Ⅰ 2017年计算机三级《网络技术》:第五章重点
2017年计算机三级《网络技术》:第五章重点
第五章 Internet基础
本单元概览
一、Internet的构成。
二、Internet的接入。
三、IP协议与互联层服务。
四、IP地址。
五、IP数据报。
六、路由器与路由选择。
七、差错与控制报文
八、TCP与UDP
九、IPV6
一、Internet的构成
从设计者角度看:Internet是计算机互联网实例;从使用者角度看:Internet是一个信息资源网。
主要有4部分组成:通信线路、路由器、服务器与客户机、信息资源。
(1)通信线路:Internet的基础设施,包括有线线路和无线线路
(2)路由器:网络互联的桥梁,具有寻址功能。主要任务是数据从一个网络到另一个网络时,路由器为它选择最佳路由。
(3)服务器与客户机:是信息资源和服务的载体。所有连接在Internet上的计算机统称为主机。
(4)信息资源:信息资源是用户最关注的问题之一。用户方便、快捷获取资源一直是Internet的研究方向。
二、Internet的接入
1、通过电话网接入
接入Internet的方法有很多种,但必须借助ISP将自己的计算机接入Internet。
电话已经普及到家家户户,传输的音频信号,计算机传输数字信号,需要调制解调器连接。一条电话线只能支持一个用户接入。
调制解调器的功能是数字信号与模拟信号的相互转换。
调制:数字信号转换成模拟信号
解调:模拟信号转换为数字信号
电话线的传输效率比较低。速率最快为56Kbps。
2、利用ADSL(非对称数字用户线路)接入
ADSL实现普通电话线路上进行高速的数据传输,利用ADSL调制解调器,分为上行和下行两个通道。下行通道的数据传输速率远远大于上行的数据传输速率(非对称)。
上行速率:16~640kbps;下行速率为1.5~9Mbps。
ADSL调制解调器不但具有调制解调功能,还具有网桥和路由的功能。
3、使用HFC(混合光纤/同轴电缆)接入
除了电话线上网外,还有有线电视网。对有线电视网改造升级,信号首先通过光纤传输到光纤结点,再通过同轴电缆到有线电视用户,即HFC(混合光纤/同轴电缆)。
HFC采用非对称数据传输速率。上行速率:10Mbps左右。下行速率:10~40Mbps。
4、通过数据通信线路接入
要想获得更好性能,可选数据通信线路。种类有:DDN,ATM,帧中继等,用户可以租用。
一台计算机、局域网用户可利用数据通信网借助ISP的接入Internet。
三、IP协议与互联层服务
1、IP互联网的工作原理
Internet是将提供不同服务的、使用不同技术的、具有不同功能的网络互联起来形成的。
TCP/IP协议是一个协议集,它对因特网中主机寻址方式、主机命名机制、信息的传输规则以及各种服务功能做了详细的约定。
IP协议运行在互联层,屏蔽各种物理网络的细节和差异,是网络层向上提供统一的服务,不要求下层使用相同的物理网络。
IP协议精确定义了IP数据报格式,并且对数据寻址和路由、数据报分片和重组、差错控制和处理等作出了具体规定。
工作原理:假设主机A发送数据到主机B。主机A的应用层形成的数据经传输层送互联层处理;互联层将数据封装成IP数据报,并决定发送给最近的路由器;主机A把IP数据报利用以太网控制传送到路由器;经由路由器对数据报进行拆封和处理;如果仍需传输,再封装后利用互联层的广域网控制程序传输;经由通信子网传输的到主机B。
2、互联层服务
提供的服务有3钟:不可靠的数据投递服务、面向无连接的传输服务、尽最大努力投递服务。
不可靠的数据投递服务:IP不能证实发送的报文是否被正确接收。即不能保证数据报的可靠传递。
