫星通信利用地球同步卫星做中继来转发微波信号。卫星通信可以克服地面微波通信距离的限制,一个同步卫星可以覆盖地球的1/3以上表面,三个这样的卫星就可以覆盖地球上全部通信区域,这样,地球上的各个地面站之间都可互相通信。由于卫星信道频带宽,也可采用频分多路复用技术分为若干子信道,有些用于由地面站向卫星发送(称为上行信道),有些用于由卫星向地面转发(称为下行信道)。卫星通信的优点是容量大,传输距离远;缺点是传播延迟时间长,对于数万公里高度的卫星来说,以200m/μs或5μs/Km的信号传播速度来计算,从发送站通过卫星转发到接收站的传播延迟时间约要花数百毫秒(ms),这相对于地面电缆的传播延迟时间来说,两者要相差几个数量级。
5.传输媒体的选择
传输媒体的选择取决于以下诸因素:网络拓扑的结构、实际需要的通信容量、可靠性要求、能承受的价格范围。
双绞线的显着特点是价格便宜,但与同轴电缆相比,其带宽受到限制。对于单个建筑物内的低通信容量局域网来说,双绞线的性能价格比可能是最好的。
同轴电缆的价格要比双绞线贵一些,对于大多数的局域网来说,需要连接较多设备而且通信容量相当大时可以选择同轴电缆。
光纤作为传输媒体,与同轴电缆和双绞线相比具有一系列优点:频带宽、速率高、体积小、重量轻、衰减小、能电磁隔离、误码率低等,因此,在国际和国内长话传输中的地位日益提高,并已广泛用于高速数据通信网。随着光纤通信技术的发展和成本的降低,光纤作为局域网的传输媒体也得到了普遍采用,光纤分布数据接口FDDI就是一例。
目前,便携式计算机已经有了很大的发展和普及,由于可随身携带,对可移动的无线网的需求将日益增加0元线数字网类似于蜂窝电话网,人们随时随地可将计算机接入网络,发送和接收数据。移动无线数字网的发展前景将是十分美好的。