Ⅰ 计算机网络按传输带宽怎样分类
计算机网络的分类方式有很多种,可以按地理范围、拓扑结构、传输速率和传输介质等分类。
⑴按按照计算机之间的距离和网络覆盖面来分可分为
①局域网LAN(Local Area Network)
局域网地理范围一般几百米到10km之内,属于小范围内的连网。如一个建筑物内、一个学校内、一个工厂的厂区内等。局域网的组建简单、灵活,使用方便。
②城域网MAN(Metropolitan Area Network)
城域网地理范围可从几十公里到上百公里,可覆盖一个城市或地区,是一种中等形式的网络。
③广域网WAN(Wide Area Network)
广域网地理范围一般在几千公里左右,属于大范围连网。如几个城市,一个或几个国家,是网络系统中的最大型的网络,能实现大范围的资源共享,如国际性的Internet网络。
⑵按传输速率分类
网络的传输速率有快有慢,传输速率快的称高速网,传输速率慢的称低速网。传输速率的单位是b/s(每秒比特数,英文缩写为bps)。一般将传输速率在Kb/s—Mb/s范围的网络称低速网,在Mb/s—Gb/s范围的网称高速网。也可以将Kb/s网称低速网,将Mb/s网称中速网,将Gb/s网称高速网。
网络的传输速率与网络的带宽有直接关系。带宽是指传输信道的宽度,带宽的单位是Hz(赫兹)。按照传输信道的宽度可分为窄带网和宽带网。一般将KHz—MHz带宽的网称为窄带网,将MHz—GHz的网称为宽带网,也可以将kHz带宽的网称窄带网,将MHz带宽的网称中带网,将GHz带宽的网称宽带网。通常情况下,高速网就是宽带网,低速网就是窄带网。
⑶按传输介质分类
传输介质是指数据传输系统中发送装置和接受装置间的物理媒体,按其物理形态可以划分为有线和无线两大类。
①有线网
传输介质采用有线介质连接的网络称为有线网,常用的有线传输介质有双绞线、同轴电缆和光导纤维。
●双绞线是由两根绝缘金属线互相缠绕而成,这样的一对线作为一条通信线路,由四对双绞线构成双绞线电缆。双绞线点到点的通信距离一般不能超过100m。目前,计算机网络上使用的双绞线按其传输速率分为三类线、五类线、六类线、七类线,传输速率在10Mbps到600Mbps之间,双绞线电缆的连接器一般为RJ-45。
●同轴电缆由内、外两个导体组成,内导体可以由单股或多股线组成,外导体一般由金属编织网组成。内、外导体之间有绝缘材料,其阻抗为50Ω。同轴电缆分为粗缆和细缆,粗缆用DB-15连接器,细缆用BNC和T连接器。
●光缆由两层折射率不同的材料组成。内层是具有高折射率的玻璃单根纤维体组成,外层包一层折射率较低的材料。光缆的传输形式分为单模传输和多模传输,单模传输性能优于多模传输。所以,光缆分为单模光缆和多模光缆,单模光缆传送距离为几十公里,多模光缆为几公里。光缆的传输速率可达到每秒几百兆位。光缆用ST或SC连接器。光缆的优点是不会受到电磁的干扰,传输的距离也比电缆远,传输速率高。光缆的安装和维护比较困难,需要专用的设备。
②无线网
采用无线介质连接的网络称为无线网。目前无线网主要采用三种技术:微波通信,红外线通信和激光通信。这三种技术都是以大气为介质的。其中微波通信用途最广,目前的卫星网就是一种特殊形式的微波通信,它利用地球同步卫星作中继站来转发微波信号,一个同步卫星可以覆盖地球的三分之一以上表面,三个同步卫星就可以覆盖地球上全部通信区域。
⑷按拓扑结构分类
计算机网络的物理连接形式叫做网络的物理拓扑结构。连接在网络上的计算机、大容量的外存、高速打印机等设备均可看作是网络上的一个节点,也称为工作站。计算机网络中常用的拓扑结构有总线型、星型、环型①总线拓扑结构