面向无连接的传输服务:从源结点到目的结点的数据报可能经过不同的传输路径,而且在传输过程中数据报有可能丢失,也有可能正确到达。
尽最大努力投递服务:IP数据报虽面向非连接的不可靠服务,但IP并不随意丢弃数据报。只有系统资源用尽,接收数据错误或网络发生故障时,IP才被迫丢弃报文。
3、IP互联网的特点:
屏蔽了低层物理网络差异和细节,为用户提供通用的、一致的网络服务。IP互联网是一个单一的虚拟网络。
不指定网络互连的拓扑结构,不要求网络之间全互联。一个网络只要通过路由器与IP互联网中任意一个网络相连,就具有访问整个互联网的能力。
能在物理网络之间转发数据,信息可以跨网传输。
网络中计算机使用统一的、全局的地址描述法。
IP互联网平等对待互联网中的每一个网络。
四、IP地址
1、IP地址的作用
以太网中利用MAC地址(物理地址)标识网络中的一个结点,两个以太网结点需要知道对方的MAC地址才能通信。
以太网不是唯一的网络,各种网络技术互不相同,让它们之间通信是需要解决的问题。
在互联层将各种物理网络地址统一。
屏蔽各种物理地址的差异,使用IP协议规定的地址(IP地址)。IP地址由管理机构统一管理和分配,保证在网络中的每台计算机不会产生冲突。
IP地址的作用是标识网络连接。(严格地说,IP地址指定的不是一台计算机,而是计算机到一个网络的连接,例如一台计算机有块网卡,有两条连接,有两个IP地址;或多个IP地址绑定在一条物理连接上)
2、IP地址的层次结构
IP地址有两层:网络号和主机号。
网络号:标识互联网中一个特定的网络;而主机号标识该网络中主机的一个特定连接。
IP地址含有主机的信息和网络的地址信息,所以主机从一个网络移动到另一个网络时,IP地址必须重新分配,否则不能与其他计算机通信。
3、IP地址分类
IP地址32位(物理地址48位),为适应不同的网络规模,将IP地址分成5类:A、B、C、D、E
A类地址的前一个字节表示网络号,后三个字节表示主机号。且最前端1个二进制位固定是“0”。表示的地址范围是从1.0.0.0~126.255.255.255。A类地址允许有27―2=126个网络(网络地址的0和127保留用于特殊目的),每个网络有224―2=16777214个主机。
B类地址的前两个字节表示网络号,后两个字节表示主机号。且最前端的2个二进制位固定是“10”。表示的地址范围是从128.0.0.0~191.255.255.255。B类地址允许有214=16384个网络,每个网络有216―2=65534个主机。
C类地址的前三个字节表示网络号,后一个字节表示主机号。且最前端的3个二进制位是“110”。表示的地址范围是从192.0.0.0~223.255.255.255。C类地址允许有221=2097152个网络,每个网络有28―2=254个主机。
4、IP地址的直观表示法:IP地址是32位二进制数字,便于记忆采用点分十进制标记法。每个数值小于255,中间用”.”间隔开。
5、特殊的IP地址形式
网络地址:包含了一个有效的网络号和一个全0的主机号。例如A类地址中113.0.0.0表示该网络的地址。
广播地址:IP地址以全1结尾,分为两种形式:直接广播和有限广播。
直接广播:广播地址包含有效网络号和全1的主机号。
有限广播:32位全1的地址,用于本网广播。
回送地址:A类网络中127.0.0.0是一个保留地址,用于网络软件测试以及本地机器进程间通信。
本地地址:用户在本地内部网络中使用的地址,如果与Internet连接,必须将本地地址转换为 Internet的IP地址。例:10.***.***.***或192.168.***.***
6、子网编址
为克服IP地址的浪费,可以采用子网编址的方法。
(1)子网编址的方法
在IP地址的网络号部分不变的情况下,在网络的主机号部分中“借”位表示子网号部分。
每个子网中允许的连接的主机的台数相应减少。
(2)子网表示法
如何识别网络号,子网号,和主机号,通过子网掩码实现。
子网掩码也是32位二进制数字,在子网掩码中对于网络号和子网部分全部用1表示,其它部分用0表示。
通过子网掩码与IP地址的按位求与,屏蔽掉主机位,得到子网号。子网掩码作用是区分网络上的主机是否在同一网络区段内。
例如:B类地址128.22.25.6 如果子网掩码为255.255.240.0,按位求与后,确定的子网号为1
7、地址解析协议(ARP)
IP地址屏蔽了物理网络地址的差异,但不会对物理地址做任何修改。
高层软件指定源地址与目的地址,低层的物理网络则通过物理地址来发送和接收信息。
是以以太网经常使用的映射方法,它充分利用了以太网的广播能力,将IP地址与物理地址进行动态绑定。
ARP协议主要负责将主机的逻辑地址(IP地址)转换为相应的物理网络地址。这样用户只需给出目的主机的IP地址,就可以找出同一物理网络中任意一台主机的物理地址。
五、IP数据报
1、IP数据报的格式
IP数据报分为两大部分:报头区和数据区。其中报头仅仅是正确传输高层数据而增加的控制信息,数据区包括高层需要传输的数据。
IP数据报的主要字段:
1)版本与协议类型:版本是IP协议版本号(一般是4即IPv4),不同版本数据格式不同;协议类型是指该数据报的数据区数据的高层协议类型(如TCP),用于知名数据区的数据格式。
2)长度:分为报头长度(以32b为单位)和总长度(以8b为单位)。
3)服务类型:规定本数据报的处理方式。该字段为数据包分配一个转发优先级,要求中途转发器路由器尽量使用低延迟、高吞吐或高可靠性的线路投递。具体实现择由路由器的实现方法和底层物理网络技术。
4)报文的分片与重组控制:IP数据报使用标识、标志、片位移3个域对分片进行控制,分片将在目的主机重组。
5)生存周期:设计一个计数器,当计数器值为0时,数据报删除,避免循环发送。
6)头部校验和:用于保证IP数据报报头的完整性。注:只有报文头校验,没有数据区校验。好处是允许上层协议选择自己的数据校验方法。
7)地址:源地址和目的地址表示发送与接收的地址。此值保持不变。
2、IP封装、分片与重组
当IP分组在网上传输时,可能跨越多个网络,但每个网络都规定了一个帧最多携带的数据量(此限制称为最大传输单元或MTU),当长度超过MTU时,就需要将数据分成若干个较小的部分(分片),然后独立发送;
目的主机收到分片后的数据报后,对分片再重新组装(重组)。
分片独立传输时,需要对分片控制。主要有3个字段:标识、标志和片偏移;
标识:源主机赋予IP数据报的标识符,目的主机利用此标识判断此分片属于哪个数据报,以便重组。
标志:告诉目的主机该数据报是否已经分片,是否是最后的分片。
片偏移:本片数据在初始IP数据报中的位置。
3、IP数据报选项
IP数据报选项主要用于控制和测试两大目的。既然是选项,用户可以使用IP选项也可以不使用选项,但实现IP协议的设备必须能处理IP选项。
IP选项有3部分组成:源路由、记录路由、时间戳。
源路由:指IP数据报穿越互联网所经过的路径是由源主机指定。分为两类:严格路由选项和松散路由选项。
(1)严格路由选项:规定IP数据报要经过路径上的每一个路由器,相邻的路由器之间不能有中间路由器,并经过的路由器的顺序不能改变。
(2)松散路由选项:给出数据报必须要经过的“要点”,并给出完备的路径,无直接连接的路由器之间尚需IP软件的寻址功能补充。
记录路由:记录IP数据报从源主机到目的主机所经过的路径上各个路由器的IP地址。用于测试网络中路由器的路由配置是否正确。