总线拓扑结构是一种共享通路的物理结构。这种结构中总线具有信息的双向传输功能,普遍用于局域网的连接,总线一般采用同轴电缆或双绞线。
②星型拓扑结构
星型拓扑结构是一种以中央节点为中心,把若干外围节点连接起来的辐射式互联结构。这种结构适用于局域网,特别是近年来连接的局域网大都采用这种连接方式。这种连接方式以双绞线或同轴电缆作连接线路。
③环型拓扑结构
环型拓扑结构是将网络节点连接成闭合结构。信号顺着一个方向从一台设备传到另一台设备,每一台设备配有一个收发器,信息在每台设备上的延时时间是固定的。
这种结构特别适用于实时控制的局域网系统。
④树型拓扑结构
树型拓扑结构就像一棵“根”朝上的树,与总线拓扑结构相比,主要区别在于总线拓扑结构中没有“根”。这种拓扑结构的网络一般采用同轴电缆,用于军事单位、政府部门等上、下界限相当严格和层次分明的部门。
Ⅱ 计算机网络中,数据的传输速度常用的单位是什么
常用的数据传输速率单位有:Kbps、Mbps、Gbps与Tb/s,最快的以太局域网理论传输速率(也就是所说的“带宽”)为10Gbit/s。
传输速度指的是将数据从源地址传送至目的地址的速度。根据传输设备和媒介的不同,传输速度有不同的含义。
针对传输网,传输速度是指将数字信号从起始地传输到终止地的传输速率。如SDH的一对光纤的传输速度为2.5Gbps或10Gbps。WDM的传输速度可以达到1.6T甚至更高。
交换机的传输速度是指交换机端口的数据交换速度。目前常见的有10Mbps、100Mbps、1000Mbps等几类。除此之外,还有10GMbps交换机,但目前很少。
(2)计算机网络按传输速度分类扩展阅读
1Kbps=1000bps
1Mbps=1000*1000bps
1Gbps=1000*1000*1000bps
1Tbps=1000*1000*1000*1000bps。
数据传输速率是单位时间内传送数据码元的个数。它是衡量系统传输能力的主要指标,通常使用下列几种不同的定义:
数据传输速率为每秒钟传输二进制码元的个数,又称为比特率。单位为比特/秒(bit/s)。
调制速率为每秒钟传输信号码元的个数,又称波特率,单位为波特(Bd)。
数据传送速率为单位时间内在数据传输系统中的相应设备之间传送的比特、字符或码组平均数。在该定义中,相应设备常指调制解调器、中间设备或数据源与数据宿。单位为比特/秒(bit/s)、字符/秒或码组/秒。
Ⅲ 计算机网络中,传输速率,带宽,信道容量有何区别和联系
计算机网络中的传输速率、带宽和信道容量是描述信息传递速度的三个核心概念。在理解它们之间的区别和联系时,首先从传输速率的概念出发。
传输速率,是以某个单位表示单位时间内传输的信息量。在实际应用中,我们通常以字节(Byte)为单位,如下载软件显示的5.5MB/s。在计算机领域,更常用的是以比特(bit)作为信息量的单位,描述传输时携带的信息速率。
但传输速率与波特率(baud rate)并非完全相同。波特率是指单位时间内传输过来的符号量,而在大多数情况下,符号量和信息量是相等的,容易混淆。例如,在评价系统中,用0和1两种符号表示“优”、“良”、“中”、“差”四个选项,每个选项即1个符号,可以表达一个状态。若采用两种符号,则每个状态需要两个位置来表示,因此1个字=2bit。