时间戳:记录IP数据报经过每一个路由器时的时间(以千分之一秒为单位)。
六、差错与控制报文
1、ICMP差错控制
互联层使用的控制协议是互联网控制报文协议(ICMP),作用是不仅传输控制报文,还传输差错报文。
ICMP最基本的功能是提供差错报告,但不提供处理方法。
ICMP差错报文的特点:
差错报文不享受特别优先权和可靠性。
差错报告数据中除包含故障IP数据报头外,还包含故障IP数据报数据区的前64位数据。(利用前64位了解高层协议的重要信息)
IP软件一旦发现传输错误,首先抛弃出错报文,然后调用ICMP向源主机报告出错信息。
ICMP出错报告包括:目的地不可达报告、超时报告、参数出错报告等。
目的地不可达报告:路由选择和转发出错时,路由器发出目的地不可达报告。
超时报告:IP数据报一旦到达生存周期,立刻将其抛弃,同时产生ICMP超时差错报告,通知源主机该数据报已抛弃。
参数出错报告:一旦参数错误严重到机器不得不抛弃IP数据报时,机器向源主机发送此报文,指出可能出现错误的参数位置。
2、ICMP控制报文
互联网控制主要包括拥塞控制和路由控制两部分。ICMP提供对应的控制报文是拥塞控制与源抑制报文和路由控制与重定向报文。
(1)拥塞控制:路由器被大量涌入的IP数据报“淹没”的现象。原因是:路由器处理速度慢,路由器传入数据速率大于传出速率。
其实质原因是没有足够的缓冲区存放大量涌入的IP数据报。为控制拥塞,IP软件采用“源站抑制”技术,路由器对每个接口进行监视,一旦发现拥塞,立即向相应源主机发送ICMP源抑制报文,请求源主机降低发送IP数据报的速率。
抑制报文的方式有3种:
如果路由器输出队列已满,在缓冲器空出前,抛弃新来的IP数据报,每抛弃一个数据报,向源主机发送ICMP源抑制报文。
为路由队列设定一个阈值,超过该值,向源主机发送ICMP源抑制报文。
更为复杂的源站抑制技术是选择性的抑制IP数据报发送率较高的源主机。
什么时候解除拥塞,路由器不通知源主机,而是根据当前一段时间内是否收到ICMP源抑制报文自主决定。
(2) 路由控制与重定向报文
在IP互联网中,主机在传输数据的过程中不断从相邻的路由器获得新的路由信息。
主机在启动时都具有一定的路由信息,但路径不一定是最优的。
路由器一旦检测到某IP数据报经非优路径传输,它一方面继续将报文转发出去,另一方面将向主机发送一个重定向ICMP报文,通知相应的目的主机的最优路径。
ICMP重定向的优点是保证主机拥有一个动态的、既小且优的路由表。
3、ICMP请求/应答报文对
为便于进行故障诊断和网络控制,利用ICMP请求/应答报文对来获取某些有用的信息。
回应请求与应答:用于测试目的主机或路由器的可达性。过程是请求者向特定目的IP主机发送一个包含任选数据区的回应请求,当目的主机或路由器收到请求后,返回相应的回应应答。如果请求者收到一个成功的应答,说明路径以及数据传输正常。
时戳请求与应答:利用该请求与应答从其他机器获得其时钟的当前时间,经估算后再同步时钟。
掩码请求与应答:主机箱路由器发送该请求,路由器发回应答告知主机的子网掩码。
七、路由器与路由选择
1、表驱动IP进行路由选择
路由器:进行路由选择的计算机。
路由选择一般采用表驱动的路由选择算法。每台设备存放一张路由表,该表存储有关可能的目的地址及怎样到达目的的信息。
(1)标准路由选择算法
路由表中包含许多(N,R)的有序对,N是目的地址,R是到N的路径中下一个路由器的地址。每个路由器中仅保存下一站,并不知完整路径。
为减少路由表长度或提高路由效率,路由表中的N一般使用目的网络的地址,不是目的主机地址。
(2)子网选择路由-------标准路由选择算法的扩充
IP采用子网编址后,将路由表改为(M,N,R),其中M为子网掩码,N为目的网络的地址,R为下一个路由的IP地址。
(3)路由表的特殊路由
使用网络地址可以极大缩小路由表规模,路由表也可包含两种特殊的路由表目,即默认路由和特定主机路由。
默认路由:如果路由表没有指定达到目的的网络的路由信息,就可以把数据报转发到默认路由指定的路由器。
特定主机路由:主要表项(包括默认路由)是基于网络地址的。为单个主机指定特别的路径就是特定主机路由。
(4)统一的路由选择算法
允许使用任意的掩码形式,子网路由选择算法不但能按照同样的方法处理网络路由、默认路由、特定主机路由,还可以将标准路由选择算法作为一个特例。
Ⅱ 路由是什么
计算机网络往往由许多种不同类型的网络互连连接而成。如果几个计算机网络只是在物理上连接在一起,它们之间并不能进行通信,那么这种“互连”并没有什么实际意义。因此通常在谈到“互连”时,就已经暗示这些相互连接的计算机是可以进行通信的,也就是说,从功能上和逻辑上看,这些计算机网络已经组成了一个大型的计算机网络,或称为互联网络,也可简称为互联网、互连网。
将网络互相连接起来要使用一些中间设备(或中间系统),ISO的术语称之为中继(relay)系统。根据中继系统所在的层次,可以有以下五种中继系统:
1.物理层(即常说的第一层、层L1)中继系统,即转发器(repeater)。
2.数据链路层(即第二层,层L2),即网桥或桥接器(bridge)。
3.网络层(第三层,层L3)中继系统,即路由器(router)。
4.网桥和路由器的混合物桥路器(brouter)兼有网桥和路由器的功能。
5.在网络层以上的中继系统,即网关(gateway).
当中继系统是转发器时,一般不称之为网络互联,因为这仅仅是把一个网络扩大了,而这仍然是一个网络。高层网关由于比较复杂,目前使用得较少。因此一般讨论网络互连时都是指用交换机和路由器进行互联的网络。本文主要阐述交换机和路由器及其区别。
交换机和路由器
“交换”是今天网络里出现频率最高的一个词,从桥接到路由到ATM直至电话系统,无论何种场合都可将其套用,搞不清到底什么才是真正的交换。其实交换一词最早出现于电话系统,特指实现两个不同电话机之间话音信号的交换,完成该工作的设备就是电话交换机。所以从本意上来讲,交换只是一种技术概念,即完成信号由设备入口到出口的转发。因此,只要是和符合该定义的所有设备都可被称为交换设备。由此可见,“交换”是一个涵义广泛的词语,当它被用来描述数据网络第二层的设备时,实际指的是一个桥接设备;而当它被用来描述数据网络第三层的设备时,又指的是一个路由设备。 我们经常说到的以太网交换机实际是一个基于网桥技术的多端口第二层网络设备,它为数据帧从一个端口到另一个任意端口的转发提供了低时延、低开销的通路。
由此可见,交换机内部核心处应该有一个交换矩阵,为任意两端口间的通信提供通路,或是一个快速交换总线,以使由任意端口接收的数据帧从其他端口送出。在实际设备中,交换矩阵的功能往往由专门的芯片(ASIC)完成。另外,以太网交换机在设计思想上有一个重要的假设,即交换核心的速度非常之快,以致通常的大流量数据不会使其产生拥塞,换句话说,交换的能力相对于所传信息量而无穷大(与此相反,ATM交换机在设计上的思路是,认为交换的能力相对所传信息量而言有限)。虽然以太网第二层交换机是基于多端口网桥发展而来,但毕竟交换有其更丰富的特性,使之不但是获得更多带宽的最好途径,而且还使网络更易管理。
而路由器是OSI协议模型的网络层中的分组交换设备(或网络层中继设备),路由器的基本功能是把数据(IP报文)传送到正确的网络,包括:
1.IP数据报的转发,包括数据报的寻径和传送;