带宽是描述在通信过程中能够传输的数据速率,通常以比特率(bit/s)表示,如常说的百兆带宽(100Mbit/s)。带宽的概念源自物理中的带宽理论,类比于跑得越快的物体越宽,但在实际应用中,带宽是指在频域中占用的宽度,即传输信号的频谱范围。当传输速度过快时,占用的频谱宽度超过允许的最大频带时,数据传输速率将无法再提高。
信道容量则是指信道在无差错条件下所能传输的最大信息速率。根据香农的理论,信道容量与带宽呈线性关系,与符号的信噪比呈对数关系。要提高信息传输速度,可以增大带宽、提高信源编码效率以增加符号的信息量,或采用信道编码以提高信噪比。信道容量提供了指导意义,即实际传输速率应小于信道容量,以确保数据的无差错传输。
Ⅳ 计算机网络7层协议数据的传输速度单位分别是什么
在传输层,数据被称为段。在网络层,它被称为包。在数据链路层,它被称为帧。在物理层,它被称为比特流。这些术语统称为协议数据单元(PDU)。
开放系统互连(OSI)模型是一个定义完善的协议规范,它包含七个层次的结构,每层都可能包含几个子层。从上到下,OSI模型的七层分别是:
1. 应用层
2. 表示层
3. 会话层
4. 传输层
5. 网络层
6. 数据链路层
7. 物理层
前四层,即7、6、5、4层,定义了应用程序的功能。后三层,即5、6、7层,主要关注通过网络的端到端数据流。
协议分层的作用包括:
1. 便于讨论和学习协议的细节。
2. 标准化的接口促进了工程的模块化。
3. 创建了一个更高效的互连环境。
4. 降低了复杂性,使程序更容易修改,加快了产品开发速度。
5. 每层仅利用相邻下层的服务,易于理解各层的功能。
大多数计算机网络采用层次式结构,将网络划分为多个层次。这种结构允许高层系统仅使用下层提供的接口和功能,而无需了解下层实现功能的算法和协议。层次间的无关性使得每个模块可以被新的模块替换,只要新模块与旧模块具有相同的功能和接口,即使它们内部使用不同的算法和协议。
为了在网络中的计算机和终端之间正确传输信息和数据,必须在数据传输的顺序、格式和内容等方面达成一致或遵循规则,这些规则称为协议。
Ⅳ 计算机网络7层协议数据的传输速度单位分别是什么
在传输层的数据叫段, 网络层叫包,数据链路层叫帧,物理层叫比特流,这样的叫法叫PDU(协议数据单元)。
网络七层协议:OSI是一个开放性的通行系统互连参考模型,他是一个定义的非常好的协议规范。OSI模型有7层结构,每层都可以有几个子层。 OSI的7层从上到下分别是:
7 应用层 6 表示层 5 会话层 4 传输层 3 网络层 2 数据链路层 1 物理层 其中高层,
即7、6、5、4层定义了应用程序的功能,
下面3层,即橡拍3、2、1层主要面向通过网络的端到端的数据流。
协议分层的作用:
(1)人们可以很容易的讨论和学习协议的规范细节。
(2)层间的标准接口方便了工程模块化。
(3)创建了一个更好的互连环境。
(4)降低了复杂度,使程序更容易修改,产品开发的速度更快。
(5)每层利用紧邻的下层服务,更容易记住各层的功能。
大多数的计算机慎如扰网络都采用层次式结构,即将一个计算机网络分为若干层次,处在高层次的系统仅是利用较低层次的系统提供的接口和功能,不需了解低层实现该功能所采用的算法和协议;较低层次也仅是使用从高层系统传送来的参数,这就是层次间的无关性。因为有了这种无关性,层次间的每个模块可以用一个新的模块取代,只要新的模块与旧的模块具有相同的功能和接口,即使它们使用的算法和协议都不一样。
网络中的计算机与终端间要想宽旦正确的传送信息和数据,必须在数据传输的顺序、数据的格式及内容等方面有一个约定或规则,这种约定或规则称做协议。