2.子网隔离,抑制广播风暴;
3.维护路由表,并与其他路由器交换路由信息,这是IP报文转发的基础。
4.IP数据报的差错处理及简单的拥塞控制;
5.实现对IP数据报的过滤和记帐。
对于不同地规模的网络,路由器的作用的侧重点有所不同。
在主干网上,路由器的主要作用是路由选择。主干网上的路由器,必须知道到达所有下层网络的路径。这需要维护庞大的路由表,并对连接状态的变化作出尽可能迅速的反应。路由器的故障将会导致严重的信息传输问题。
在地区网中,路由器的主要作用是网络连接和路由选择,即连接下层各个基层网络单位--园区网,同时负责下层网络之间的数据转发。
在园区网内部,路由器的主要作用是分隔子网。早期的互连网基层单位是局域网(LAN),其中所有主机处于同一逻辑网络中。随着网络规模的不断扩大,局域网演变成以高速主干和路由器连接的多个子网所组成的园区网。在其中,处个子网在逻辑上独立,而路由器就是唯一能够分隔它们的设备,它负责子网间的报文转发和广播隔离,在边界上的路由器则负责与上层网络的连接。
第二层交换机和路由器的区别
传统交换机从网桥发展而来,属于OSI第二层即数据链路层设备。它根据MAC地址寻址,通过站表选择路由,站表的建立和维护由交换机自动进行。路由器属于OSI第三层即网络层设备,它根据IP地址进行寻址,通过路由表路由协议产生。交换机最大的好处是快速,由于交换机只须识别帧中MAC地址,直接根据MAC地址产生选择转发端口算法简单,便于ASIC实现,因此转发速度极高。但交换机的工作机制也带来一些问题。
1.回路:根据交换机地址学习和站表建立算法,交换机之间不允许存在回路。一旦存在回路,必须启动生成树算法,阻塞掉产生回路的端口。而路由器的路由协议没有这个问题,路由器之间可以有多条通路来平衡负载,提高可靠性。
2.负载集中:交换机之间只能有一条通路,使得信息集中在一条通信链路上,不能进行动态分配,以平衡负载。而路由器的路由协议算法可以避免这一点,OSPF路由协议算法不但能产生多条路由,而且能为不同的网络应用选择各自不同的最佳路由。
3.广播控制:交换机只能缩小冲突域,而不能缩小广播域。整个交换式网络就是一个大的广播域,广播报文散到整个交换式网络。而路由器可以隔离广播域,广播报文不能通过路由器继续进行广播。
4.子网划分:交换机只能识别MAC地址。MAC地址是物理地址,而且采用平坦的地址结构,因此不能根据MAC地址来划分子网。而路由器识别IP地址,IP地址由网络管理员分配,是逻辑地址且IP地址具有层次结构,被划分成网络号和主机号,可以非常方便地用于划分子网,路由器的主要功能就是用于连接不同的网络。
5.保密问题:虽说交换机也可以根据帧的源MAC地址、目的MAC地址和其他帧中内容对帧实施过滤,但路由器根据报文的源IP地址、目的IP地址、TCP端口地址等内容对报文实施过滤,更加直观方便。
6.介质相关:交换机作为桥接设备也能完成不同链路层和物理层之间的转换,但这种转换过程比较复杂,不适合ASIC实现,势必降低交换机的转发速度。因此目前交换机主要完成相同或相似物理介质和链路协议的网络互连,而不会用来在物理介质和链路层协议相差甚元的网络之间进行互连。而路由器则不同,它主要用于不同网络之间互连,因此能连接不同物理介质、链路层协议和网络层协议的网络。路由器在功能上虽然占据了优势,但价格昂贵,报文转发速度低。 近几年,交换机为提高性能做了许多改进,其中最突出的改进是虚拟网络和三层交换。
划分子网可以缩小广播域,减少广播风暴对网络的影响。路由器每一接口连接一个子网,广播报文不能经过路由器广播出去,连接在路由器不同接口的子网属于不同子网,子网范围由路由器物理划分。对交换机而言,每一个端口对应一个网段,由于子网由若干网段构成,通过对交换机端口的组合,可以逻辑划分子网。广播报文只能在子网内广播,不能扩散到别的子网内,通过合理划分逻辑子网,达到控制广播的目的。由于逻辑子网由交换机端口任意组合,没有物理上的相关性,因此称为虚拟子网,或叫虚拟网。虚拟网技术不用路由器就解决了广播报文的隔离问题,且虚拟网内网段与其物理位置无关,即相邻网段可以属于不同虚拟网,而相隔甚远的两个网段可能属于不同虚拟网,而相隔甚远的两个网段可能属于同一个虚拟网。不同虚拟网内的终端之间不能相互通信,增强了对网络内数据的访问控制。
交换机和路由器是性能和功能的矛盾体,交换机交换速度快,但控制功能弱,路由器控制性能强,但报文转发速度慢。解决这个矛盾的最新技术是三层交换,既有交换机线速转发报文能力,又有路由器良好的控制功能。
第三层交换机和路由器的区别
在第三层交换技术出现之前,几乎没有必要将路由功能器件和路由器区别开来,他们完全是相同的:提供路由功能正在路由器的工作,然而,现在第三层交换机完全能够执行传统路由器的大多数功能。作为网络互连的设备,第三层交换机具有以下特征:
1.转发基于第三层地址的业务流;
2.完全交换功能;
3.可以完成特殊服务,如报文过滤或认证;
4.执行或不执行路由处理。
第三层交换机与传统路由器相比有如下优点:
1.子网间传输带宽可任意分配:传统路由器每个接口连接一个子网,子网通过路由器进行传输的速率被接口的带宽所限制。而三层交换机则不同,它可以把多个端口定义成一个虚拟网,把多个端口组成的虚拟网作为虚拟网接口,该虚拟网内信息可通过组成虚拟网的端口送给三层交换机,由于端口数可任意指定,子网间传输带宽没有限制。
2.合理配置信息资源:由于访问子网内资源速率和访问全局网中资源速率没有区别,子网设置单独服务器的意义不大,通过在全局网中设置服务器群不仅节省费用,更可以合理配置信息资源。
3.降低成本:通常的网络设计用交换机构成子网,用路由器进行子网间互连。目前采用三层交换机进行网络设计,既可以进行任意虚拟子网划分,又可以通过交换机三层路由功能完成子网间通信,为此节省了价格昂贵的路由器。
4.交换机之间连接灵活:作为交换机,它们之间不允许存在回路,作为路由器,又可有多条通路来提高可靠性、平衡负载。三层交换机用生成树算法阻塞造成回路的端口,但进行路由选择时,依然把阻塞掉的通路作为可选路径参与路由选择。 五、结论
综上所述,交换机一般用于LAN-WAN的连接,交换机归于网桥,是数据链路层的设备,有些交换机也可实现第三层的交换。路由器用于WAN-WAN之间的连接,可以解决异性网络之间转发分组,作用于网络层。他们只是从一条线路上接受输入分组,然后向另一条线路转发。这两条线路可能分属于不同的网络,并采用不同协议。相比较而言,路由器的功能较交换机要强大,但速度相对也慢,价格昂贵,第三层交换机既有交换机线速转发报文能力,又有路由器良好的控制功能,因此得以广播应用。
Ⅲ 路由器是怎样选最佳路经的呢
首先,检 查转发进程。有三个步骤到转发信息包通过路由器: 确定信息包目的地是否是可及的。 确定下一 跳往目的地和接口该下一 跳是可及的。 重写媒体访问控制 (MAC)头在信息包因此将成功地到达其下一跳。 这些步骤中的每一个是重要为了信息包能到达其目的 地。 注意: 在本 文过程中,我们使用IP交换路径例如; 实际上如果他们存在 ,这里被提供的所有信息是可适用的到等同的交换路径为其他协议 。 流程转换 流程转换是小公分母在 交换路径; 它为每通信类型是可用的在每个IOS版本,在每 个平台和交换式。流程转换是由二个重要概念定义的: 转发决策和信息在信息包曾经重写 MAC 报头从包含MAC报头信息被映射到每台主机IP 地址直接地连 接到路由器的一些其他表被采取从路由表(从路由信息库或者RIB)和 地址解析协议(ARP)高速缓冲存储器,或者。 信息包由运行在IOS的之内一个正常进程转换。 换句话说,转发决策由通过IOS调度程序和运行被安排的进程 做作为一个对等体到其他进程在路由器,例如路由协议。 在 路由器正常运行没有中断的进程过程交换信息包。 下面的图说明流程转换路径。 较详细地检查 此图表: 接口处理器在网络媒介首先 发现那里是一个信息包,并且传输此信息包到路由器的输入-输出内 存。 接口处理器生成一次收到中断信 号。 在此中断期间,中央处理器确定什么类型的信息包这是 (假设它是IP信息包)和复制它到如果需要处理器内存里(此决策根据 平台)。 最后,处理器在适当的处理输入队列放置信息包并 且发布中断。 当下次调度程序运行, 在ip_input 输入队列注释信息包 ,并且安排此进程运行 。 当ip_input 运行时,参见 RIB确定下一跳和输出接口然后参见ARP高速缓存确定正确的物理层 地址为此下一跳。 ip_input 在正确的出局接口的 输出队列然后重写信息包的MAC报头,并且放置信息包。 信息包从出局接口的输出队列被复制 对出局接口的传输队列; 所有outbound 服务质量发生在这 两个队列之间。 输出接口处理器在其 传输队列发现信息包,并且传输信息包网络媒介。 几乎影响信息包交换的所有功能,例如网络地址转换 (NAT)和策略路由,在流程转换路径做他们的首演。一旦他们 证明,并且优化,这些功能可以或者不可以,出现interrupt上下文转换程序。 中断上下文交换 中断上下文交换是Cisco路由器使用的主要交换方法 的秒钟。中断上下文交换和流程转换的之间主要的区别是: 中断当前运行在处理器的进程转换信 息包。仅当可以安排时,信息包被转换根据要求, 而不是 被转换 ip_input 进程。 处理 器使用路由高速缓存的某种表找到所有信息必要转换信息包。 以下图说明中断上下文交换。 较详细地检查此图表: 接口 处理器在网络媒介首先发现那里是一个信息包,并且传输此信息包 到路由器的输入-输出内存。 接口处 理器生成一次收到中断信号。 在此中断期间,中央处理器确 定什么类型的信息包这是(假设它是IP信息包),然后开始转换信息 包。 处理器搜索路由高速缓存确定如 果信息包目的地是可及的,什么输出接口应该是,什么下一跳往此 目的地是和终于,什么MAC 报头信息包如果成功地必须到达下一跳 。 处理器使用此信息重写信息包的MAC报头。 信息包现在被复制到传输或出局接 口的输出队列(根据多种要素)。收到中断信号现在回归和在 处理器运行的进程在中断发生了之前持续运行。 输出接口处理器在其传输队列发现信息包,并且传输 信息包网络媒介。 浮现在脑海在读此说明以后的第一个问题是"什么在 高速缓冲存储器?" 有三个可能的答案,根据中断上下文交 换的种类: 快速交换 最优交换 Cisco快速转 发 我们将查看这些路由高速缓存类型 (或交换路径)中的每一条一次一个。 快速交换 快速交换使用一个二分 树存储转发信息和MAC报头重写字符串作为快速查找和参考。以下图说明一个二分树。 在快速交换, 可达性信息在二分树由一个节点的存在表示为信息包的目的地。 MAC 报头和出局接口为每个目的地在树之内,存储作为节点 的信息一部分。二分树能实际上有上面32 levels?the树为例 证的目的极其缩写。 搜索一个二分树 ,您在根据该编号的树简单开始从左(与最有效位数)在您寻找的(二 进制)编号和分支或左。例如,如果寻找信息与第4有关在此 树,您由分支的权利会开始,因为第一个二进制数字是1。 您在(二进制)编号会跟随树下来,比较下个数字,直到您到达末端